Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q²

Shalev Gilad, MIT

- Nucleons Form Factors
- Recoil polarimetry
- · World data
- New results
- Impact
- Outlook and summary

Dirac and Pauli Form Factors

- Pioneered by Hofstadter et. al at Stanford in 1950s, first proton form factor measurement reported in 1955
- As theory for Strong force, QCD has been tested well in the asymptotic region, understanding hadron structure in confinement region still challenging
- \bullet Dirac and Pauli form factors: F_1 , F_2

$$J_{hadronic}^{\mu} = e\overline{u}(p')[\gamma^{\mu}F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_2(Q^2)]u(p)$$

$$Q^2 = -q^2$$

single photon exchange (Born approximation)

$$\frac{d\sigma}{d\Omega} = \sigma_{Mort} \frac{1}{1+\tau} \{F_1^2(Q^2) + \tau [F_2^2(Q^2) + 2(F_1(Q^2) + F_2(Q^2))^2 \tan^2 \frac{\theta_e}{2}]\}$$

Sachs Form Factors

- Linear combination of F_1 and F_2
- Fourier transform of the charge (magnetization) densities in the Breit frame at the non-relativistic limit

Electric: $G_E = F_1 - \tau F_2$

Magnetic: $G_M = F_1 + F_2$

$$\frac{d\sigma}{d\Omega} = \sigma_{Mon} \frac{1}{1+\tau} [G_E^2 + \frac{\tau}{\varepsilon} G_M^2]$$

- Rosenbluth separation Hard to determine G_E at large Q^{2} , G_M at low Q^2 (except at $\theta_{e'} \approx 90^\circ$)
- Early experiments found \sim dipole form ($Q^2 < 2 \text{ GeV}^2$), naively corresponds to an exponential shape in space

$$G_D(Q^2) = (1 + \frac{Q^2}{0.71 GeV^2})^{-2}$$
 $\mu_P \frac{G_E}{G_M} = 1$

Rosenbluth vs. Polarimetry

P.A.M.Guichon and M.Vanderhaeghen, PRL 91, 142303 (2003)

M.K.Jones, et al., PRL **84**, 1398 (2000) O.Gayou, et al., PRL **88**, 092301 (2003) I.A.Qattan, et al., PRL **94**, 142301 (2005)

Recoil Polarimetry

• Direct measurement of form factor ratios by measuring the ratio of the transferred polarization P_t and P_l

$$\begin{split} l_0 P_t &= -2\sqrt{\tau(1+\tau)}G_E G_M \tan\frac{\theta_e}{2} \\ l_0 P_l &= \frac{E_e + E_{e'}}{M} \sqrt{\tau(1+\tau)}G_M^2 \tan^2\frac{\theta_e}{2} \\ \frac{G_E}{G_M} &= -\frac{P_t}{P_l} \frac{(E_e + E_{e'})}{2M} \tan\frac{\theta_e}{2} \end{split}$$

Advantages:

- Only one measurement is needed for each Q^2
- Much better precision than a cross section measurement
- Complementary to cross section measurements
- Discrepancy between Rosenbluth and polarized measurement, mostly explained by 2- y exchange

(J. Arrington, et al., Phys. Rev. C 76 035205 (2007))

Form Factors at Low Q^2

- •Small $Q^2 \rightarrow$ larger length scale, closely related to proton size
- Improved EMFFs:
 - Strange form factors through
 PV
 - Proton Zemach radius and hydrogen hyperfine splitting
 - Isoscalar and isovector form factors for Lattice QCD
 - Proton RMS radius

$$\langle r_{E,M}^2 \rangle = \frac{-6}{G_{E,M}(0)} \left[\frac{d}{dQ^2} G_{E,M}(Q^2) \right]_{Q^2 = 0}$$

- 2003 Fit by Friedrich & Walcher
 - Smooth dipole form + "bump & dip"
 - All four FFs exhibit similar structure at small momentum transfer ($Q^2 \sim 0.25 \text{ GeV}^2$)
 - Interpretation: effect of pion cloud

J. Friedrich and Th. Walcher, *Eur. Phys. J.* A **17**, 607 (2003)

World Data at Low Q2

- Bates BLAST result consistent with 1
- Crawford et al., *Phys. Rev. Lett* **98** 052301 (2007)
- Substantial deviation from unity observed in LEDEX - smaller G_E
 G. Ron et al., Phys. Rev. Lett 99 202002 (2007)
- Both data inconsistent with F&W fit

- Complementary to high precision
 XS measurement at Mainz (Q²~
 0.003 1 GeV²)
- New dedicated experiment JLAB E08-007

E08-007: Low Q2 GEp/GMp

Focal Plane Polarimeter (FPP)

- Left-right asymmetry gives the vertical component while the updown asymmetry gives the horizontal component
- •Need well determined scattering azimuthal angle, $\phi_{\it fpp}$, chamber alignment checked with straight through data

Systematic Budget

- Spin transport: OPTICS and COSY---major uncertainty (0.7 $^{\sim}$ 1.2 %)
- Others negligible: FPP alignment, Al end cap contamination, VDC reconstruction, spectrometer settings, beam energy, charge asymmetry, pion contamination, etc.

E08-007 Final Results

X-H. Zhan, MIT Ph.D. thesis (2010), to be submitted

AMT - W. Melnitchouk J. Arrington and J.A. Tjon, Phys. Rev. C 76,035205 (2007) J. Arrington and I. Sick. Phys. Rev. C, 76, 035201 (2007)

- Agreement with independent analysis of Paolone et al. at 0.8 GeV²
- Slow decrease with Q^2 . A few percent below previous data, fits
- Suggests that R = μ_pG_{Ep}/G_{Mp} < 1 even at low Q²
- No obvious indication of "Structure", inconsistent with F&W fit

Comparison to Previous Data

X-H. Zhan, MIT Ph.D. thesis (2010), to be submitted

- Disagreement with GE_p-I, BLAST, LEDEX
- Agreement with independent analysis of Paolone et al. at 0.8 GeV²
- LEDEX re-analysis consistent with new data
- Indictions of cut dependence in GE_p-I point
- No current plans to re-examine BLAST data

Comparison with Models

◆No model consistent with data!

World Data with Polarization

Note: LEDEX re-analysis Examination of Gep-I, Gep-II

Global Fits

- Combined global fits (John Arrington).
- AMT fit (black): include all previous data with TPE correction
- New fit (red): same procedure, includes new data, remove lowest point of GEp-I, (and highest point of LEDEX)
- Preliminary fits suggest lower $G_{\rm E}$ (~2%), higher $G_{\rm M}$ (0.5%)

Impact I - Strangeness Form Factors by PV

$$A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[(1 - 4\sin^2\theta_W) - \frac{\varepsilon G_{Ep}(G_{En} + G_{Es}) + \tau G_{Mp}(G_{Mn} + G_{Ms})}{\varepsilon (G_{Ep})^2 + \tau (G_{Mp})^2} \right]$$

 Asymmetry arises from the interference between EM and neutral weak currents

$$\sigma \propto |\mathcal{M}_{\gamma} + \mathcal{M}_{Z}|^{2}$$

$$\mathcal{M}^R = \mathcal{M}_{\gamma} + \mathcal{M}_Z^R,$$

$$\mathcal{M}^L = \mathcal{M}_{\gamma} + \mathcal{M}_{Z}^L$$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{\left|\mathcal{M}^R\right|^2 - \left|\mathcal{M}^L\right|^2}{\left|\mathcal{M}^R\right|^2 + \left|\mathcal{M}^L\right|^2}$$

- Rely on knowledge of EMFFs
- With New FF parameterization, HAPPEX III results shift $\sim 0.5\sigma$

$\frac{(1 - 4\sin^2\theta_W)\varepsilon' G_{Mp}G_A^Z}{\varepsilon(G_{Ep})^2 + \tau(G_{Mp})^2}\right]$
$\varepsilon(G_{Ep})^2 + \tau(G_{Mp})^2$

Q^2	ΔΑ	ΔΑ/σ	ΔΑ/Α	Exp.
0.38	-0.178	0.42	1.6%	G0 FWD
0.56	-0.347	0.50	1.6%	G0 FWD
1.0	-0.414	0.30	0.8%	G0 FWD
0.50	-0.299	0.50	1.7%	HAPPEX III
0.231	+0.038	0.12	0.2%	G0 BCK
0.65	0.142	0.14	0.3%	G0 BCK

Table: Difference in the extracted asymmetries.

Impact II - Proton Zemach Radius

Hyperfine splitting of hydrogen ground state

$$E_{hfs} = (1 + \Delta_{QED} + \Delta_{hvp}^{p} + \Delta_{\mu vp}^{p} + \Delta_{weak}^{p} + \Delta_{s})E_{F}^{p}$$

$$\Delta_S = \Delta_Z + \Delta_R^p + \Delta_{pol}, \quad \Delta_Z = -2\alpha Z \frac{m_e m_p}{m_e + m_p} r_Z$$

$$r_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} [G_E(Q^2) G_M(Q^2) / (1 + \kappa_p) - 1]$$

• FFs at Low Q^2 (<1 GeV²) accounts for >70% of r_Z , and also dominate the uncertainty

Quantity	value (ppm)	uncertainty (ppm)
$(E_{\rm hfs}(e^-p)/E_F^p) - 1$	1 103.48	0.01
$\Delta_{ m QED}$	1 136.19	0.00
$\Delta^p_{\mu \rm vp} + \Delta^p_{\rm hvp} + \Delta^p_{\rm weak}$	0.14	
Δ_Z (using [31])	-41.43	0.44
Δ_R^p (using [31])	5.85	0.07
$\Delta_{ m pol}$ (this work, using [31])	1.88	0.64
Total	1102.63	0.78
Deficit	0.85	0.78

FFs	$r_{\rm z}$ (fm)	Δz	year
Dipole	1.025	-39.29	-
FW	1.049	-40.22	2003
Kelly	1.069	-40.99	2004
AS	1.091	-41.85	2007
AMT	1.080	-41.43	2007
New fit	1.075	-41.21	2009

Carlson, Nazaryan, and Griffioen, arXiv:0805.2603v1 (2009)

Impact III - Isoscalar & Isovector FFs

• Isoscalar & Isovector FFs (important for Lattice QCD):

$$F_J^S = \frac{1}{2}(F_J^p + F_J^n)$$
 $F_J^V = \frac{1}{2}(F_J^p - F_J^n)$

• Change in FFs by using new parameterization vs. old parameterization

Impact IV - e-d Elastic Cross Section

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} * \frac{E'}{E} * [A(Q^2) + B(Q^2) \tan^2(\theta/2)]$$

Where

$$A(Q^2) = G_C^2(Q^2) + \frac{8}{9}\eta^2 G_Q^2(Q^2) + \frac{2}{3}\eta G_M^2(Q^2)$$

$$B(Q^2) = \frac{4}{3}\eta(1+\eta)G_M^2(Q^2)$$
 Small except at $\theta \approx 180^\circ$

and

$$\eta = Q^2/4m_d^2$$
 Very small at low Q $_{A(Q^2)/\mathrm{fit}}^{-1}$

At low Q², elastic e-d cross section depends mainly on GE_p

New results change model cross sections by a few percent!

Impact V - Proton RMS Radius

Increased interest in proton radius with new very precise muonic hydrogen data (significantly lower: ~ 0.840 fm

New Global fit with TPE (Arrington):

$$\langle r_p^2 \rangle = 0.873(14) \text{ fm}$$

3% below previous value (Sick): 0.897(18) fm CODATA(2006) value: 0.877(7) fm

If R=1 as Q² approaches zero, yields 0.015 fm change in charge radius

Near Future Outlook

LEDEX re-analysis almost complete; consistent with X-H. Zhan et al.

- Phase-II (pol. Target 2012)
 - Extract R down to Q2=0.015
 - -Good overlap with Phase-I, BLAST
 - First precise extraction of magnetic radius
 - Linear approach to $Q^2=0$?
 - ~3% smaller magnetic radius
 - No region where magnetization, charge are simply sum of quarks
 - Disagreement with muonic hydrogen radius?
- New G_{En} measurement
 - One data point was measured parasitically in Hall A during experiment E05-102.
 - Data in analysis

Summary

- Nucleon FFs are fundamental quantities describing the nucleon internal structure
- A new high precision measurement was conducted in Jefferson Lab Hall A at low Q^2 , new data strongly deviate from unity, systematically lower than previous world data
- While adding further constraints on theoretical models, the new high precision data also impact determination of other physics quantities: proton Zemach radius, strange form factor through PV, proton RMS radius etc.
- Near-future experiment with polarized target accessing very low Q^2 :
 - ✓ Precisely determine magnetic radius for the first time
 - ✓ Important for precisely determining proton RMS radius, check possible disagreement with determination from muonic hydrogen data
 - ✓ Help to settle disagreement between blast (pol. target) and JLAB (recoil polarization) data

E08-007 Collaboration

- Argonne National lab
- Jefferson Lab
- Rutgers University
- St. Mary's University
- Tel Aviv University
- UVa
- CEN Saclay
- Christopher Newport University
- College of William & Mary
- Duke University
- Florida International University
- Institut de Physique Nuclaire d'Orsay
- Kent State University
- MIT
- Norfolk State University

- Nuclear Research Center Negev
- Old Dominion University
- Pacific Northwest National Lab
- Randolph-Macon College
- Seoul National University
- Temple University
- Universite Blaise Pascal
- University of Glasgow
- University of Maryland
- University of New Hampshire
- University of Regina
- University of South Carolina

Thank you!

Acknowledgements

J. Arrington, D. Higinbotham, J. Glister, R. Gilman, S. Gilad, E. Piasetzky, M. Paolone, G. Ron, A. Sarty, S. Strauch and the entire E08-007 collaboration &

Jefferson Lab Hall A Collaboration

25

Back up slides

Future Outlook

- E08007 analysis finalized.
- Publication in preparation.
- Updated paper for LEDEX (G. Ron *et al.*) in preparation.

• Second half of the experiment (DSA) is tentatively scheduled in early 2012

$$A_{\text{phys}} = \frac{v_z \text{cos}\theta' G_{\text{M}}^2 + v_x \text{sin}\theta' \text{cos}\varphi' G_{\text{E}}G_{\text{M}}}{\left(\!\!\left(\!\!\!\left(\!\!\!\left(\!\!\!\!\left(\!\!\!\!\left(\!\!\!\!\left(\!\!\!\!\left(\!\!\!\!\left(\!\!\!\!\right)\right)\right)\!\right)\!\right)\!\!\left[\!\!\!\left(\!\!\!\left(\!\!\!\!\left(\!\!\!\!\left(\!\!\!\!\right)\right)\right]\right)\!\right]\!\!\right]}$$

- Opportunity to see the FFR behavior at even lower Q^2 (0.015-0.4 GeV²) region.
- Third independent measurement, direct comparison with BLAST, examine any unknown systematic errors for previous measurements.
- Challenges: Solid polarized proton target & effect of target field to septum magnets.

Elastic Events Selection

• HRS acceptance cut:

- out of plane: +/- 60 mr
- in plane: +/-30 mr
- momentum: $\pm -0.04 \, (dp/p_0)$
- reaction vertex cut

• FPP cuts:

- scattering angle $\theta_{\rm fpp}$ 5° ~ 25°
- reaction vertex (carbon door)
- conetest cut

• Other cuts:

- Coin. Timing cut
- Coin. event type (trigger)
- single track event
- dpkin (proton angle vs.

momentum)

Focal Plane Asymmetry

• Detection probability at focal plane with azimuthally angle ϕ_{fpp}

$$f^{\pm} = \frac{1}{2\pi} \xi [1 \pm A_{y}(\theta_{fpp})(P_{x}^{fpp} \sin(\phi_{fpp}) - P_{y}^{fpp} \cos(\phi_{fpp}))]$$

• Helicity difference:

$$f^{diff} = f^+ - f^- \approx \frac{1}{\pi} [A_y (P_x^{fpp} \sin(\phi_{fpp}) - P_y^{fpp} \cos(\phi_{fpp}))] = C \cos(\phi + \delta)$$

$$C = \frac{1}{\pi} A_{y} \sqrt{(P_{x}^{fpp})^{2} + (P_{y}^{fpp})^{2}}$$

$$\tan \delta = \frac{P_y^{fpp}}{P_x^{fpp}}$$

• By dipole approximation:

$$R = \mu_p \frac{G_E}{G_M} \approx \sin \chi \frac{P_x^{fpp}}{P_y^{fpp}} \times K$$

(K: kinematic factor)

Spin Transport in HRS (COSY)

Spin Transport in HRS

- Binning test for graphical cut.
- A rough check for existence of any possible background under elastic peak.
- No obvious indication of dependence on such variable.

COSY Spin Precession Matrix

- Different SP matrix were generated by changing the default settings in COSY:
 - dipole radius, drift distances, quadrupoles alignment
 - central bending angle: 5.5 mrad
 - use COSY transport map to reconstruct target variables

- Uncertainties on target variables (OPTICS):
 - dp: 0.001
 - y_tg: 0.001 m
 - ph_tg: 0.7~1.2 mrad
 - th_tg: 1 mrad

Individual Form Factors

• With the extract ratio constraint, refit the world reduced cross section data.

Extraction of Polarization

- Full spin precession by COSY:
 - differential algebra-based.
 - defines the geometry and related setup of magnets.

$$S_{ij} = \sum_{k,l,m,n,p} C_{ij}^{klmnp} x^k \theta^l y^m \phi^n \delta^p$$

$$\begin{pmatrix} P_x^{fpp} \\ P_y^{fpp} \end{pmatrix} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \end{pmatrix} \begin{pmatrix} P_x^{tg} \\ \eta h P_y^{tg} \\ \eta h P_z^{tg} \end{pmatrix}$$

focal plane

target frame

• Weighted-sum:

$$f(\phi) = \frac{1}{2\pi} \epsilon (1 + \lambda_x P_x^{tg} + \lambda_y h P_y^{tg} + \lambda_z h P_z^{tg}), \qquad \lambda_x = A_y (S_{yx} \sin \phi - S_{xx} \cos \phi)$$

$$\lambda_x = A_y(S_{yx}\sin\phi - S_{xx}\cos\phi)$$

$$\lambda_y = \eta A_y (S_{yy} \sin \phi - S_{xy} \cos \phi)$$

$$\lambda_z = \eta A_y (S_{yz} \sin \phi - S_{xz} \cos \phi).$$

$$\int_{0}^{2\pi} f(\phi) \lambda_{y} d\phi = h P_{y}^{tg} \int_{0}^{2\pi} f(\phi) \lambda_{y}^{2} d\phi + h P_{z}^{tg} \int_{0}^{2\pi} f(\phi) \lambda_{y} \lambda_{z} d\phi + \left(\sum_{i} \lambda_{y,i} \right) = \left(\sum_{i} \lambda_{y,i} \lambda_{y,i} \sum_{i} \lambda_{z,i} \lambda_{y,i} \right) \left(h P_{y}^{tg} \right) + h P_{z}^{tg} \int_{0}^{2\pi} f(\phi) \lambda_{z}^{2} d\phi + h P_{z}^{tg} \int_{0}^{2\pi} f(\phi) \lambda_{z}^{2} d\phi.$$

Impacts III

• Isoscalar & Isovector FFs (important for Lattice QCD):

$$F_i^s = \frac{1}{2} (F_i^p + F_i^n), F_i^v = \frac{1}{2} (F_i^p - F_i^n)$$

• Plots show fractional change in IS and IV FFs by using the new parameterization vs. the old parameterization.

36