Problems with the proton rms-radius Ingo Sick

Charge-rms radius of proton: fundamental quantity needed in many applications

History of radius from (e,e): rather checkered

Reanalysis: IS, PLB 576 (03) 62

removed several deficiencies of previous studies finds $r_{rms}=0.895\pm0.018$ fm, significantly larger than previous results understand reasons for change

nonconvergence q^{2n} , poor fit VDM, Coulomb, fit G_e instead of σ

Unsatisfactory: size error bar 0.018fm

for A>1 error bar smaller, despite poorer data base for atomic physics would want more accurate radius

Reason

for proton shape $\rho(r) \sim$ exponential \rightarrow important role of large-r tail, see $[\int_0^R \rho(r) r^4 dr / \int_0^\infty \rho(r) r^4 dr]^{1/2}$ there ρ small, poorly determined

for 1% need to integrate to 3.6·rms!

Idea: constrain shape of large-r tail add physics, get more accurate rms-radius

Tail of nucleon charge density

Simple-most model for large r least-bound Fock state: $p = n + \pi^+$, $n = p + \pi^-$ dominates $\rho(r)$ completely at large-enough r (>0.8fm in cloudy bag model) will use as constraint need to think about relation $G_e(q) \leftrightarrow \rho(r)$

Interlude: $\rho(r)_{exp}$ from (e,e)

non-relativistic: ho(r)= Fourier-transform of $G_e(q)$

But: q very large, need to consider relativistic effects

- 1. determine ho(r) in Breit-frame, + Lorentz contraction use as momentum transfer $\kappa^2=Q^2/(1.+ au), \quad au=Q^2/4M^2$
- 2. for composite systems boost operator depends on structure various prescriptions (Licht, Mitra, Ji, Holzwarth,...), all of form $G_e(q) \to G_e(q)(1.+\tau)^{\lambda}$, $\lambda = 0$ or 1 de facto $\lambda = 0$ or 1 makes little difference for $\rho(\text{large r})$

Test:

calculate $\rho(\mathbf{r})$ from given $G_e(\mathbf{q})$ with/without relativistic corr. take ratio

find: ambiguity in relativistic effects important for ρ at small r unimportant for large- $r \equiv \text{low momenta}$

 λ affects only normalization of large-r density, not shape normalization not used in constraint

desirable side-effect: $\rho(r=0)$ flat after application of relativistic corrections

Density at very large r

a priori use asymptotic form: Whittaker function $W_{-\eta,3/2}(2\kappa r)/r$ use physical masses $m_N, m_\pi, l{=}1$ use separation energy $= m_\pi$, include CM-correction

makes sense only at large n- π relative distance: rms_p=0.89fm, rms_{π}=0.66fm only at large r overlap n, π small (see red curves)

potential difficulty

need to fold with charge distribution of n, π could get into trouble with r=0 divergence of W/r

in practice

calculate w.f. in square well potential, V(r>R)=0 (courtesy D.Trautmann) radius R=0.8 fm (not important), depth adjusted to separation energy for r>R shape $\rho(r)\equiv$ Whittaker function can easily fold according to DT small difference Schrödinger-KleinGordon

Result

excellent agreement with shape of $\rho_{exp}(\mathbf{r})$ (norm fit to ρ_{exp})

"Refinements" of model

allow also for $\Delta + \pi$ contribution coefficients of various terms from Dziembowski,...,Speth

'Pionic contribution to nucleon EM properties in light-front approach' for p,n get contributions from $\pi^+ n$, $\pi^- p$, $\pi^- \Delta^{++}$, $\pi^+ \Delta^0$, $\pi^- \Delta^+$, $\pi^+ \Delta^-$ calculate similarly

effect on p-tail: small, improves a bit towards smaller r

effect on n-tail: larger, gets close to data with same normalization factor not really relevant as will ignore n, components $\neq \pi^- p$ too important

Plausibility checks

fraction of norm in π -tail

experimental charge distribution

$$\int_{1.}^{\infty} = 0.17 \qquad \qquad \int_{1.3}^{\infty} = 0.08$$

Myhrer+Thomas, cloudy bag model (\sim tail)

important to reduce spin sum rule, from value for relativistic quarks, 0.65 by factor 0.7-0.8 down to exp. value of 0.33 ± 0.06

$$P_{n\pi}=0.2-0.25,~~P_{\Delta\pi}=0.05-0.1$$

Bunyathyan+Povh, Deep inelastic scattering

reaction $p + e \rightarrow n(forward) + e' + X (only integral information)$

$$P_{n\pi} = 0.24 - 0.39$$

Nikolaev et al. Drell-Yan (integral)

$$P_{\pi n} = 0.21 - 0.28$$

Hammer et al, VDM

$$\int_{1.}^{\infty} = 0.03$$
 $\int_{1.3}^{\infty} = 0.017$

....continue with fit p-data

Data used in fit

```
world (e,e) data up to 12 fm<sup>-1</sup> both cross sections and polarization data two-photon exchange corrections (Arrington et al.) makes G_{ep} from \sigma and P to agree (relative) tail density for r > 1.3fm
```

Parameterization

r-space parameterization to implement constraint use Sum-Of-Gaussians (SOG) parameterization for G_{ep} and G_{mp}

Detail

```
placed every \sim 0.3fm, for r<3.3 fm
amplitudes fit to \sigma, P, constraint
include relativistic corrections (unimportant for large r)
24 parameters
```

Results

```
605 data points for q_{max}=12~{\rm fm^{-1}}
20 values for constraint on shape, for r>1.3{\rm fm},~i.e. for \rho(r)<0.01~\rho(0)
\chi^2=518~(812) when floating (or not) data
excellent fit of tail-constraint
```

Find: $r_{rms} = 0.894 \pm 0.008 \text{ fm}$

error bar includes statistics+systematics important reduction of uncertainty!

Added benefit of tail-constraint:

floating changes r_{rms} by 0.0014 fm only fit without constraint: floating changes .02 fm, bigger than error bar! exemplifies dangers of floating without large-r constraint

constraint suppresses unphysical wiggles in $G_e(q)$ at very low q

Radius from spectroscopy of atomic Hydrogen

spectacular progress of experiments transition energies measured to 13 digits 1s Lamb shift measured to 5 significant digits most of higher-order QED-terms now calculated for summary see RMP 80 (2008) 633

find rms-radius = 0.877 ± 0.007 fm

agreement with (e,e) satisfactory considering tiny effect of rms in Lamb-shift

Big problem

recent data on muonic Hydrogen

Pohl et al., PSI-experiment subm. to Nature

find rms-radius = 0.842 ± 0.001 fm

Convincing data

Can (e,e) and μX be made compatible?

analyze world (e,e)-data with constraint on rms-radius

data	tailconstraint	χ^2	rms
(e,e) not floated	no	822	0.897
(e,e), floated	no	422	0.881
$(e,e)+\mu X$, not floated	no	926	0.842
$(e,e)+\mu X$, floated	no	574	0.843
(e,e), floated	\mathbf{yes}	518	0.893
$(e,e)+\mu X$, floated	\mathbf{yes}	715	0.845

Find large increase in χ^2 : 422 \rightarrow 574 for fit with tailconstraint \rightarrow 715 ratio data/fit show systematic trend

my conclusion: serious discrepancy (e,e) $\leftrightarrow \mu X$

Explanations??

```
missing QED terms?? Zemach-term (Z\alpha)^5 apparently still in doubt polarization of proton?? problems common to all (e,e)-data, e.g. rad. corrections?? defect of present (e,e) data set?? new MAMI-experiment finds 0.880\pm0.004\pm0.004 fm 2-photon effects larger than calculated??
```