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1)PROPERTIES OF COMPACT STARS | —
2)BENCHMARK OF THE NUCLEAR FORCES
3)PHASE TRANSITIONS

. WHAT IS THE ROLE OF
MANY-BODY INERACTIONS?

CAN WE IMMEDIATELY

EXPORT THE KNOWLEDGE

WE HAVE ABOUT NUCLEI TO
- NUCLEAR MATTER?

Temperature T [MeV]

WHERE ARE PHASE

TRANSITIONS LOCATED IN

NUCLEAR MATTER? WHAT IS
- THE ROLE OF HYPERONS?




EOS OF HADRONIC MATTER

A satisfactory theoretical framework in which the phenomenology can
be consistently explained is still far from being developed.

MAIN REASONS

1)The complex nature of the nuclear medium prevents from
determining in a univocal way the relevant degrees of freedom and the
corresponding forces (compare for instance with quantum chemistry or
electronic structure calculations...)

2)The use of approximate methods combined with approximate model
Hamiltonians generated a very wide spectrum of theoretical
predictions. Can we make more definite assessments about the
relationship between nuclear forces at microscopic level and the
properties of huge massive objects like neutron stars?



NEUTRON MATTER BENCHMARK
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Recently a detailed analysis of
the results obtained with
different theoretical methods
(BHF, SCGF, FHNC, AFDMC)
(Benhar, Polls, Vidana, Rios,
Balso, Schulze, Illarionov,
Fantoni, Gandolfi, Pederiva...)



NUCLEAR HAMILTONIANS

The nucleon-nucleon interaction is still not completely understood. Many
different models are used, and fitted to reproduce NN scattering data in

different channels = No proper “ab-initio" description.

E.g.: one pion exchange

is a major ingredient of N P
nucleon-nucleon

interaction, but more

complex processes

occur.

Argonne AVX potentials (two-body)

X
V(#.5.6,.6,.5,.5,) = Y V' F.F)O"

p=1

0’ =(1,6,6,,5,)®(t,'T,) where S,;=3(r; 6,)(r,'6,)-06,0,



METHODOLOGY: QUANTUM MONTE CARLO

Variational Monte Carlo (VMC) H=—5— Z Vi+D) vi+ Y Vik

i<j i<j<k

Expectation values can be efficiently computed with stochastic methods:
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Wave function with operatorial Jastrow 2 body and 3 body correlations
should be used to impose correct analytic behavior at short range in each
channel:

oty = S]] (ve(ry) + volry)di - 65+ ..) | |0)
i

r 1
[ Wiringa, et al. PRC 43,1585, (1991) ]

[ Wiringa, et al. NPA, 543, (1992) ]



QUANTUM MONTE CARLO

Green's Function Monte Carlo
Project the ground state using the standard proagator:

Approximate with a
W(R, t) = e_(H_ET)t’QE(R, 0) finite sum of

eigenstates of the
| / ; position ("walkers")
O(R,t)= | dR'G(R,R'. .@

the propagator can be broken in the usual way using the Trotter-Suzuki

rmula:
1 Diffuses the walker

34 5
— (R-R")
1 - -

N 272/mAT
e e
2k’ /mAT

V(R)+\7(R')_E

E A Weights the walker,

w._ and produces zero, one
or more copies

G(R,R",7) =

< In order to be able to perform a DMC calculations the potential should be
local. One-body spin-orbit is still treatable. Three-body potentials are also
treatable.

« The propagator acts in a non trivial way on the spin-isospin variables,



QUANTUM MONTE CARLO

Wave Functions
The presence of quadratic spin/isospin operators introduces a heavy
complication both in VMC and GFMC calculations. In fact, the Green's
function ¢ " , and the operatorial components of the correlations
mix the spin/isospin two body states. This implies the use of
MULTICOMPONENT WAVEFUNCTIONS!

The number of combonents
Al
grow as - ~ 7z 7y’ E>

A Pairs Spin X Isospin
*He 4 6 8x2
61 6 15 32%5
[ Carlson, PRC 36(5),2026, (1987) ] Ju 7z 128 x 14
Be 8 28 128 x 14
[ Pudliner, Pandharipande, Carlson, 9Be 9 36 512 x 42
; y 10ge 10 45 512 % 90
Pieper ,Wiringa, PRC 56(4), 1720 , (1997)] T o e YTIEE
[ Pieper, NPA, 751, (2005) ] 12c 1 66 2048 x 132
150 16 120 32768 x 1430
Oca 40 780 3.6x1021 x 6.6x10°
Sn 8 28 128x 1

14, 14 01 8192 x 1




AUXILIARY FIELD DIFFUSION MONTE CARLO

Hubbard Stratonovich transform

EAOZAt

—}\,OZA ——+ —)\,A‘L'O
e” ~|| TOCllfdxe

Appro. order Dt

2 body :> /Auxiliary ¢ 1body

operators Field x operator

AFDMC = DMC + HS-transform

Other issues:
-Sign problem "treated" with Fixed-Phase approximation.
-Wave functions simplified to a central Jastrow (no operatorial

dependence) times an antisymmetrized product of spinors.

[ Schmidt & Fantoni, PLB 446, 99 (1999) ]
[Fantoni,Sarsa ,Schmidt,Prog.Part.Nuc.Phys. 44 2000)
[ S. Gandolfi , F. Pederiva, S. Fantoni, K. E. Schmidt, Phys. Rev. Lett. 98, 102503 (2007) PRL 99,022507(2007) ]



NEUTRON MATTER

Early work: A. Sarsa, S. Fantoni, K.E. Schmidt, F.P., Phys. Rev. C 68, 024308 (2003)

Low density

S. Gandolfi, A. Yu. lllarionov, F. Pederiva, K. E. Schmidt, and S. FantoniPhys.

Rev. C 80, 045802 (2009)
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At very low densities the
equation of state should be
not very sensitive to the
interaction used. However
already above 0.1fm? some
effects are visible.

AFDMC results refer to a
realistic NN interaction
including spin-orbit and three-
body forces.



NEUTRON MATTER

AFDMC allows for an accurate estimate of the gap in

superfluid neutron matter.

INGREDIENT NEEDED: A "SUPERFLUID" WAVEFUNCTION.
Nodes and phase in the superfluid are better described by a

Jastrow-BCS wavefunction
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Gandolfi S., lllarionov A., Fantoni S., P.F., Schmidt K., PRL 101, 132501 (2008)

IPT (R) 3

i<j

nfj(rij)]¢BCS (R,S)

Vi, -ikr,
¢(rijasiﬂsj)= E_ae l r]X(Siasj)
a uka

Coefficients from CBF calculations.

The gap is estimated by the even-

odd energy difference at fixed
density:

A(N) = E(N) - %[E(N +1)-E(N-1)]

Calculations have been performed around two
different values of N, i.e. N=66 and N=14



NEUTRON MATTER

High density (supersaturation)
— T— - S. Gandolfi, A. Yu. lllarionov, K. E. Schmidt, F. Pederiva, and S.
FantoniPhys. Rev. C 79, 054005 (2009)

We revised the computations made on
Neutron Matter to check the effect of

the use of the fixed-phase | I ,;\1:‘[)1\4("{ vy +UIX | /l
approximation. o kg |
Results are more stable, and some of e
the issues that were not cleared in the Sl e
previous AFDMC work are now under = | P
control. e

100 — e
In particular the energy per nucleon _ R s
computed with the AV8' potential in P ettt
PNM with A=14 neutrons in a T T — v 0|.§ 0T s
periodic box is now 17.586(6) MeV, P

which compares very well with the
GFMC-UC calculations of J. Carlson
et al. which give 17.00(27) MeV.
The previous published AFDMC result
was 20.32(6) MeV.



CONSTRAINTS

EOS can be tested against available data from astrophysical observations.

updated 8 December 2006
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TOV EQUATIONS

The equation of state is the . L T s S
main ingredient used to _ sy
compute structural properties — mmy
of neutron stars. One of the |
best known relations is the -
Tolman-Oppenheimer-Volkov ]
equation implementing the
condition of hydrostatic ]
equilibrium. T A
dP(r) Gsm(r)( P(r) ) 4m3P(r))( 2Gm(r)) =
S i Ly I NALRE S fRFad
dr r ce(r) m(r)c cr -
A _ e |
7, | e
1 d’°E E -/ e L
P =P(p) = _ng dp(zp) 2= p[mzv + Cz—A(p)] sl ]



PROBLEM

The solution of the TOV equation shows that
the three body interaction used to fit the
properties of light nuclei does not describe
correctly the properties of bulk matter.

Some hew scheme has to be searched. In the
meantime it is possible to turn back to an
effective description in the attempt of
providing useful information to
astrophysicists.



DENSITY DEPENDENT INTERACTION

Following Lagaris and Pandharipande (Nucl. Phys. A359, 349 (1981)), it
is possible to redifine the interaction with density dependent
parameters:

H= -iZVf + Y v, + TNR+TNA

i<j

The density dependent repulsive part is a modification of the
intermediate part of AV6":

- =710
vl.j+TNR—vﬂ +e """y, +v,

The attractive part is completely phenomenological, and it is written
as:

I 2
TNA = y, e 3_2( 0, = Pp)
P




DENSITY DEPENDENT POTENTIAL

The parameters are fitted in order to reproduce the saturation
density, the energy at the saturation density and the compressiblity
of symmetric nuclear matter. The values are

y, =0.10 fm’ |
Y, =-750 MeV- fm® | -.-_----v_ﬁ—__r:] |

y, =13.9 fm’ . /’,,’ i
The equation of state of " y

nuclear matter fitted with
these values of the parameters
IS:

ESNM [p] g E
N

with:
E,=-160(1) MeV p, =0.160 fm" b =520.0 MeV: fm°
c=-12974 MeV- fm’  y=-2213fm’

+b(p—py)* +c(p—py)e



DENSITY DEPENDENT POTENTIAL
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With the density dependent
interaction we computed the

equation of state not only
for SNM or PNM.

Given the symmetry energy,
it is then possible to
compute the energy for an
arbitrary proton fraction x,,
and as a consequence the
proton fraction
corresponding to the b-
equilibrium, considering
both electrons and muons.
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DENSITY DEPENDENT POTENTIAL

— ' ' 1 Mass-radius relation

| L= E%;*(AA'V"S“‘“”*“ computed from AFDMC
7 R i P
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NUCLEON-NUCLEON INTERACTION FROM CHIRAL P.T.

* Auxiliary fields of HS transform (= pion fields

g * 3-body potential term are generated (also) by
2nucleon-pion EFT terms

* Fundamental EFT Hamiltonian used instead of
phenomenological potentials

* Include explicitly pion fields regularized on a lattice,
assume a fixed nucleon number

* Original 3-nucleon forces could be treated with AFDMC
as 2nucleon-pion terms

* Hamiltonian can be improved systematically by adding
higher terms of the EFT chiral expansion, and eventually
other degrees of freedom (e.g. A baryon)

Ph.D. thesis of P. Armani



LAGRANGIAN

Ly = % [(ﬁm)z — (Bomi)? + mim ,2]
+ NI [l'é)o . %(—'Ukﬂﬁj(i)oﬂ'k — Mo
2“”;‘ NirioiVimiN
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AFDMC AND CHIRAL P.T. HAMILTONIANS

Problems (partially solved) Preliminary results

-Pion vacuum energy ~ 20 GeV

Nucleon eigenenergy ~ 40 MeV -Nucleon bare mass computed

-Algorithm scales linearly with nucleon
: number I::>medium size nuclei (1¢0,%9Ca)
study is feasible [*He example run of only

_ 48 cpu hours]
We need an accurate wavefunction(als)

including nucleon-nucleon, pion-pion, and Mev ° ‘ ' ! ' ' ' Y =y
pion-nucleon correlations in order to make the 5
variance of the energy as small as possible 10

208

2% 3
5 i

Because the Hamiltonian is regularizaion-

dependent, we also need to fit the coefficient
over some data. At present the good
candidates are the binding energy of “He and o)
Tritium (np, Nn, and pp present some 45
unexpected (?) problem) 50

-30 §
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-Inclusion of higher Hamiltonian terms
does not change the scalability



The AFDMC technique can be successfully used to study ||
bulk nuclear and neutron matter.

A phenomenological density dependent interaction has
been devised, which better approaches the constraints
from terrestrial and astrophysical observations.

It is worth rethinking the approach to many nucleon
# calculations including explicitly pion d.o.f.




