

Marciana Marina, Isola d'Elba, Italy

Probing Neutrino Masses and Mixings with Accelerator and Reactor Neutrinos

Mike Shaevitz - Columbia University

Elba Electron-Nucleus Scattering XII Conference June 25-29, 2012

Outline

- Introduction to Neutrino Mass and Mixing
- Neutrino Oscillations among $\nu_{e},\,\nu_{\mu},$ and ν_{τ}
 - Physics Opportunities with large θ_{13}
 - Plans and Prospects for Measuring Hierarchy and CP Violation
- Possible Oscillations to Sterile Neutrinos
 - Current Hints and Anomalies
 - Ideas for Future Searches
- Final Comments

Absolute Neutrino Mass Determinations

To Probe Smaller Masses ⇒ **Neutrino Oscillations**

4

The observation of neutrino oscillations where one type of neutrino can change (oscillate) into another type implies:

1. Neutrinos have mass

and

- 2. Lepton number (electron, muon, tau) is not conserved $(\nu_e \rightarrow \nu_\mu, \nu_\mu \rightarrow \nu_\tau, \nu_e \rightarrow \nu_\tau)$
- The phenomena comes about because the mass and flavor states are different as parameterized by a mixing matrix

$$P_{Osc}\left(v_{a} \rightarrow v_{b}\right) = \sin^{2} 2\theta \sin^{2}\left(1.27\Delta m^{2}L/E\right)$$

where
$$\theta = \text{mixing angle}; \Delta m^2 = m_b^2 - m_a^2$$
;

L = travel distance; E = neutrino energy

- Two types of oscillation searches:
 - Appearance Experiment:

Look for appearance of v_e or v_τ in a pure v_μ beam vs. L and E

- Disappearance Experiment:

Look for a change in $\nu_{e/\mu}$ flux as a function of L and E

Oscillations Parameterized by 3x3 Unitary Mixing Matrix

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$
$$\begin{pmatrix} Flavor \\ Eigenstate \end{pmatrix} = (Mixing Matrix) \begin{pmatrix} Mass \\ Eigenstate \end{pmatrix}$$

Three mass splittings: $\Delta m_{12}^2 = m_1^2 - m_2^2$, $\Delta m_{23}^2 = m_2^2 - m_3^2$, $\Delta m_{31}^2 = m_3^2 - m_1^2$ But only two are independent since only three masses If $\delta \neq 0$, then have CP violation $\Rightarrow P(v_{\mu} \rightarrow v_e) \neq P(\overline{v_{\mu}} \rightarrow \overline{v_e})$ solar atmospheric Current Measurements: $\Delta m_{12}^2 = 8 \times 10^{-5} \text{ eV}^2$, $\Delta m_{13}^2 \approx \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ $U = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$ 3-mixing angles Solar: $\theta_{12} \sim 33^\circ$ $\theta_{13} = 9^\circ$ but $\delta = ??$ Atmospheric: $\theta_{23} \sim 45^\circ$

Oscillation Summary

Big Questions in (3x3) Neutrino Mixing

1. What is v_e component in m^2 m^2 the v_3 mass eigenstate? \Rightarrow The size of the "little" mixing angle", θ_{13} ν_{μ} θ_{13} Now known $\Rightarrow \theta_{13} = \sim 9^{0}$ ν_{τ} m_3^2 2. What is the mass m_{2}^{2} hierarchy? solar~ $8 \times 10^{-5} \text{eV}^2$ m_{1}^{2} Is the solar pair the least atmospheric massive or not? $\sim 3 \times 10^{-3} eV^2$ atmospheric Do neutrinos exhibit CP m_2^2 $\sim 3 \times 10^{-3} eV^2$ violation, i.e. is $\delta \neq 0$? solar~ $8 \times 10^{-5} \text{eV}^2$ $m_1^2_{-}$ m_3^2 If observe CP violation. then gives hints that Leptogenesis models ? ? may be used to explain matter-antimatter 0 0 asymmetry in the Normal Hierarchy **Inverted Hierarchy** universe

Current Neutrino Oscillation Program

Types of Oscillation Experiments

- Long-Baseline Accelerators: Appearance $(v_{\mu} \rightarrow v_{e})$ at $\Delta m^{2} \approx 2.5 \times 10^{-3} \text{ eV}^{2}$
 - Look for appearance of v_e in a pure v_u beam vs. L and E
 - Use near detector to measure background v_e 's (beam and misid)

T2K:

$$\langle E_v \rangle = 0.7 \text{ GeV}$$

 $L = 295 \text{ km}$

- Reactors: Disappearance ($\overline{v}_e \rightarrow \overline{v}_e$) at $\Delta m^2 \approx 2.5 \times 10^{-3} \text{ eV}^2$
 - Look for a change in \overline{v}_e flux as a function of L and E
 - Look for a non- $1/r^2$ behavior of the v_e rate
 - Use near detector to measure the un-oscillated flux

Double Chooz, RENO, Daya Bay: $\langle E_v \rangle = 3.5 \text{ MeV}$ $L = \sim 1100 \text{ m}$

Long-Baseline Accelerator Appearance Experiments

- Oscillation probability complicated and dependent on θ_{13} plus also:
 - 1. CP violation parameter (δ)
 - 2. Mass hierarchy (sign of Δm_{31}^2) "Matter Effects"
 - 3. Size of $\sin^2\theta_{23}$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2} S_{23}^{2} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2} S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \\ &- 8C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \\ &+ 4S_{12}^{2} C_{13}^{2} \left\{C_{12}^{2} C_{23}^{2} + S_{12}^{2} S_{23}^{2} S_{13}^{2} - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right\} \sin^{2} \frac{\Delta m_{21}^{2} L}{4E} \\ &- 8C_{13}^{2} S_{13}^{2} S_{23}^{2} \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \frac{aL}{4E} \left(1 - 2S_{13}^{2}\right) \end{split}$$

 \Rightarrow These extra dependencies are both a "curse" and a "blessing"

Reactor Disappearance Experiments

• Reactor disappearance measurements provide a straight forward method to measure θ_{13} with no dependence on matter effects and CP violation

$$P(\overline{v_e} \to \overline{v_e}) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + \text{ small terms}$$

Reactor Neutrino Experiments

Recent Reactor θ_{13} Measurements

In under a year, θ_{13} has gone from unknown to well measured

Long-baseline v_e Appearance Program

T2K $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation Experiment

Observe 10 candidate events with 2.7 \pm 0.4 event expected background \Rightarrow 3.2 σ signal

New T2K Results for sin²2θ₁₃

Preliminary

Best Fit values for $\Delta m^2_{23}=2.4 \times 10^{-3} \text{ eV}^2$, $\delta_{CP}=0$

 $sin^2 2\theta_{13} = 0.104 \pm 0.055$

(normal hierarchy)

 $sin^2 2\theta_{13} = 0.128 \pm 0.065$

(inverted hierarchy)

T2K now fully back after earthquake and proton intensity expected to increase

15

MINOS: $v_{\mu} \rightarrow v_{e}$ Appearance

- Neutrino mode
 - Expect: 128.6 events (+32.5 signal events @ sin²2θ₁₃=0.1)
 - Observe: 152 events

Disfavour $\theta_{13}=0$ at 96% C.L.

MINOS: v_{μ} / \overline{v}_{μ} **Disappearance** $\Rightarrow \Delta m_{23}^2$ and $\sin^2 2\theta_{23}$

New MINOS neutrino oscillation parameters: $\Delta m_{23}^2 = 2.39^{+0.09}_{-0.10} \times 10^{-3} eV^2$ $\sin^2(2\theta_{23}) = 0.96^{+0.04}_{-0.04}$ $\sin^2(2\theta_{23}) > 0.90$ at 90% C.L.

New data has resolved the tension between the neutrino and the old antineutrino results

Global Fits to Reactor, T2K, and MINOS

Ferero, Tortola, and Valle arXiv: 1205.4018

Moving on to Measuring the Mass Hierarchy and CP Violation

Present Longbaseline Experiments: T2K and Nova

Opportunities with Current Program Data *Combine T2K, NOvA, and Reactor Data*

Examples:

Measuring the mass hierarchy:

Compare NOvA appearance with matter effects to T2K appearance measurement without matter effects

(π) Q NOvA + T2K 1.8 3 years for each v and \bar{v} NOvA at 700 kW. 1.6 1.2MW, and 2.3MW + T2K 6 years of v 1.4 at nominal, x2, and x4 1.2 1 L = 810 km, 15 kT 0.8 $\Delta m_{22}^2 = 2.4 \ 10^{-3} \ eV^2$ $sin^{2}(2\theta_{22}) = 1$ 0.6 Favored θ_{13} $\Delta m^2 > 0$ Region 0.4 0.2 0 0.15 0 0.05 0.1 2 sin²(0₂₃) sin²(20₁₃)

95% CL Resolution of the Mass Ordering

Measuring CP violation:

Compare NOvA neutrino and antineutrino appearance measurements.

1 and 2 σ Contours for Starred Point for NOvA

Future Longbaseline Experiments

European Design Study - LAGUNA (Large Apparatus for Grand Unification and Neutrino Astrophysics)

- MEMPHYS MEgaton Mass PHYSics
 - tanks of 60 m heigth $\times 65$ m \varnothing
 - \sim 440 kt water Cherenkov detector
- GLACIER Giant Liquid Argon Charge Imaging ExpeRiment
 - 20 m heigth ×70 m Ø
 - $\sim 100 \, \text{kt}$ liquid Ar TPC

LENA - Low Energy Neutrino Astronomy

- 100 m long \times 30 m Ø
- \sim 50 kt liquid scintillator

Possible sites for a program with a neutrino beam from CERN

Saga of the US LBNE Experiment

- US funding agencies decide to pursue a deep underground lab in the old Homestake gold mine in South Dakota (DUSEL)
 - Some politics led to DOE taking on the project
 - LBNE oscillation experiment to be key part of this program
- January 2012: LBNE project management decides to pursue a 34 kton liquid argon (LAr) detector with 700 kW beam from Fermilab to Homestake
- March 2012: DOE tasks Fermilab to break LBNE into affordable phases that may include new sites but should have physics capabilities at each phase.
- June 2012: Panel set up to decide among three options for Phase I:
 - 1. 10 kton LAr detector on the surface at Homestake with new Fermilab neutrino beam
 - 2. 20 kton LAr detector in MINOS underground lab with existing v beam
 - 3. 30 kton LAr detector on surface at Nova site with existing v beam

LBNE Options: Mass Hierarchy and CP Violation Sensitivity ²⁶

- Homestake option seems to have best overall sensitivity
 - But some worry about running LAr on the surface

5 years neutrino + 5 years antineutrino

Possible Oscillations to Sterile Neutrinos

Sterile neutrinos

- Have no weak interactions (through the standard W/Z bosons)
- Would be produced and decay through mixing with the standard model neutrinos
- Can affect oscillations through this mixing

LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Signal

LSND in conjunction with the atmospheric and solar oscillation results needs more than 3 v's \Rightarrow Models developed with 1 or 2 sterile v's

Saw an excess of: $87.9 \pm 22.4 \pm 6.0$ events.

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ evidence for oscillation.

LSND Signal Region

The MiniBooNE Experiment at Fermilab

- Goal to confirm or exclude the LSND result Similar L/E as LSND
 - Different energy, beam and detector systematics
 - Event signatures and backgrounds different from LSND
- Since August 2002 have collected data:
 - 6.7×10^{20} POT ν
 - 11.3 \times 10^{20} POT $\overline{\nu}$

MiniBooNE $v_{\mu} \rightarrow v_{e}$ and New $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$

• $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ fairly compatible with a common oscillation hypothesis and with the LSND result

Hints for High $\Delta m^2 \sim 1 eV^2$ Oscillation \Rightarrow Sterile Neutrinos? or Something Else?

• Positive indications:

	V				
	Anomaly	Type	Channel	Significance	
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	LSND	DAR	$\overline{\nu}$ CC	3.8σ	
$\nu_{\mu} \rightarrow \nu_{e}$	MiniBooNE	SBL accelerator	ν CC	3.0 σ	New MiniBooNE
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	MiniBooNE	SBL accelerator	$\overline{\nu} ext{ CC}$	1.7σ	Combined $v + \overline{v}$
$\nu_e \rightarrow \nu_e$	Gallium/Sage	Source - e capture	$\nu \text{ CC}$	2.7σ	Now 3.8 σ
$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor	Beta-decay	$\overline{ u}$	3.0σ	

- Negative indications:
 - CDHS and MiniBooNE restrictions on ν_{μ} disappearance
 - MiniBooNE restrictions on $\overline{\nu}_{\mu}$ disappearance
 - MINOS restrictions on $\nu_{\mu} {\rightarrow} \, \nu_{s}$
 - Karmen restrictions on $\overline{\nu}_{\!\mu}\!\!\rightarrow\overline{\nu}_{e}$
 - Other negative results

New MiniBooNE/SciBooNE Limits on ν_{μ} / $~\overline{\nu}_{\mu}$ Disappearance

Phenomenology of Oscillations with Sterile Neutrinos

- In sterile neutrino (3+1) models, appearance comes from oscillation through $\nu_{\rm s}$

- $\nu_{\mu} \rightarrow \nu_{e}$ = ($\nu_{\mu} \rightarrow \nu_{s}$) + ($\nu_{s} \rightarrow \nu_{e}$)

- (3+1) models require ν_{μ} and ν_{e} disappearance oscillations
 - $\nu_{\mu} \! \rightarrow \! \nu_{s}$ and $\nu_{e} \! \rightarrow \! \nu_{s} \Leftarrow \text{Disappearance}$
 - Constraints from disappearance restrict application of (3+1) fits
- Current measurements of appearance and disappearance are not very compatible with (3+1) models ⇒ (3+2) models
 - If $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ are different then (3+2) models can have CP violation
 - Still tension between appearance and disappearance

$\overline{v_e}$ Disappearance Observed? \Rightarrow Reactor Antineutrino Anomaly ³⁴

New Reactor antineutrino Spectra

- Net 3% upward shift in energy-averaged fluxes
- >Neutron life time correction & Off-equilibrium effects

At least three alternatives:

- Wrong prediction of v-spectra ?
- Bias in all experiments ?
- New physics at short baselines: Mixing with 4th v-state

Stringent limits on ν_{μ} disappearance from experiments

• SciBooNE/MiniBooNE and MINOS v_{μ} and $\overline{v_{\mu}}$ disappearance limit \Rightarrow Restricts application of 3+1 and 3+2 models

Global Sterile Neutrino Fits to High Δm^2 **Hints**

- 3+0 Models
 - Solar and Atmospheric ∆m² already saturates 3 known neutrinos
 - \Rightarrow Need to add at least one sterile neutrino
- 3+1 Models:
 - Extra sterile neutrino give high Δm^2
 - Can't explain differences in $\overline{v_e}$ vs v_e appearance rates
 - Can't explain lack of $\overline{\nu_{\mu}}/\nu_{\mu}$ disappearance observations
- 3+2 Models:
 - Can explain high Δm^2
 - Can have CP violation that explain differences in $v_e vs v_e$ appearance rates
 - Still can't explain lack of $\overline{\nu_{\mu}}/\nu_{\mu}$ disappearance observations

 $\begin{array}{ll} \nu_{e} \rightarrow \nu_{e} \mbox{ disappearance } & \sin^{2} 2\theta_{ee} \\ \nu_{\mu} \rightarrow \nu_{\mu} \mbox{ disappearance } & \sin^{2} 2\theta_{\mu\mu} \\ \nu_{\mu} \rightarrow \nu_{e} \mbox{ appearance } & \sin^{2} 2\theta_{\mu e} \\ \sin^{2} 2\theta_{\mu e} \approx \frac{1}{4} \sin^{2} 2\theta_{ee} \sin^{2} 2\theta_{\mu\mu} \end{array}$

Preliminary (3+2) Fits to New MiniBooNE v_e / $\overline{v_e}$ Appearance

 $\begin{array}{l} \mbox{Global 3+2 Fits} \\ \mbox{including new} \\ \mbox{MiniBooNE} \\ \mbox{$\overline{v}_{\mu} \rightarrow \ \overline{v}_{e}$ Data} \end{array}$

• Two high mass scales plus CP violation effects can possibly explain $v_e vs v_e$ appearance

 Still some tension with disappearance results.

Many Ideas for Future Experiments

- Establishing the existence of sterile neutrinos would be a major result for particle physics
- Need definitive experiments
 - Significance at the > 5σ level
 - Observation of oscillatory behavior (L and/or E dependence) within a detector or between multiple detectors
 - Oscillation signal clearly separated from backgrounds
- Need to make both appearance and disappearance oscillation searches for neutrinos and for antineutrinos
 - Needed to prove the consistency with sterile neutrino (3+1) and (3+2) models
- Very active area for the field with many proposals and ideas
 - "Light Sterile Neutrinos: A White Paper" (arXiv:1204.5379) put together by a group of over 170 experimentalists and theorists.
 - Many workshops investigating opportunities and possibilities

Future Experimental Oscillation Proposals

Type of Exp	App/Disapp	Osc Channel	Experiments
Reactor Source	Disapp	$\overline{v}_{e} \rightarrow \overline{v}_{e}$	Nucifer, Stereo, SCRAMM, NIST, Neutrino4, DANSS
Radioactive Sources	Disapp	$ \begin{array}{c} \overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \\ (\nu_{e} \rightarrow \nu_{e}) \end{array} $	Baksan, LENS, Borexino, SNO+, Richochet, CeLAND, Daya-Bay
Isotope Source	Disapp	$\overline{v}_{e} \rightarrow \overline{v}_{e}$	IsoDAR
Pion / Kaon Decay- at-Rest Source	Appearance & Disapp	$\begin{array}{c} \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \\ \nu_{e} \rightarrow \nu_{e} \end{array}$	OscSNS, CLEAR, DAEδALUS, KDAR
Accelerator $\stackrel{(-)}{\nu}$ using Pion Decay-in-Flight	Appearance & Disapp	$ u_{\mu} \rightarrow v_{e}, \ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} $ $ \nu_{\mu} \rightarrow \nu_{\mu}, \nu_{e} \rightarrow \nu_{e} $	MINOS+, MicroBooNE, LAr1kton+MicroBooNE, CERN SPS
Low-Energy v-Factory	Appearance & Disapp	$ \begin{array}{c} \nu_{e} \rightarrow \nu_{\mu} \ , \ \overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu} \\ \nu_{\mu} \rightarrow \nu_{\mu} \ , \ \nu_{e} \rightarrow \ \nu_{e} \end{array} $	vSTORM at Fermilab

Very-short Baseline Oscillation Experiments

 $1/L^2$ flux rate modulated by $\operatorname{Prob}_{osc} = \sin^2 2\theta \cdot \sin^2 \left(\Delta m^2 L / E \right)$

- Can observe oscillatory behavior within the detector if neutrino source has small extent .
 - Look for a change in event rate as a function of position and energy within the detector
 - Bin observed events in L/E (corrected for the 1/L²) to search for oscillations
- Backgrounds produce fake events that do not show the oscillation L/E behavior and are easily separated from signal

Very-Short Baseline Reactor Experiments ($\overline{v_e}$ Disappearance)

Very-Short Baseline Reactor Experiments

Experiment	Reactor	Baseline	Status
Nucifer (Saclay)	Osiris 70MW	7	Taking Data
Stereo (Genoble)	ILL 50 MW	10	Proposal
SCRAMM (CA)	San-Onofre 3 GW	24	Proposal
NIST (US)	NCNR 20 MW	4-11	Proposal
NEUTRINO4	SM3 100 MW	6-12	Proposal
SCRAMM (Idaho)	ATR 150 MW	12	Proposal
DANSS (Russia)	KNPP 3 GW	14	Fabrication

43

C

90%

Nucifer

sin²(2013)

95% C

Radioactive β -Decay Source Experiments (v_e or $\overline{v_e}$ Disappearance)

Radioactive β**-Decay Source Experiments**

Species	Source	Experiment	Status
V _e	⁵¹ Cr	Baksan	Proposal
v _e	⁵¹ Cr	LENS	Proposal
V _e	⁵¹ Cr	Borexino	Proposal
v _e	⁵¹ Cr	SNO+	Proposal
V _e	³⁷ Ar	Richochet	Proposal
v _e	¹⁴⁴ Ce	Ce-LAND	Proposal
v _e	¹⁴⁴ Ce	Daya-Bay	Proposal

Ce-LAND Exp: Using ¹⁴⁴Ce kCi Anti-neutrino Source

- A 50 kCi anti-v source (10 g of ¹⁴⁴Ce) in the middle of a large LS detector
- Inside a thick 35 cm W-Cu shielding → background free
- Energy-dependent oscillating pattern in event spatial distribution

M. Cribier, et al. PRL 107, 201801(2011)

Detectors which could be used for this idea include Kamland, SNO+, or Borexino...

Isotope Decay-at-Rest Neutrino Source ($\overline{v_e}$ Disappearance)

IsoDAR v_e Disappearance Exp (arXiv:1205.4419)

- High intensity \overline{v}_e source using β -decay at rest of ⁸Li isotope \Rightarrow IsoDAR
- ⁸Li produced by high intensity (10ma) proton beam from 60 MeV cyclotron \Rightarrow being developed as prototype injector for DAE δ ALUS cyclotron system
- Put a cyclotron-isotope source near one of the large (kton size) liquid scintillator/water detectors such as KAMLAND, SNO+, Borexino, Super-K....

- Physics measurements:
 - \overline{v}_{e} disappearance measurement in the region of the LSND and reactorneutrino anomalies.
 - Measure oscillatory behavior within the detector.

IsoDAR Neutrino Source and Events

- p (60 MeV) + ${}^{9}\text{Be} \rightarrow {}^{8}\text{Li} + 2p$
 - plus many neutrons since low binding energy
- n + ⁷Li (shielding) \rightarrow ⁸Li
- ${}^{8}\text{Li} \rightarrow {}^{8}\text{Be} + e^{-} + \overline{\nu}_{e}$
 - Mean \overline{v}_{e} energy = 6.5 MeV - 2.6×10²² \overline{v}_{e} / yr
- Example detector: Kamland (900 t)
 - Use IBD $\stackrel{-}{\nu_e}$ + p \rightarrow e^+ + n process
 - Detector center 16m from source
 - ~160,000 IBD events / yr
 - 60 MeV protons @ 10ma rate
 - Observe changes in the IBD rate as a function of L/E

IsoDAR \overline{v}_{e} Disappearance Oscillation Sensitivity (3+1)

Oscillation L/E Waves in IsoDAR

Observed/Predicted event ratio vs L/E including energy and position smearing

IsoDAR's high statistics and good L/E resolution gives good sensitivity to distinguish (3+1) and (3+2) oscillation models

Pion or Kaon Decay-at-Rest Neutrino Sources

Decay-at-Rest (or Beam Dump) Neutrino Sources

Scintillation Detectors with DAR Neutrino Sources

•

٠

OscSNS: DAR Neutrino Source at SNS (ORNL)

Accelerator v_{μ} / $\overline{v_{\mu}}$ Beams using Pion Decay-in-Flight

MicroBooNE Experiment (Under Construction) using Fermilab Booster Neutrino Beamline (BNB)

Proposed LAr1kton at Fermilab Booster v Beamline (BNB)⁵⁸

- To directly address LSND $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance signal, use multiple detectors in the Fermilab BNB
- Large (1 kton fiducial) LAr detector at 700m plus MicroBooNE at 200m (also maybe MiniBooNE with scintillator at 540 m)
- LAr capabilities significantly reduces gamma and other backgrounds

LAr1kton Sensitivity

CERN SPS: Two (or Three) Detector Proposal using Liquid Argon and Iron Spectrometers

Combined ICARUS and NESSiE Collaborations

New Neutrino Facility in the CERN North Area

100 GeV primary beam fast extracted from SPS; target station next to TCC2; decay pipe I =100m, \emptyset = 3m; beam dump: 15m of Fe with graphite core, followed by μ stations.

CERN SPS Appearance Sensitivity

Expected sensitivity for the proposed experiment: v_{μ} beam (left) and anti- v_{μ} (right) for 4.5 10¹⁹ pot (1 year) and 9.0 10¹⁹ pot (2 years) respectively. LSND allowed region is fully explored in both cases. Also, v_{μ} and $\overline{v_{\mu}}$ disappearance

Summary and Conclusions

- We are making significant progress is measuring the oscillation parameters
 - θ_{13} angle measured and is fairly large $\Rightarrow sin^2 2\theta_{13} \sim 0.10 \pm 0.02$
 - Now moving on to measuring:
 - Mass hierarchy
 - CP violation δ
 - plus better $\sin^2\theta_{23}$ and Δm^2_{23}
- Establishing the existence of sterile neutrinos would be a major result for particle physics
 - Several hints in the $\Delta m^2 \sim 1 \text{ eV}^2$ region
 - Some tension with lack of ν_{μ} disappearance signals
 - Many proposals and ideas for sterile neutrino searches
 - New experiments have better sensitivity (~5 σ level) with capabilities to see oscillatory behavior and reduce backgrounds

Backup

Neutrinos from STORed Muons - vSTORM

MINOS+ Running (3 yrs) During Nova Era

- MINOS+ Sensitivity to sterile neutrinos through neutral current (NC) disappearance between near and far detector
 - If disappearance seen, must be to a sterile neutrino with no NC interactions
- Sensitivity to ∆m² values to below 0.01 eV²

Daedalus Experiment: Antineutrino Source for CP Measurement Cyclotron (~800 MeV KE proton) ٧_u Dump V₈.... proton Oscillations? ν_{e} off max $(\pi/4)$ Constrains osc max $(\pi/2)$ at 40 MeV at 40 MeV flux Combine: 1MW 2MW 5MW - High statistics Daedalus 8km 20km 1.5km $\nu_{\mu} \rightarrow ~\nu_{e}$ A multiple-baseline, - High statistics single-detector Longbaseline experiment H₂O $\nu_{\mu} \rightarrow \nu_{e}$ w/Gd

(Described in: Conrad/Shaevitz, PRL104,141802 (2010), Alonso et al., arXiv:1006.0260 [physics.ins-det] and 1008.4967 [hep-ex])

Exclusion of δ_{CP} = 0° or 180° at 3 σ

Combined running LBNE plus Daedalus gives best sensitivity

Gallium Anomaly: v_e **Disappearance?**

- Gallium SAGE and GALLEX solar neutrino experiments used MCi ⁵¹Cr and ³⁷Ar sources to calibrate their detectors
 - A recent analysis claims a significant
 (3σ) deficit
 - (Giunti and Laveder, 1006.3244v3 [hep-ph])
 - Ratio (observation/prediction) = 0.76 ± 0.09
 - An oscillation interpretations gives $sin^22\theta > 0.07, \Delta m^2 > 0.35eV^2$
- Such an oscillation would change the measured v_e -Carbon cross section since assumed flux would be wrong
 - Comparing the LSND and KARMEN measured cross sections restricts possible v_e disappearance. (Conrad and Shaevitz, 1106.5552v2 [hepex])
 - Experiments at different distances: LSND (29.8m) and KARMEN (17.7m)

OPERA and **ICARUS**: v_{τ} Appearance Search

- Uses 400 GeV protons to produce neutrino beam $\left< E_{\rm v} \right> \approx$ 17 GeV
- $\langle E_{\nu} \rangle$ above threshold to produce τ leptons from ν_{τ}
- $\langle L/E \rangle \approx 43$ so oscillation probability for Δm^2_{atm} is small

OPERA: Nuclear Emulsion plus Lead

- Scintillator Strips isolate emulsion brick with an event
- Robot then picks out brick to be scanned.
- Currently running since 2007
- Expect about 15 ν_τ events in 5 years

ICARUS: Liquid Argon TPC 600 Tons

• Will use kinematic reconstruction to isolate v_{τ} -events.

OPERA: Nuclear Emulsion plus Lead

ICARUS: Liquid Argon TPC 600 Tons

• Expect about 15 v_{τ} events in 5 years