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Relevance: 

1) PROPERTIES OF COMPACT STARS 
2) BENCHMARK OF THE NUCLEAR FORCES 
3) PHASE TRANSITIONS 

WHAT IS THE ROLE OF 
MANY-BODY INERACTIONS? 

CAN WE IMMEDIATELY 
EXPORT THE KNOWLEDGE 
WE HAVE ABOUT NUCLEI TO 
NUCLEAR MATTER? 

WHERE ARE PHASE 
TRANSITIONS LOCATED IN 
NUCLEAR MATTER? WHAT IS 
THE ROLE OF HYPERONS? 





Recently a detailed analysis of 
the results obtained with 
different theoretical methods 
(BHF, SCGF, FHNC, AFDMC) 
(Benhar, Polls, Vidaña, Rios, 
Balso, Schulze, Illarionov, 
Fantoni, Gandolfi, Pederiva…)  
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The nucleon-nucleon interaction is still not completely understood.  Many 
different models are used, and fitted to reproduce NN scattering data in 
different channels  No proper “ab-initio” description. 

Argonne AVX potentials (two-body) 
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E.g.: one pion exchange 
is a major ingredient of 
nucleon-nucleon 
interaction, but more 
complex processes 
occur. 



Variational Monte Carlo (VMC)‏ 

 Expectation values can be efficiently computed  with stochastic methods: 

Wave function with operatorial Jastrow 2 body and 3 body correlations 
should be used to impose correct analytic behavior at short range in each 
channel: 

[ Wiringa, et al.  PRC  43, 1585, (1991) ] 

[ Wiringa, et al.  NPA, 543, (1992) ] 



Green’s Function Monte Carlo  
Project the ground state using the standard proagator: 

the propagator can be broken in the usual way using the Trotter-Suzuki 
formula: 
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Approximate with a 
finite sum of 
eigenstates of the 
position (“walkers”) 

Weights the walker, 
and produces zero, one 
or more copies 

Diffuses the walker 
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Hubbard Stratonovich transform 

AFDMC = DMC + HS-transform 

Other issues: 
 Sign problem “treated" with Fixed-Phase approximation. 
 Wave functions simplified to a central Jastrow (no operatorial 
dependence) times an antisymmetrized product of spinors. 

 [ Schmidt & Fantoni, PLB 446, 99 (1999) ] 

 [Fantoni,Sarsa ,Schmidt,Prog.Part.Nuc.Phys. 44 2000)  

[ S. Gandolfi , F. Pederiva, S. Fantoni, K. E. Schmidt, Phys. Rev. Lett. 98, 102503 (2007)  PRL 99,022507(2007) ] 

2 body 
operators   

1 body 
operator   

Auxiliary 
Field x 
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Early work: A. Sarsa, S. Fantoni, K.E. Schmidt, F.P., Phys. Rev. C 68, 024308 (2003)  

S. Gandolfi, A. Yu. Illarionov, F. Pederiva, K. E. Schmidt, and S. FantoniPhys. 
Rev. C 80, 045802 (2009)  At very low densities the 

equation of state should be 
not very sensitive to the 
interaction used.  However 
already above 0.1fm-1 some 
effects are visible.  
AFDMC results refer to a 
realistic NN interaction 
including spin-orbit and three-
body forces. 



The gap is estimated by the even-
odd energy difference at fixed 
density: 

Calculations have been performed around two 
different values of N, i.e. N=66 and N=14 

Gandolfi S., Illarionov A., Fantoni S., P.F., Schmidt K., PRL 101, 132501 (2008) 

AFDMC allows  for an accurate estimate of the gap in 
superfluid neutron matter. 

Coefficients from CBF calculations. 



S. Gandolfi, A. Yu. Illarionov, K. E. Schmidt, F. Pederiva, and S. 
FantoniPhys. Rev. C 79, 054005 (2009) 



EOS can be tested against available data from astrophysical observations.  
.  

Mass-radius relation can be computed 
by solving TOV equation.  
Experimental data have been obtained 
from measurement of X-ray bursts from 
accreting neutron stars (F. Özel et. al, 
2009 – 2010) 



The equation of state is the 
main ingredient used to 
compute structural properties 
of neutron stars. One of the 
best known relations is the 
Tolman-Oppenheimer-Volkov 
equation implementing the 
condition of hydrostatic 
equilibrium. 
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 The solution of the TOV equation shows that 
the three body interaction used to fit the 
properties of light nuclei does not describe 
correctly the properties of bulk matter.  

 Some new scheme has to be searched. In the 
meantime it is possible to turn back to an 
effective description in the attempt of 
providing useful information to 
astrophysicists. 



Following  Lagaris and Pandharipande (Nucl. Phys. A359, 349 (1981)), it 
is possible to redifine the interaction with density dependent 
parameters: 
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The density dependent repulsive part is a modification of the 
intermediate part of AV6’: 
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vij + TNR = vπ + e−γ1ρvI + vR
The attractive part is completely phenomenological, and it is written 
as: 
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The parameters are fitted in order to reproduce the saturation 
density, the energy at the saturation density and the compressiblity 
of symmetric nuclear matter. The values are  

€ 

γ1 = 0.10 fm3

γ 2 = -750 MeV⋅ fm6

γ 3 =13.9 fm3

with: 

The equation of state of 
nuclear matter fitted with 
these values of the parameters 
is: 

€ 

E0 = −16.0(1) MeV     ρ0 = 0.160 fm-3        b = 520.0 MeV⋅ fm6

c = −1297.4 MeV⋅ fm9       γ = −2.213 fm3€ 

ESNM [ρ]
N

= E0 + b(ρ − ρ0)
2 + c(ρ − ρ0)

3eγ (ρ−ρ0 )



With the density dependent 
interaction we computed the 
equation of state not only 
for SNM or PNM. 

Given the symmetry energy, 
it is then possible to 
compute the energy for an 
arbitrary proton fraction xp, 
and as a consequence the 
proton fraction 
corresponding to the b-
equilibrium, considering 
both electrons and muons. 

.  
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CS = 31.3                      γ S = 0.64





S. Gandolfi, A. Yu. Illarionov, S. Fantoni, J. C. Miller, F. Pederiva, K. E. 
Schmidt, MNRAS 404 (2010) L35 
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.  

Mass-radius relation 
computed from AFDMC 
results for PNM with 
pure two-nucleon (AV8’) 
and two- and three-
nucleon forces 
(AV8’+UIX), and with 
the DDI (PNM). Results 
including the b-
equilibrium corrections 
are also shown. 

.  

Mass of the star as a 
function of the central 
density for the four 
cases of the figure 
above. 

We need a softer equation of state. 
Hyperons??? D. Lonardoni, Master thesis 

D. Lonardoni, P. Armani, A. Yu. Illarionov, S. Gandolfi, F. Pederiva, in progress 



  Auxiliary fields of HS transform            pion fields 
  3-body potential term are generated (also) by 

2nucleon-pion EFT terms  
  Fundamental EFT Hamiltonian used instead of 

phenomenological potentials 
  Include explicitly pion fields regularized on a lattice, 

assume a fixed nucleon number 
  Original 3-nucleon forces could be treated with AFDMC  

as 2nucleon-pion terms 
  Hamiltonian can be improved systematically by adding 

higher terms of the EFT chiral expansion, and eventually 
other degrees of freedom (e.g. Δ baryon)  

The 
idea! 

Ph.D. thesis of P. Armani 



Higher order, but we keep it to 
maintain the DMC scheme 



Problems (partially solved)‏ 
 Pion  vacuum energy ~ 20 GeV                               

 Nucleon eigenenergy ~ 40 MeV 

We need an accurate wavefunction(als) 
including nucleon-nucleon, pion-pion, and 
pion-nucleon correlations in order to make the 
variance of the energy as small as possible 

Because the Hamiltonian is regularizaion-
dependent, we also need to fit the coefficient 
over some data. At present the good 
candidates are the binding energy of 4He and 
Tritium (np, nn, and pp present some 
unexpected (?) problem) 

Preliminary results 

 Nucleon bare mass computed 

 Algorithm scales linearly with nucleon 
number      medium size nuclei (16O,40Ca) 
study is feasible [4He example run of only 
48 cpu hours] 

 Inclusion of higher Hamiltonian terms 
does not change the scalability 

MeV 



The AFDMC technique can be successfully used to study 
bulk nuclear and neutron matter. 

A phenomenological density dependent interaction has 
been devised, which better approaches the constraints 
from terrestrial and astrophysical observations. 

The EOS might still be too stiff (hyperons?) 

It is worth rethinking the approach to many nucleon 
calculations including explicitly  pion d.o.f. 


