Precision measurements of μ^+ , μ^-H , and μ^-D lifetimes. Tim Gorringe, Univ. of Kentucky, for the MuLan, MuCap, MuSun Collaborations Elba XI, June 21-25 #### Paul Scherrer Institute. 2.0mA, 590 MeV proton cyclotron 5 MeV, 30 MeV/c pulsed muon beam #### Pulsed Muons and Muon On Request. MuLan MuCap MuSun scientific goals, experimental setups, experimental challenges, and results and status from the Fermi Constant... to the proton's weak interaction... and solar hydrogen burning by part-per-million measurements of μ^+ , μ^-H , and μ^-D lifetimes #### Why we measure $\tau_{\mu+}$? knowledge of muon lifetime τ_{μ^+} allows precision measurements of weak nuclear interactions in muonic hydrogen, deuterium atoms. twenty-fold improvement in knowledge of fundamental constant G_{ϵ} of weak interaction. [previously G_{ϵ} (±10ppm)]. knowledge of α , G_F , M_Z allows precision tests of standard model via measurements of Weinberg angle Θ_W , W-boson mass M_W , ... #### How we determine G_{F} ? $$rac{1}{ au_{\mu}} = rac{G_F^2 \, m_{\mu}^5}{192 \, \pi^2} (1 + \Delta \, q)$$ **Δq** contains QED, QCD radiative corrections ~ **0.1 ppm** uncertainty in T_{μ} - G_F relationship from Δq , m_{μ} ## pre-MuLan history of $\tau_{\mu} = 2.19703(4) \mu s$ #### accumulating μ^+ 's and measuring e+'s #### accumulating μ^+ 's and measuring e+'s ## MuLan detector ### most worrisome systematics positron pulse pile-up ### most worrisome systematics muon spin rotation #### **TARGETS** #### magnetized ferromagnetic foil (high internal B-field, fast μ⁺ precession) #### single quartz crystal (moderate external B-field, fast µ⁺e⁻ precession) #### MuLan Results 2006: τ_{\parallel} = 2196980.1 ± 2.5(stat) ± 1.2(sys) ps 2007: τ_{μ} = 2196980.7 ± 3.7(stat) ± 1.2(sys) ps $G_F = 1.166 381 8 (7) \times 10-5 \text{ GeV}^{-2} (0.6 \text{ ppm})^*$ #### Why we measure $\tau_{\mu\rho}$? proton's weak couplings g_v , g_a , g_m , g_p beta decay, p →ne⁺v proton's weak couplings g_v , g_a knowing g_v , g_a , g_m determine g_p , the poorly known proton induced pseudoscalar coupling #### Why we determine g_p ? fundamental quantity describing the proton's weak interaction the approximate conservation of axial current enforces a rigorous relation between the weak couplings g_p , g_a $$g_p(q^2 = -0.9m_u^2) = (6.47\pm0.18) g_a(0) = 8.26\pm0.23$$ μ⁻D experiment). Verification represents an important test of QCD symmetries knowledge of g_p (with g_v , g_a , g_m) allows precision studies of weak nuclear interactions through nuclear muon capture (e.g. #### How we determine g_p? determine the $\mu^-p \rightarrow \nu n$ rate by $\Lambda = 1/\tau_{\mu} - 1/\tau_{\mu p}$ #### μ chemistry, a complication use ulltra-pure (chemically, isotopically 10 bar H₂ (1% liquid hydrogen density) # Relative populations of singlet atoms, ortho molecules, para molecules in liquid and gas #### Event display of μ stop in H₂ gas Rare μ scatter Rare µ transfer #### MuCap Results 2005: $$\Lambda_s = 725.0 \pm 13.7(\text{stat}) \pm 10.7(\text{syst}) \text{ s}^{-1}$$ $$g_p (q^2 = -0.88\text{m}^2_{\mu}) = 7.3 \pm 1.1$$ goal for 2006/2007 dataset is Λ_s to $\pm 5s^{-1}$ elementary weak nuclear interaction. ### Why we measure $\tau_{\mu d}$? knowing g_v , g_a , g_m and g_p , the deuteron wavefunction and NN interaction, measure the poorly known μ^-d capture rate and determine the poorly known two-nucleon weak axial current. #### Why we determine Λ_d ? two-nucleon weak nuclear interaction where precision measurement and precision calculation are both possible. determine the contribution of two-nucleon axial current. relation of μ -d capture to other weak processes of intense interest in solar physics (pp fusion) and neutrino physics (vd interactions). goal of $\pm 1.5\%$ measurement of capture rate Λ_d is five-fold improvement over existing measurements of $470\pm 29~s^{-1}$ (Bardin et al.) and $409\pm 40~s^{-1}$ (Cargnelli et al.). #### μ chemistry, a complication use ulltra-pure (chemically, isotopically) 30 Kelvin, 5% liquid density D₂ gas #### temperature dependence of dµd formation. # Relative populations of doublet atoms, quadruplet atoms, µ-3He atoms in warm/cold gas ### Cryogenic TPC #### Conclusions MuX experiments - precision measurements of positive muon, muonic hydrogen, muonic deuterium lifetimes addressing fundamental leptonic, nucleonic and nuclear weak interactions. ``` MuLan experiment - \tau_{\mu}= 2196980.1 ± 2.5(stat) ± 1.2(sys) ps [2006], \tau_{\mu}= 2196980.7 ± 3.7(stat) ± 1.2(sys) ps [2007], G_F= 1.166 381 8 (7) x 10⁻⁵ GeV⁻² a twenty-fold improvement over earlier experiments. ``` ``` MuCap experiment - \Lambda_s = 725.0 \pm 13.7(\text{stat}) \pm 10.7(\text{syst}) \text{ s}^{-1}, g_p(q^2 = -0.88\text{m}^2_{\mu}) = 7.3\pm1.1 - \text{with goal of reaching } \pm 5\text{ s}^{-1}. ``` MuSun experiment – **goal of** Λ_s to ±1.5% - recent milestone of operation of 3K, 5% LD₂ cryo-TPC ## Extras #### Relation to Standard Model $$\sqrt{4\pi\alpha} = gg'/\sqrt{g^2 + g'^2}$$ $$G_F = \sqrt{2}/v^2$$ $$M_z = \sqrt{g^2 + g'^2} v$$ \rightarrow exacting tests of standard model by precision measurements of θ_w , M_w , ... #### Detection of μ stops in H₂ gas