Artur M. Ankowski

INFN and "Sapienza" Università di Roma, University of Wroclaw

On analysis of the Q^2 -dependence of $QE v_{\mu}$ -nucleus interactions

In collaboration with Omar Benhar and Nicola Farina, arXiv:1001.0481

Elba XI Workshop

June 21-25, 2010, Marciana Marina, Isola d'Elba, Italy

Outline

- Introduction
- Are Q² vs. Q²_{rec} really equivalent?
- The impulse approximation
- Proposal of new variables
- Summary

Discrepancy between data and the RFG model

Low-Q² problem: K2K

Low-Q² problem: MiniBooNE

Low-Q² problem:SciBooNE

Introduction

In neutrino physics many complications result from non-monoenergetic beams and the necessity for reconstruction of the probe's energy.

Neutrino scattering off a free neutron **QE** scattering measurable k_{μ} $p_n = 0, E_n = \mathbf{M}$

Neutrino scattering off a free neutron

What we know:

• the final state is only p and μ

$$(E_n + E_\nu - E_\mu)^2 - (\mathbf{p}_n + \mathbf{k}_\nu - \mathbf{k}_\mu)^2 = M^2$$

n is at rest

$$(M + E_{\nu} - E_{\mu})^2 - (\mathbf{k}_{\nu} - \mathbf{k}_{\mu})^2 = M^2$$

Hence $E_v=|k_v|$ may be calculated from the measured vector k_u i.e. from $|k_u|$ and muon production angle θ

Neutrino scattering off a nucleus **QE** stattering measurable k_{μ} unknown p_n and \mathcal{E}

Neutrino scattering off a nucleus

What we know:

the initial neutron (?) is bound and moves

$$(E_n - \epsilon + E_\nu - E_\mu)^2 - (\mathbf{p}_n + \mathbf{k}_\nu - \mathbf{k}_\mu)^2 = M^2$$

Approximations:
$$p_n = 0$$
 and constant \mathcal{E}

$$E_{\nu}^{\rm rec} \neq E_{\nu}$$

Q^2 and Q^2_{rec}

True Q²

$$Q^{2} = (\mathbf{k}_{\nu} - \mathbf{k}_{\mu})^{2} - (E_{\nu} - E_{\mu})^{2}$$

$$Q^{2} = -m_{\mu}^{2} + 2E_{\nu}(E_{\mu} - |\mathbf{k}_{\mu}|\cos\theta)$$

Reconstructed Q²

$$Q_{\rm rec}^2 = -m_{\mu}^2 + 2E_{\nu}^{\rm rec}(E_{\mu} - |\mathbf{k}_{\mu}|\cos\theta)$$

Reconstructed Q²

- In scattering off nucleus the true Q^2 cannot be obtained (only $|\mathbf{k}_{\mu}|$ and θ are measured)
- When $\varepsilon = 0$ the rec. Q^2 is equal to the true Q^2 corresponding to the scattering off a free neutron with the same muon kinematics
- In general case Q²_{rec} lacks physical meaning
 but is useful as a quantity for data analysis

Q² vs. Q²_{rec} for the MiniBooNE flux

Are Q² vs. Q²_{rec} really equivalent?

Q² at the (ω, |q|) plane

Q_{rec}^2 at the $(\omega, |q|)$ plane

Q² at the (ω, |q|) plane

Why conclusions are model-independent?

The presented effects are related to the Jacobian only, not to the specific (model-dependent) cross section

$$\int dE_{\nu} \underline{J(Q^2, Q_{\text{rec}}^2, E_{\nu})} \frac{d\sigma}{dQ_{\text{rec}}^2} \Phi(E_{\nu}) = \int dE_{\nu} \frac{d\sigma}{dQ^2} \Phi(E_{\nu})$$

Relation between Q² and Q²_{rec} is complicated and involves neutrino energy.

The Physics is relatively simple in terms of $|\mathbf{q}|$. Using Q^2 makes the situation more difficult and Q^2 produces further complications.

The impulse approximation

The probe **transferring momentum |q|** sees the structures of the size ~ 1/|q|

The impulse approximation

The probe **transferring momentum |q|** sees the structures of the size ~ 1/|q|

The impulse approximation

Comparison of the of the nuclear response at saturation density calculated using the IA and without it [O. Benhar and N. Farina, Phys. Lett. B680, 305 (2009)] suggests validity of the IA for |q| > 2k.

Contribution of low-q's to the QE x-section

Contribution of low-|q|'s to the QE x-section

	Neutrino energy (GeV)									
	0.2	0.4	0.6	0.8	1.0	1.2	1.4			
$ \mathbf{q} \le 300 \text{ MeV}/c$	97.2%	18.9%	11.9%	10.1%	9.4%	9.1%	9.0%			
$ \mathbf{q} \le 400 \text{ MeV}/c$	100.0%	43.3%	26.2%	21.6%	19.8%	19.1%	18.8%			

	Neutrino energy (GeV)								
	2.0	2.5	3.0	3.5	4.0	4.5	5.0		
$ \mathbf{q} \le 300 \text{ MeV}/c$	9.1%	9.2%	9.3%	9.3%	9.4%	9.4%	9.5%		
$ \mathbf{q} \le 400 \ \mathrm{MeV}/c$	18.8%	18.9%	19.1%	19.1%	19.3%	19.3%	19.4%		

Contribution of low-q's to the QE x-section

A.A., PoS (NUFACT08) 118 (2008)

Low-Q² problem: MiniBooNE

Comparison to the MiniBooNE's data fit

For low |q| one should not rely on the IA, as NN correlations are important.

Neutrino QE cross section at low-Q² is changed by these effects almost independently of energy.

Proposal of new variables

Instead of Q2_{rec} one may analyze data using

$$\beta = E_{\mu} - |\mathbf{k}'| \cos \theta$$

or

$$\phi = \frac{1}{m_{\mu} + \beta}$$

Proposal of new variables

Advantages:

- model independent
- involve only measured quantities
- do not contain any assumptions regarding dynamics, work well even for low energy
- sensitive to the axial mass due to

$$\beta = \frac{k \cdot k'}{E_{\nu}} = \frac{Q^2 + m_{\mu}^2}{2E_{\nu}}$$

Results for the MiniBoone flux: beta

Results for the MiniBoone flux: phi

Results for the MiniBoone flux: phi

Summary

- The true and reconstructed Q² are not equivalent even when flux-averaged event distributions are concerned
- At low |q| the IA is not reliable as NN correlations are significant. It affects QE cross section at any neutrino energy.
- The proposed variables may be useful in data analysis.

Electron scattering: nuclear matter D. Day et al., NM(e, e'), 2.02 GeV @ 15 deg PRC 40, 1011 (1989) D. Day et al. \longrightarrow $d\sigma/d\omega d\Omega \ [\mu \mathrm{b/sr\cdot Ge}]$ 4 3 |q| = 541 MeV 0.2 ω (GeV)

Electron scattering: calcium and NM

|q| = 254 MeV