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Motivation

- Following Weinberg
′90,

′91,
′92 successful application of ChPT to

calculate nuclear forces.

- Calculate only irreducible kernel and iterate.
→ Method of unitary transformationEpelbaum et al. ’98.

- Consistent derivation of electromagnetic-current Jµ

ψf ψi

+ +

...

+

- ~∇ · ~J = −i [H , ρ]

- Treat em-interaction as
perturbation

- Convolute between wave-
functions.

- Define effective current with unitary transformation

ηVeffη = ηU ′†ηU†HUηU ′η − H0, U =

(

η
“

1 + A†A
”− 1

2 −A†
“

1 + AA†
”− 1

2

A
“

1 + A†A
”− 1

2 λ
“

1 + AA†
”− 1

2

)

,

ηJ
µ

effη = ηU ′†ηU†JµUηU ′η,

with projectors η (λ) on the purely nucleonic (rest) subspace.
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Lagrangian we use
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with the β-functions (Gasser et al. ’02)
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π
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β7 = β8 = β9 = β18 = β22 = 0, β6 = −
1

6
−

5

6
g

2
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1

3
.
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Two-Pion exchange currents

Class 1:

Class 2:

Class 3:

Class 4:

Class 7:

Class 5:

Class 6:
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Two-Pion exchange currents in configuration-space

~Jc1 (~r10,~r20) = e
g2
A M7
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3

+ 2
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τ
3
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–
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K0(x10 + x20 + x12) + (1 ↔ 2)

~Jc4 (~r10,~r20) = ~Jc6 (~r10,~r20) = 0 ,

with ~r1/2/0 the positions of the first/second nucleon/the photon, and ~x10 = Mπ (~r1 −~r0), ~x20 = Mπ (~r2 −~r0),

~x12 = Mπ (~r1 −~r2) and ~∇ij ≡ ∂/∂xij and xij ≡ |~xij |.
All derivatives have to be evaluated as if the variables were independent.
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Two-Pion exchange currents in configuration-space Ctd.

ρc1 (~r10,~r20) = ρc2 (~r10,~r20) = ρc3 (~r10,~r20) = 0 ,
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- Results also available in momentum-space, expressed in standard
loop-function L(q), A(q) and three-point functionsS.K . et al. ′09.

- Can be easily treated numerically.

- Continuity-equation is fulfilled → Current is consistent with
potential obtained within the method of unitary transformation
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Additional transformations for the em current

- U is only the minimal unitary transformation, can choose additional
transformations U ′

em

U ′
em = eS′

, with S ′(A) → 0 for A → 0 ,

U ′
em s.t. transformed Hamiltonian is block-diagonal

ηVeffη → ηU ′†
emη U† H UηU ′

emη − H0
︸ ︷︷ ︸

contains V1π

⊃ Jeff,

U ′
em

∼ β1V1π

S ′
1 = β1η

[

J−1
02

λ2

E 2
π

H2
22 − H2

22

λ2

E 2
π

J−1
02

]

η,

β2 β3
β4,5,6
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Determination of βs

- Constraints by renormalizability!

- These diagrams receive
contributions from S ′

1.

~Jc5 = e
g 2

A i

16F 4
π

(β1 − 1) [~τ1 × ~τ2]
3 ~σ1 · ~q1 ~σ2 · ~q2

q2
2 + M2

π

×

∫
d3l

(2π)3
~l

ω+ − ω−

ω+ω−(ω+ + ω−)2
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ω2
± =

(

~l ± ~k
)2

+ 4M2
π

, ~k = Photon-momentum .

- The divergent part of the diagrams has to be absorbed into LECs.

- The divergent part (β-functions) of the LECs is already
knownGasser et al. ’02.

- Contributions from LECs vanish in this case.

- Have to choose β1 = 1 to guarantee renormalizability.
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Determination of βs Ctd.

~Jc7 div =

−e
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Where we choose β4 = β5 = β6 = β

- Left and right diagram do not contribute.

- The diagram in the middle contributes among
other things the following LECs
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We have to choose β = 1!
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Determination of βs Ctd.

These diagrams have also a (finite) contribution to the charge density

ρc7 = −e
g 4

A

8F 4
π
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q2
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]
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. . .

- Omitted most of the diagrams for
brevity (in the figure).

- S ′
2 and S ′

3 could potentially
contribute, but do not.

ρc6 = e
g 4

A

4F 4
π

τ3
2
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π
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1

3

∫
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l2

ω4
l
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Partial Summary

By choosing β1 = β4 = β5 = β6 = 1 we can get rid of divergencies. β2

and β3 remain undetermined.
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Additional loop contributions Ctd

+ . . .

- Plus the contributions from δZπ and δ(gA/Fπ).

- LECs d16, l3 and l4 disappear, only remaining term

The remaining divergence can be absorbed in l6.
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Summary OPE Ctd.

One-Pion Exchange current

- All divergencies can be canceled by additional unitary
transformations

- or by LECs with predetermined β-functions

- Contributions from LECs d8, d9, d18, d21, d22 and l6

- Continuity equation is fulfilled.
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One-Pion exchange with LO contact potential

Diagrams with CS and CT

~J = e
g2
A i
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–

.

- Contributions from additional unitary transformations cancel!

- Divergent part can be absorbed in contact currents.

. . .

ρ = e
g 2

A

8F 4
π
π
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(
τ3
1 + τ3

2

)
~σ1 · ~σ2Mπ .

Only dependent on CT .

. . . → These diagrams vanish.
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Contact currents

- Seven contact contributions to the potential.

Vcontact = C1q
2
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- Via a gauge transformation and a Fierz-reshuffling, we
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.

Plus two contact currents that cannot be obtained from gauge
transformations

~Jcontact = −e i C̃1

[
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.
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Comparison with Pastore et al.

- Pastore et al. (2009) do not take into account these two diagrams.

- In our formalism, however, the contribution from the middle
diagram is exactly canceled from the left and right diagrams.

- ⇒ Different isospin structure of the loop contributions!

- Different contributions from LECs?

- Loops with leading-order contact
interaction depend on CS .

- This is similar to the situation with
the potential.

- Again a different isospin structure!

- Contact terms agree with ours.
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Determining the LECs

- In the NLO pion exchange current unknown 8 LECs appear:

l6

- l6 is related to pion vector form factor →
well known.

d18

- d18 is related to Goldberger-Treiman
discrepancy
gπN/mN = gA/Fπ(1 − 2M2

π
d18/gA) →

relatively well known.

d8, d9, d21, d22

- d8, d9, d21 and d22 are related to
pion-photoproduction on one nucleon,
poorly known.

. . .

- Calculate full pion-photoproduction
amplitude and fix these constants to data!

- C̃1 can contribute to elastic ed-scattering, contribution
to d-magnetic moment.

- C̃2 from d-breakup reaction at threshold.



Two-Pion exchange Additional transformations One-Pion exchange Summary

Conclusion and outlook

Conclusion

- We derived the full NLO em-current including two-pion exchange,
one-pion exchange and contact terms.

- An explicit check of renormalizability of the one- and two-pion exchange
contributions was performed.

- Expressions are given in momentum-space in terms of loop-functions
L(q), A(q) and three-point functions.

- We analytically carried out the Fourier-transform to arrive at very
compact expressions in configuration-space.

- The current fulfills the continuity-equation, i.e. is consistent with the
potential.

- The two-pion exchange current corresponds to the result of Pastore et al.

- The one-loop current is different.

Outlook

- Calculation of pion-photoproduction off nucleons to determine LECs.

- Calculation of ed-scattering observables.

- Inclusion of ∆-degrees of freedom.

- Going to the sub-leading loop-order.

- ...
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