Electromagnetic currents from χEFT Luca Girlanda (Pisa University & INFN) work done in collaboration with: Saori Pastore, Rocco Schiavilla (ODU & JLAB) Alejandro Kievsky, Laura Marcucci, Michele Viviani (Pisa) Bob Wiringa (Argonne) which builds on previous work by S. Pastore, R. Schiavilla, and J.L. Goity Electron-Nucleus Scattering XI, Marciana Marina, June 21-25, 2010 # Outline - Description of the framework - Classification and renormalization of the counterterms - Treatment of the recoil corrections - LECs' determination and predictions in the hybrid approach - Conclusions and Outlook compute in time-ordered perturbation theory the irreducible part of the amplitude $$\langle N'N'|T|NN;\gamma\rangle = \langle N'N'|\mathbf{H}_{I}\sum_{n}\left(\frac{1}{E-H_{0}+i\eta}\mathbf{H}_{I}\right)^{n}|NN;\gamma\rangle$$ written in terms of the current as $-\frac{\hat{\mathbf{e}}_{\mathbf{q}\lambda}}{\sqrt{2\omega_{q}}}\cdot\mathbf{j}$ H_I contains the interactions of pions, nucleons and photons coming from \mathcal{L}_{eff} , the χPT Lagrangian The infinite number of chirally symmetric terms can be ordered according to increasing numbers of derivatives and nucleon fields Recoil corrections to reducible diagrams are also taken into account #### Chiral counting A given diagram counts as $O(Q^{\nu})$ with $$\nu = \sum_{i} \left(d_i - \frac{b_i}{2} \right) - (V - 1) + 3L$$ using the topological identities $$2I_N + E_N = \sum_i n_i, \quad 2I_\pi = \sum_i b_i, \quad L = I_\pi + I_N - V + 1$$ we have $$\nu = \sum_{i} \left(d_i + \frac{n_i}{2} - 2 \right) - \frac{E_N}{2} + 2L$$ Chiral symmetry ensures that $d_i + \frac{n_i}{2} - 2 \ge 0$ \implies at a given order only finitely many diagrams contribute # N2LO Currents • tree diagrams • 1-loop disconnected #### N3LO Currents • 1-loop • tree diagrams with one sub² leading vertex (3 LECs) • contact interaction with 2 derivatives (2 LECs from non-minimal couplings) • 1-loop renormalization of tree-level currents Renormalization requires to include a complete list of counterterms Symmetries require the list to be minimal Consider e.g. the subleading contact interactions: they stem from the gauging of 2-derivative 2-nucleon Lagrangian ($14 \rightarrow 12 \rightarrow 7$ terms), and from non-minimal coupling terms: parity, time-reversal, rotations \Longrightarrow $$\left\{egin{array}{c} \mathbf{1}\otimes\mathbf{1} \ & \mathbf{1}\otimes\mathbf{1} \ & au^a\otimes au^a \ & au^3\otimes\mathbf{1}\pm\mathbf{1}\otimes au^3 \end{array} ight\}, \quad F_{ij}N^\dagger\sigma_iNN^\dagger\sigma_jN\left\{\epsilon^{3ab} au^a\otimes au^b ight\}.$$ Using Fierz-type identities encoding fermionic antisymmetry we are left with 2 structures #### Renormalization Divergences in the loop integrals can be absorbed by a renormalization of the counterterms This is not true for the single diagrams individually: we have to sum both these diagrams in order to find a suitable counterterm renormalization. This provides a non-trivial check of our calculation. At the end, typically, $$C_6 = \bar{C}_6 + \frac{3g_A^4}{8\pi^2 F_\pi^4} \mu^{-\epsilon} \left(-\frac{2}{\epsilon} + \gamma - \log \pi + \log \frac{m_p i^2}{\mu^2} - \frac{4}{3} \right)$$ with \bar{C}_6 finite and μ -independent #### Recoil corrections to reducible diagrams Reducible: Reducible: $$\left(\frac{1}{E - E_2 - \omega_{\pi} - E_1'} + \frac{1}{E - E_2' - \omega_{\pi} - E_1^*}\right) \frac{1}{E - E_2 - E_1^*}$$ Irreducible: $$\frac{1}{-\omega_{\pi}} \frac{1}{-\omega_{\pi}}$$ Expand in $E_N/\omega_{\pi} \Longrightarrow \text{Reducible: } -\frac{2}{\omega_{\pi}} \frac{1}{E-E_2-E_1^*} - \frac{1}{\omega_{\pi}^2} + O(p^{-1})$ cancelling the irreducible contribution Such complete or partial cancellations are ubiquous in our calculation. Recoil corrections to reducible diagrams are a distinctive feature of our framework: they remove the explicit energy dependence in the potential, and allow to recover the results obtained with the method of the unitary transformation (see next talk by S. Koelling). #### NN potential at N2LO The same machinery is applied for the calculation of the NN potential 7 LECs parametrize the contact interaction in the c.o.m. frame 5 LECs are fixed in terms of C_S and C_T through Poincaré symmetry The resulting potential satisfies the continuity equation giving current conservation ## Determining the LECs We fit the 9 contact LECs to the NN phase shifts up to 100 MeV for $\Lambda = 500-700$ MeV #### Deuteron | | $\Lambda \; ({ m MeV})$ | | | | |--------------------------|-------------------------|--------|--------|------------------| | | 500 | 600 | 700 | Expt | | $B_d \text{ (MeV)}$ | 2.2244 | 2.2246 | 2.2245 | 2.224575(9) | | η_d | 0.0267 | 0.0260 | 0.0264 | 0.0256(4) | | r_d (fm) | 1.943 | 1.947 | 1.951 | 1.9734(44) | | $\mu_d \; (\mu_N)$ | 0.860 | 0.858 | 0.853 | 0.8574382329(92) | | $Q_d \; (\mathrm{fm}^2)$ | 0.275 | 0.272 | 0.279 | 0.2859(3) | | P_D (%) | 3.44 | 3.87 | 4.77 | | We are left with 5 constants to determine 1 combination is fixed by resonance saturation. 4 constants fixed from nuclear em properties in A=2,3 Preliminary studies in nd and n^3 He for AV18/UIX and N3LO/N2LO show reduced Λ dependence and reasonable agreement with data. It seems that the LECs contribution is the dominant one ## Conclusions - We have derived in a unique framework a NN potential and consistent em currents, which satisfy conservation up to N3LO - Recoil corrections to reducible diagrams are a distinctive feature of our approach, allowing to recover results obtained within the method of unitary transformation - The obtained result is the complete one at order eQ: in particular 3N currents vanish at this order, due to peculiar cancellations - Dominance of the LECs contributions might indicate that the inclusion of the Δ is mandatory to improve convergence - Despite the lack of accuracy of the N2LO NN potential, it will be interesting to perform non-hybrid studies in light systems