Single Spin Asymmetries (SSA) in n(e,e′) from a vertically polarized 3He target.

Nucleon structure studies using two photon exchange

Todd Averett
College of William and Mary
Williamsburg, VA

On behalf of the Jefferson Lab Hall A and polarized 3He collaborations

Program Goal: Measure the “vertical” target single spin asymmetry A_y in:

- quasi-elastic 3He(e,e′)
- deep-inelastic 3He(e,e′)
- quasi-elastic 3He(e,e′n)
Born scattering and beyond

• Jefferson Lab physicists' favorite diagram (required for every talk):

Born scattering

• Irritating correction to favorite diagram.
• Suppressed by α relative to Born diagram
Born scattering and beyond

- Dominates unpolarized and most polarized $N(e,e')$ scattering.

- How is it useful?
- Loop integral contains *entire nucleon response*.
- How do we observe this?

\[
\begin{align*}
N(p) & \xrightarrow{l(k)} N(p') \\
& \quad \quad q \\
& \quad \quad l(k') \\
N(p') & \xrightarrow{l(k')} N(p)
\end{align*}
\]

\[
\begin{align*}
N(p) & \xrightarrow{l(k)} N(p') \\
& \quad \quad q_1 \\
& \quad \quad q_2 \\
& \quad \quad l(k') \\
N(p') & \xrightarrow{l(k')} N(p)
\end{align*}
\]
Target Single Spin Asymmetry (SSA)

• Unpolarized e^- beam incident on 3He target polarized normal to the electron scattering plane

$$A_y = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}$$

• Note that unpolarized eN scattering and double spin asymmetries (DSA) with beam and target polarization in-plane are dominated by 1-photon exchange. e.g. measurements of $G_e^n, G_M^n, F_1, F_2, g_1, g_2 \quad <----$ (Born approximation)

• However, $A_y=0$ at Born level,
 \rightarrow sensitive to physics at order α^2; two-photon exchange.
Two Photon Physics

- Topic 1: Elastic N(e,e’) scattering with two photon exchange:

\[l(k, h) + N(p, \lambda_N) \rightarrow l(k', h') + N(p', \lambda'_N) \]

\[T = T_1^\gamma + T_2^\gamma = \frac{e^2}{Q^2} \bar{u}(k', h)\gamma_\mu u(k, h) \times \bar{u}(p', \lambda'_N) \left(\tilde{G}_M \gamma^\mu - \tilde{F}_2 P^\mu + \tilde{F}_3 \frac{\gamma \cdot K P^\mu}{M^2} \right) u(p, \lambda_N) \]

- \(h = \) electron helicity, \(\lambda_N(\lambda'_N) = \) nucleon helicity, \(K = (k+k')/2, \) \(P = (p+p')/2 \)

- The functions \(\tilde{G}_M^{\text{Born}}, \tilde{F}_2^{\text{Born}}, \tilde{F}_3^{\text{Born}} \) are complex and reduce to the usual (real) structure functions and form factors in 1\(\gamma \) exchange:

\[\tilde{G}_M^{\text{Born}}(\nu, Q^2) = G_M(Q^2) \]
\[\tilde{F}_2^{\text{Born}}(\nu, Q^2) = F_2(Q^2) \]
\[\tilde{F}_3^{\text{Born}}(\nu, Q^2) = 0 \]

At low Q^2, entire nucleon is involved

At large Q^2, assume interaction with a single quark

Loop integral contains entire elastic and inelastic response of nucleon
Elastic form factor data: 2-photon exchange correction at large Q^2

- Note that both recoil polarization and Rosenbluth separation measurements of nucleon form factors must be corrected for 2-photon exchange

- Depends on the real part of the interference:

$$\sigma \propto \text{Re}(T_{1\gamma}^* T_{2\gamma})$$

- Elastic contribution well known. Inelastic contribution estimated at large Q^2 using e.g. form factors, resonances, moments of GPD’s,
Jefferson Lab G_E^p / G_M^p

Rosenbluth w/ 2γ corrections vs. Polarization data

Blunden et al.
2-photon SSA physics

\[A_y \propto \frac{\text{Im}(T_{1\gamma} T_{2\gamma}^*)}{|T|^2} \]

Absorptive part=Imaginary contribution

For inclusive scattering \(N(e,e') \), \(A_y^{\text{Born}} = 0 \)

When we allow 2-photon exchange, the leading contribution is from \(1\gamma + 2\gamma \) interference

- Calculable at large \(Q^2 \) using moments of GPD’s.
- Measurement of \(A_y \) at large \(Q^2 \) provides new constraint on GPD’s
Existing A_y Data

- SLAC Proton Data for A_y (solid) and P_n (open); expected $A_y^p < 1\%$

- NIKHEF QE $^3\text{He}(e, e')$ at $Q^2 = 0.1 \text{ GeV}^2$ gave $A_y = -1.0 \pm 5.4\%$.

 M. C. Harvey, Ph.D. thesis, Hampton University, 2001

- Precision measurements of A_y do not exist! A non-zero A_y never measured!
Experimental Design

- Use two symmetric spectrometers for singles electron detection. Jefferson Lab Hall A HRS spectrometers.
- Vertically polarized \(^3\text{He}\) target.
- Measurements at \(Q^2=0.1, 0.5\) and \(1.0\) GeV\(^2\)
 - Test GPD calculation
 - Study \(Q^2\) dependence
 - Parton to hadron transition
Hall A polarized 3He target

- Effective polarized neutron target
- Spin Exchange Optical Pumping (SEOP) technology
- 5:1 ratio of K:Rb for high efficiency optical pumping and spin exchange.
- Spectrally narrowed diode lasers
- With 15uA beam, $<P_{\text{targ}}>$~65%
- Luminosity $L \sim 10^{36}$ /cm2/s
New record for polarization at this luminosity

6/22/10
Preliminary results

- Next two slides will show A_y for ^3He
- Preliminary results with target polarization and nitrogen dilution corrections applied.
- No radiative corrections applied
- ^3He to neutron correction needed
- Systematic uncertainties not finished
Preliminary 3He results at $Q^2=0.5$ and 1.0 GeV2

$Q^2 = 0.5$ GeV2

- $(1.34 \pm 0.20) \times 10^{-3}$

$Q^2 = 1.0$ GeV2

- $(1.60 \pm 0.22) \times 10^{-3}$

- $(1.34 \pm 0.20) \times 10^{-3}$

- $(1.60 \pm 0.22) \times 10^{-3}$

- $A_y^{^3}$He \sim - 0.17% at $Q^2=1$ GeV2, $A_y^{^3}$He \sim - 0.14% at $Q^2=0.5$ GeV2,

- Data at $Q^2=0.1$ GeV2 being analyzed. *Seems to show little Q^2 dependence.*
Topic 2: What about A_y for n(e,e′) in DIS?

- The formalism remains the same:
 $A_y=0$ for 1-photon exchange

- For DIS, one assumes that the scattering is dominated by two photon exchange with a single quark.

- This was measured in Hall A during the transversity experiment, using the BigBite Spectrometer in singles mode.

- Joe Katich–W&M graduate thesis student
n(e,e′) prediction for DIS

- In a simple quark model, $A_y = 0$ for two-photon exchange due to helicity conservation at the quark level.

- The SSA should change by two orders of magnitude from DIS to QE kinematics.

- Allows one to study the “transition” from hadron-like to parton-like behavior.
Kinematics

Measure 3He(e,e') SSA using BB and LHRs in singles mode.

E=5.89 GeV

<table>
<thead>
<tr>
<th></th>
<th>LHRS</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ (deg)</td>
<td>16.00</td>
<td>29.60</td>
</tr>
<tr>
<td>θ (rad)</td>
<td>0.28</td>
<td>0.52</td>
</tr>
<tr>
<td>E (GeV)</td>
<td>5.89</td>
<td>5.89</td>
</tr>
<tr>
<td>E' (GeV)</td>
<td>2.35</td>
<td>1.12</td>
</tr>
<tr>
<td>ν (GeV)</td>
<td>3.54</td>
<td>4.78</td>
</tr>
<tr>
<td>Q² (GeV²)</td>
<td>1.07</td>
<td>1.71</td>
</tr>
<tr>
<td>W² (GeV²)</td>
<td>6.45</td>
<td>8.13</td>
</tr>
<tr>
<td>X</td>
<td>0.16</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Check for False Asymmetries: Luminosity Asymmetry

- Entries: 387
- Mean: 22.55
- RMS: 285.8
- χ^2 / ndf: 30.41 / 16
- Constant: 62.07 ± 4.28
- Mean: 38.29 ± 12.15
- Sigma: 229.2 ± 10.1

ppm
Backgrounds

• **BigBite:** Pair produced e^+ / e^- pairs from π^0 decay.
 – Measure using positive polarity
 – 50% contamination in lowest momentum bin
 – 1% in largest momentum bin
 – Largest systematic uncertainty

• **BigBite:** π^- in $e^-/+$ spectrum. No Cherenkov detector. EM pre-shower and shower calorimeter

• **LHRS spectrometer,** virtually background free.
 – Good PID
 – Highest momentum = negligible pair-electron contamination
Final pi- Contamination

T1

<table>
<thead>
<tr>
<th>1.00 < p < 1.22</th>
<th>1.22 < p < 1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0%</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

T6

<table>
<thead>
<tr>
<th>1.22 < p < 1.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.50 < p < 1.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.80 < p < 2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.50 < p < 1.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.80 < p < 2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4%</td>
</tr>
</tbody>
</table>
A_y for ^3He versus Q^2

Preliminary results

$$A_y^{^3\text{He}} \sim 1-5 \times 10^{-3}, \text{ not zero??}$$

Expected uncertainties only

SLAC proton

Statistical and systematic uncertainties included
HERMES proton DIS data

A_y vs. Q^2

- BigBite
- LHRS

Topic 3: SSA in quasi-elastic 3He(e,e’n)

- Detect recoil neutron during QE scattering.

- Christ-Lee theorem doesn’t apply for semi-inclusive scattering. A_y not necessarily zero.

- Sensitive to final state interactions

- PWIA predicts $A_y=0$

- Unpublished NIKHEF result shows $A_y=50\%$

- Precise laboratory for studying 3He wavefunction
• Measured $A_y \sim 50\%$!!!

• $Q^2 = 0.2$ GeV2

Golak et al., non-relativistic Fadeev

Laget, Nagorney, 3-body partial wave analysis

PWIA

Note: Golak calculation was used to extract G_e^n from deuteron and 3He data.
Hall A Neutron Detector (HAND)

- Detect coincidence between RHRS and HAND

\[Q^2 \text{ (GeV)}^2 \]
Summary

• First measurements of the inclusive target SSA using vertically polarized 3He in QE, DIS scattering.

• Measured QE $A_y^{3\text{He}} \sim -0.14$, 0.17% for $Q^2=0.5$, 1.0 GeV2

• Measured DIS $A_y^{3\text{He}} \sim -0.14$, 0.17% for $Q^2=0.5$, 1.0 GeV2

• First DIS results for $A_y \sim 1-5 \times 10^{-3}$ for 3He at $Q^2=1.0-3.0$ GeV2.
 • Statistical precision comparable to HERMES proton results.

• Precision results for SSA in 3He(e,e’n).

• Theoretical calculations needed.

• Measurements at high Q^2 possible with Jefferson Lab 12 GeV upgrade.
Connection with (GPDs) (con't)

\[A_y = \sqrt{\frac{2\varepsilon (1 + \varepsilon)}{\tau}} \frac{1}{\sigma_R} \left\{ -G_M \text{Im}(B) + G_E \text{Im}(A) \right\} \]

\[A = \int_{-1}^{1} \frac{dx}{x} \tilde{K} \sum_q e_q^2 \left[H^q(x, 0, t) + E^q(x, 0, t) \right] \]

\[B = \int_{-1}^{1} \frac{dx}{x} \tilde{K}' \sum_q e_q^2 \left[H^q(x, 0, t) - \tau E^q(x, 0, t) \right] \]

- \(H^q \) and \(E^q \) are GPD's for quarks of flavor \(q \).
- \(\tilde{K} \) and \(\tilde{K}' \) contain the contributions from the hard scattering amplitudes.
- \(\text{Im}(A) \) and \(\text{Im}(B) \) are non-zero through \(2\gamma \) contribution in \(\tilde{K} \) and \(\tilde{K}' \).
- Measuring neutron \(A_y \) provides new constraint on specific GPD moment.
S, S’, D, Δ-isobar contributions to 3He wavefunction

$$A_y^n = \frac{F_2^{^3\text{He}}}{P_n F_2^n (1 + \frac{0.056}{P_n})} \left[A_y^{^3\text{He}} - 2 \frac{F_2^p}{F_2^{^3\text{He}}} P_p A_y^p \left(1 - \frac{0.014}{2P_p}\right) \right]$$

$$P_n = 0.86^{+0.036}_{-0.020}, \quad P_p = -0.028^{+0.009}_{-0.004}$$