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THE QUEST TO HIGHER PRECISION

To increase the luminosity, 
physicists decided to use heavy 
nuclei to study the structure of 
the proton instead of a hydrogen 
target. 
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THE EMC EFFECT
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THE EMC EFFECT

Nuclear structure: 
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Aubert et al., PLB123, 275 (1983)

First measurement by the EMC 
collaboration (1983) found an excess 

of  low-x quarks, deficit of  high-x 
quarks in heavy nuclei
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THE EMC EFFECT

The EMC effect correspond to the 
region of  depletion of  high 
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THEORETICAL MODELS

Uncertainties in 1 make it difficult to determine what role 
mechanisms in 2 play in observed EMC effect

1.	Conventional nuclear physics based explanations (convolution 
calculations)

– Fermi motion alone clearly not sufficient
– Early attempts to combine Fermi motion effects and binding were fairly 

simplistic
– Even more sophisticated approaches (spectral function) fail unless one 

includes “nuclear pions”
  	Size of  contributions from nuclear pions typically used in DIS 

calculations inconsistent with nuclear dependence of  Drell-Yan

2.
“Exotic” effects
– Medium effects on quark distributions themselves: dynamical rescaling, 

multiquark clusters, etc.
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EXISTING EMC DATA
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SLAC E139:

Most precise large x data
Nuclei from A=4 to A=197

Observations:

1) Universal x-dependence shape
2) Q2-independent
3) Magnitude varies with A:

➡ Scale with A-1/3

➡ Scale with average density
Density calculated assuming 
a uniform sphere of radius: 
         Re (r=3A/4pRe

3)

J. Gomez et al, PRC49, 4348 (1994)

x
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LIMIT OF EMC DATA
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➡ 4He  much lighter than 12C, but 
has similar average density

             Compare A vs <ρ>

➡ 3He has low A and low density; 
expect smaller EMC effect

➡ Both nuclei allow for precise, 
few-body calculations
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JLAB EXPERIMENT E03-103

A(e,e’) at 5.0 and 5.8 GeV in Hall C

10 angles to measure Q2-dependence

Targets:         H, 2H, 
                     3He, 4He, 

           9Be, 12C, 
           63Cu, 197Au

9

JLab E03-103, “EMC effect in few-body nuclei”
J. Arrington and D. Gaskell: spokespersons
J. Seely, A. Daniel, (N. Fomin): Ph.D. students

Isoscalar correction Coulomb correction
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JLab results consistent with 
SLAC E139

 Improved statistics and systematic 
errors Preliminary
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Preliminary

Models shown do a reasonable job 
describing the data.

But very few real few-body 
calculations 

(most neglect structure, scale NM)
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E03-103: 12C AND 4He EMC RATIOS
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E03-103: 3HE EMC RATIO

Large proton excess 
correction

Isoscalar correction done 
using ratio of bound neutron 
to bound proton at E03-103 

kinematics 
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Magnitude of  the EMC effect for 
C and 4He very similar, and 

                                 ρ(4He) ~ ρ(12C)
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A OR ρ-DEPENDENCE ?
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Magnitude of  the EMC effect for 
C and 4He very similar, and 

                                 ρ(4He) ~ ρ(12C)

4He suggests  ρ−dependent

Magnitude of  the EMC effect for 
C and 9Be very similar, but 

                              ρ(9Be) << ρ(12C)

9Be suggests  A-dependent
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x
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9Be has low average density, 
but large component of  
structure is 2α+n  most 
nucleons in tight, α-like 

configurations

Fit of  the EMC ratio for 
0.35<x<0.7 and look at A- and 
density dependence of  the slope
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A OR ρ-DEPENDENCE ?
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Heavy nuclei 
and

EMC effect in nuclear matter
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HEAVY NUCLEI AND COULOMB DISTORTION

- Focusing of the electron wave function
- Change of the electron momentum

DWBA

➫

Incident (scattered) electrons are 
accelerated (decelerated) in the 

Coulomb well of  the nucleus.

e

e’

p
n

Exchange of  one or more (soft) photons 
with the nucleus, in addition to the one 

hard photon exchanged with a nucleon

17

Effective Momentum Approximation (EMA)

 
          E → E + V
          Ep→ Ep + V }

_
_

   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)
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COULOMB DISTORTION EFFECT ON E03-103
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Coulomb corrections applied
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HEAVIER NUCLEI DATA FROM E03-103
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Exact calculations of  the EMC effect exist:
• for light nuclei
• for nuclear matter

SLAC E139&E140

CERN EMC

CERN BCDMS
CERN NMC
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Non-negligible effects on SLAC data

EXTRAPOLATION TO NUCLEAR MATTER

22

SLAC E139&E140
CERN BCDMS
CERN NMC
CERN EMC

Exact calculations of  the EMC effect exist:
• for light nuclei
• for nuclear matter
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EXTRAPOLATION TO NUCLEAR MATTER
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SLAC E139&E140
CERN BCDMS
CERN NMC
CERN EMC

Exact calculations of  the EMC effect exist:
• for light nuclei
• for nuclear matter
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EXTRAPOLATION TO NUCLEAR MATTER
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EMC effect in nuclear matter



Patricia Solvignon25

Nuclear dependence of R 
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In a model with:
a) spin-1/2 partons: R should be 
small and decreasing rapidly with Q2

b) spin-0 partons: R should be large 
and increasing with Q2

Dasu et al., PRD49, 5641(1994)

! 

d"

d#d$'
= % "T (x,Q

2
) + &" L (x,Q

2
)[ ]

R(X,Q2)
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slopes ⇒ RA-RD

Nuclear higher twist effects and 
spin-0 constituents in nuclei: 

same as in free nucleons

ACCESS TO NUCLEAR DEPENDENCE OF R

Dasu et al., PRD49, 5641(1994)

27

⇐	 RA-RD=0
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ACCESS TO NUCLEAR DEPENDENCE OF R
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✓ Need several ε values with enough nuclei coverage

✓ Remove 3He data from the extrapolation

At constant Q2 and x:

➡ at each ε, fit the cross section ratios σA/σD  vs.  A-1/3 or ρ

➡ extrapolate the fit to infinite nuclear matter: A-1/3 →0 or ρ →0.17. 
              Get σNM/σD  for each ε.

➡ plot nuclear matter cross section ratios vs. ε/(1+εRD)

➡ slope of  the fit gives RNM-RD

EXTRACTION OF RNM

30
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RNM: X=0.5, NO COULOMB CORRECTION
A-dependence
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A-dependence
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X-DEPENDENCE OF RNM-RD

no coulomb corr.
coulomb corr.
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X-DEPENDENCE OF σNM/σD AT ε’=0

σ(NM)

134 W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301

2.2. Spin-averaged cross sections

In the one-photon exchange approximation, the differential cross section for scattering unpolarized
electrons from an unpolarized nucleon target can be written as

d2!
d" dE′ = #2

Q4
E′

E
L$%W

$% , (5)

where # is the fine structure constant, and " = "(&, ') is the laboratory solid angle of the scattered
electron. The leptonic tensor L$% averaged over initial spins is given by

L$% = 2(k$k
′
% + k′

$k% − g$%k · k′) , (6)

where k and k′ are the initial and final electron momenta, respectively.
The hadronic tensorW $% contains all of the information about the structure of the nucleon target. Using

constraints from Lorentz and gauge invariance, together with parity conservation, the hadronic tensor can
be decomposed into two independent structures,

W $% = W1(%, Q
2)

(
q$q%

q2
− g$%

)
+ W2(%, Q2)

M2

(
p$ + p · q

q2
q$

) (
p% + p · q

q2
q%

)
, (7)

whereW1 andW2 are scalar functions of % andQ2. Using Eqs. (6) and (7), the differential cross section
can then be written

d2!
d" dE′ = !Mott

(
2W1(%, Q

2)tan2
&

2
+ W2(%, Q

2)

)
, (8)

where !Mott is the Mott cross section for scattering from a point particle,

!Mott =
4#2E′2

Q4 cos2
&

2
. (9)

Note that for a structureless target,W1 andW2 become (-functions, and Eq. (8) reduces to the Dirac cross
section for scattering from spin-12 particles.
In the Bjorken limit, in which both Q2 and % → ∞, but x is fixed, the structure functions W1 and

W2 exhibit scaling. Namely, they become independent of Q2, and are functions of the variable x only
(logarithmicQ2 dependence enters at finiteQ2 through QCD radiative effects). It is convenient therefore
to introduce the dimensionless functions F1 and F2, defined by

F1(x, Q2) = MW 1(%, Q
2) , (10)

F2(x, Q2) = %W2(%, Q
2) . (11)

In the quark–parton model the F1 and F2 structure functions are given in terms of quark and antiquark
distribution functions, q(x) and q̄(x),

F2(x) = 2xF 1(x) = x
∑

q

e2q(q(x) + q̄(x)) , (12)

where q(x) is interpreted as the probability to find a quark of flavor q in the nucleon with light-cone
momentum fraction x. The relation between the F1 and F2 structure functions in Eq. (12) is referred
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to as the Callan–Gross relation [10]. Beyond the quark–parton model, the residual Q2 dependence in
F1 and F2 arises from scaling violations through perturbative QCD corrections, as well as 1/Q2 power
corrections which will be discussed in the following sections. In terms of these dimensionless functions,
the differential cross section can be written as

d2!
d" dE′ = !Mott

(
2
M

F1(x, Q2)tan2
#

2
+ 1

$
F2(x, Q2)

)
. (13)

Expressed in this way, the functions F1 and F2 reflect the possibility of magnetic as well as electric
scattering, or alternatively, the photoabsorption of either transversely (helicity ±1) or longitudinally
(helicity 0) polarized photons. From this perspective, the cross section can be expressed in terms of !T
and !L, the cross sections for the absorption of transverse and longitudinal photons,

! ≡ d2!
d" dE′ = %(!T(x, Q2) + ε!L(x, Q2)) . (14)

Here % is the flux of transverse virtual photons,

% = &

2'2Q2
E′

E

K

1− ε
, (15)

where, in the Hand convention, the factor K is given by

K = W 2 − M2

2M
= $(1− x) . (16)

The ratio of longitudinal to transverse virtual photon polarizations,

ε =
[
1+ 2

(
1+ $2

Q2

)
tan2

#

2

]−1
, (17)

ranges between ε = 0 and 1.
In terms of !T and !L, the structure functions F1 and F2 can be written as

F1(x, Q2) = K

4'2&
M!T(x, Q2) , (18)

F2(x, Q2) = K

4'2&
$

(1+ $2/Q2)

[
!T(x, Q2) + !L(x, Q2)

]
. (19)

The ratio of longitudinal to transverse cross sections can also be expressed as

R ≡ !L
!T

= F2

2xF 1

(
1+ 4M2x2

Q2

)
− 1 . (20)

Note that while the F1 structure function is related only to the transverse virtual photon coupling, F2
is a combination of both transverse and longitudinal couplings. It is useful therefore to define a purely
longitudinal structure function FL,

FL =
(
1+ Q2

$2

)
F2 − 2xF 1 , (21)

! 

d"

d#d$'
= % "T (x,Q

2
) + &" L (x,Q

2
)[ ]

at ε’=0= ε

σ(D)

σT (NM)

σT (D)

ε→0

and

F1 (NM)

F1 (D)

ε→0σ(NM)

σ(D)



Patricia Solvignon37

134 W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301

2.2. Spin-averaged cross sections

In the one-photon exchange approximation, the differential cross section for scattering unpolarized
electrons from an unpolarized nucleon target can be written as

d2!
d" dE′ = #2

Q4
E′

E
L$%W

$% , (5)

where # is the fine structure constant, and " = "(&, ') is the laboratory solid angle of the scattered
electron. The leptonic tensor L$% averaged over initial spins is given by

L$% = 2(k$k
′
% + k′

$k% − g$%k · k′) , (6)

where k and k′ are the initial and final electron momenta, respectively.
The hadronic tensorW $% contains all of the information about the structure of the nucleon target. Using

constraints from Lorentz and gauge invariance, together with parity conservation, the hadronic tensor can
be decomposed into two independent structures,

W $% = W1(%, Q
2)

(
q$q%

q2
− g$%

)
+ W2(%, Q2)

M2

(
p$ + p · q

q2
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) (
p% + p · q
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, (7)

whereW1 andW2 are scalar functions of % andQ2. Using Eqs. (6) and (7), the differential cross section
can then be written

d2!
d" dE′ = !Mott

(
2W1(%, Q

2)tan2
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2
+ W2(%, Q

2)

)
, (8)

where !Mott is the Mott cross section for scattering from a point particle,

!Mott =
4#2E′2

Q4 cos2
&

2
. (9)

Note that for a structureless target,W1 andW2 become (-functions, and Eq. (8) reduces to the Dirac cross
section for scattering from spin-12 particles.
In the Bjorken limit, in which both Q2 and % → ∞, but x is fixed, the structure functions W1 and

W2 exhibit scaling. Namely, they become independent of Q2, and are functions of the variable x only
(logarithmicQ2 dependence enters at finiteQ2 through QCD radiative effects). It is convenient therefore
to introduce the dimensionless functions F1 and F2, defined by

F1(x, Q2) = MW 1(%, Q
2) , (10)

F2(x, Q2) = %W2(%, Q
2) . (11)

In the quark–parton model the F1 and F2 structure functions are given in terms of quark and antiquark
distribution functions, q(x) and q̄(x),

F2(x) = 2xF 1(x) = x
∑

q

e2q(q(x) + q̄(x)) , (12)

where q(x) is interpreted as the probability to find a quark of flavor q in the nucleon with light-cone
momentum fraction x. The relation between the F1 and F2 structure functions in Eq. (12) is referred

W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301 135

to as the Callan–Gross relation [10]. Beyond the quark–parton model, the residual Q2 dependence in
F1 and F2 arises from scaling violations through perturbative QCD corrections, as well as 1/Q2 power
corrections which will be discussed in the following sections. In terms of these dimensionless functions,
the differential cross section can be written as

d2!
d" dE′ = !Mott

(
2
M

F1(x, Q2)tan2
#

2
+ 1

$
F2(x, Q2)

)
. (13)

Expressed in this way, the functions F1 and F2 reflect the possibility of magnetic as well as electric
scattering, or alternatively, the photoabsorption of either transversely (helicity ±1) or longitudinally
(helicity 0) polarized photons. From this perspective, the cross section can be expressed in terms of !T
and !L, the cross sections for the absorption of transverse and longitudinal photons,

! ≡ d2!
d" dE′ = %(!T(x, Q2) + ε!L(x, Q2)) . (14)

Here % is the flux of transverse virtual photons,

% = &

2'2Q2
E′

E

K

1− ε
, (15)

where, in the Hand convention, the factor K is given by

K = W 2 − M2

2M
= $(1− x) . (16)

The ratio of longitudinal to transverse virtual photon polarizations,

ε =
[
1+ 2

(
1+ $2

Q2

)
tan2

#

2

]−1
, (17)

ranges between ε = 0 and 1.
In terms of !T and !L, the structure functions F1 and F2 can be written as

F1(x, Q2) = K

4'2&
M!T(x, Q2) , (18)

F2(x, Q2) = K

4'2&
$

(1+ $2/Q2)

[
!T(x, Q2) + !L(x, Q2)

]
. (19)

The ratio of longitudinal to transverse cross sections can also be expressed as

R ≡ !L
!T

= F2

2xF 1

(
1+ 4M2x2

Q2

)
− 1 . (20)

Note that while the F1 structure function is related only to the transverse virtual photon coupling, F2
is a combination of both transverse and longitudinal couplings. It is useful therefore to define a purely
longitudinal structure function FL,

FL =
(
1+ Q2

$2

)
F2 − 2xF 1 , (21)

! 

d"

d#d$'
= % "T (x,Q

2
) + &" L (x,Q

2
)[ ]
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SUMMARY

JLab experiment E03-103 brings a wealth of  new results:
 Light nuclei: 

  contain key information on the EMC effect
  hint of  local density dependence of  the EMC effect
  can be compared to realistic calculations

 Heavy nuclei, low ε data and Coulomb distortion:
  affects the extrapolation to nuclear matter which is key for comparison with theoretical 

calculations
  has a real impact on the A-dependence of  R: clear ε-dependence
  Some of  these conclusions depends mostly on the re-analysis of  the SLAC data 

including Coulomb corrections.
  No solid Coulomb correction prescription exists in DIS 

Inclusive future JLab 12GeV experiment:
 E12-06-118: 3He/3H: key measurement to understand nuclear medium effect
  E12-10-008: detailed study of  the nuclear structure effect with H, 2H, 3He, 

4He, 6Li, 7Li, 9Be, 10B, 11B, 12C
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Future Measurements 
at 12GeV
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E12-10-008: DETAILED STUDIES OF THE 
NUCLEAR DEPENDENCE OF F2 IN LIGHT NUCLEI

✓ Higher Q2, expanded range in x (both low and high x)
DIS extends to x=0.8, W2>2 extends to x=0.92

✓ More complete set of  light nuclei
Test models of  A-dependence:
H, 2H, 3He, 4He, 6Li, 7Li, 
9Be, 10B, 11B, 12C

✓ 40Ca, 48Ca comparison
Isospin-dependence
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EMC ~ density
~ local density 

EMC ∼ (Aα – 1)

~ local density

E12-10-008: DETAILED STUDIES OF THE 
NUCLEAR DEPENDENCE OF F2 IN LIGHT NUCLEI

➡  Map out A-dependence in more detail

“Local density” works well, provides different predictions (use ab initio GFMC calc. of  2-body 
correlation function to calculate average nucleon ‘overlap’)
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EMC ~ density
~ local density 

EMC ∼ (Aα – 1)

~ local density

➡  Map out A-dependence in more detail

“Local density” works well, provides different predictions (use ab initio GFMC calc. of  2-body 
correlation function to calculate average nucleon ‘overlap’)

E12-10-008: DETAILED STUDIES OF THE 
NUCLEAR DEPENDENCE OF F2 IN LIGHT NUCLEI
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SU(6)-symmetric wave function of  the proton in the quark model (spin up):

 u and d quarks identical, N and Δ would be degenerate in mass.
 In this model: d/u = 1/2, F2

n/F2
p = 2/3.

43

WHY IS F2N/F2P SO INTERESTING?

SU(6) symmetry is broken:  N-Δ Mass Splitting

-  Mass splitting between S=1 and S=0 diquark spectator.

-  symmetric states are raised, antisymmetric states are 
lowered (~300 MeV). 

-  S=1 suppressed 

=> d/u = 0, F2
n/F2

p = 1/4, for x -> 1

Scalar
 di-quark

pQCD

SU(6) 
symmetry

pQCD: helicity conservation (q↑↑p)
 => d/u =2/(9+1) = 1/5, F2

n/F2
p = 3/7 for x ->1
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Possible JLab Data for F2
n/F2

p and d/u Ratios  

44

E12-06-118: n/p AT LARGE x 

SU(6) 
symmetry

pQCD

Scalar di-
quark

PAC30:
Conditionally approved

JLab E12-06-118: 
G. Petratos, J. Gomez, R. J. Holt, R. Ransome
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Possible JLab Data for F2
n/F2

p and d/u Ratios  

45

SU(6) 
symmetry

pQCD

Scalar di-
quark

E12-06-118: d/u AT LARGE x 

PAC30:
Conditionally approved

JLab E12-06-118: 
G. Petratos, J. Gomez, R. J. Holt, R. Ransome
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THE TRITIUM TARGET CONCEPTUAL 
DESIGN

E. J. Beise (U. of  Maryland), B. Brajuskovic (ANL), R. J. Holt (ANL), 
W. Korsch (U. of  Kentucky), T. O’Connor (ANL), G. G. Petratos (Kent State U.),

R. Ransome (Rutgers U.), P. Solvignon (JLab), and B. Wojtsekhowski (JLab)
Tritium Target Task Force

• 1563 Ci of  tritium gas

• 40cm long x 1.25cm diam.

• Aluminum (2219): weldable 
and relatively high yield 
strength

• entrance, exit and side 
windows: 0.018” thick

• 10 atm at room temperature 
initially, with slow increase as 
tritium decays to 3He

42
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Extra slides
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EMC EFFECT IN NUCLEAR MATTER
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ry

From A-1/3 dependence From ρ-dependence

using same method as in Sick & Day

World data: large ε → L and T parts of the cross section 
enter with the same kinematic factor
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x=0.55, Q2=6 GeV2

x=0.65, Q2=6 GeV2

x=0.65, Q2=7 GeV2

x=0.69, Q2=7 GeV2

E=11 GeV

E=8.8 GeV

E=6.6 GeV

The ε-dependence of  the 
Coulomb distortion has effect 

on the extraction of  R in nuclei.

Iron-Copper

COULOMB DISTORTION: ε-DEPENDENCE 

Kinematics at JLab 
12GeV
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A-1/3 ρ ρ(A-1)/A ρ ρ(A-1)/A

x=0.4

x=0.5

x=0.6

x=0.7

-0.059 +/- 0.068

-0.164 +/- 0.069

-0.007 +/- 0.070

-0.092 +/- 0.072

-0.009 +/- 0.073

-0.070 +/- 0.075

-0.011 +/- 0.091

-0.088 +/- 0.046

+0.020 +/- 0.100

-0.067 +/- 0.100

-0.011 +/- 0.055

-0.132 +/- 0.057

-0.004 +/- 0.059

-0.119 +/- 0.060

-0.022 +/- 0.062

-0.118 +/- 0.063

-0.005 +/- 0.077

-0.120 +/- 0.039

-0.040 +/- 0.085

-0.148 +/- 0.086

0.036 +/- 0.053

-0.100 +/- 0.054

+0.025 +/- 0.055

-0.110 +/- 0.057

-0.012 +/- 0.059

-0.128 +/- 0.060

-0.032 +/- 0.072

-0.157 +/- 0.036

-0.035 +/- 0.081

-0.169 +/- 0.081

+0.125 +/- 0.053

-0.030 +/- 0.055

+0.114 +/- 0.056

-0.042 +/- 0.057

+0.063 +/- 0.059

-0.076 +/- 0.060

+0.150 +/- 0.073

-0.076 +/- 0.038

0.063 +/- 0.081

-0.099 +/- 0.083

Uniform sphere Wiringa&Pieper calcs

RNM
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A-1/3 ρ ρ(A-1)/A ρ ρ(A-1)/A

x=0.4

x=0.5

x=0.6

x=0.7
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WORLD DATA RE-ANALYSIS
Experiments E (GeV) A x-range Pub. 1st author

CERN-EMC 280 56 0.050-0.650 Aubert

12,63,119 0.031-0.443 Ashman

CERN-BCDMS 280 15 0.20-0.70 Bari

56 0.07-0.65 Benvenuti

CERN-NMC 200 4,12,40 0.0035-0.65 Amaudruz

200 6,12 0.00014-0.65 Arneodo

SLAC-E61 4-20 9,27,65,197 0.014-0.228 Stein

SLAC-E87 4-20 56 0.075-0.813 Bodek

SLAC-E49 4-20 27 0.25-0.90 Bodek

SLAC-E139 8-24 4,9,12,27,40,56,108,197 0.089-0.8 Gomez

SLAC-E140 3.7-20 56,197 0.2-0.5 Dasu

DESY-HERMES 27.5 3,14,84 0.013-0.35 Airapetian
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E03-103: Q2-DEPENDENCE

Small angle, low Q2  clear scaling violations for x>0.6-0.7

at x=0.6

J. Seely et al, PRL 103, 202301 (2009)
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Used the combined 
two highest Q2

At larger angles  indication of scaling to very large x

J. Seely et al, PRL 103, 202301 (2009)
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MORE DETAILED LOOK AT SCALING

E03-103
SLAC e139

W2>4 GeV2

W2>2 GeV2

C/D ratios at fixed x are Q2 

independent for:

   W2>2 GeV2 
and

   Q2>3 GeV2 

limits E03-103 coverage 
to x=0.85

Note: Ratios at larger x will be 
shown, but could have small HT, 

scaling violation
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DENSITY CALCULATIONS
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COULOMB DISTORTION AND TWO-PHOTON 
EXCHANGE

Incident (scattered) electrons are accelerated 
(decelerated) in the Coulomb well of the nucleus.

e

e’

Exchange of 2 (hard) photons with a single nucleon

TPE

Coulomb distortion

Opposite effect with positrons

p
n

Exchange of one or more (soft) photons with the nucleus, in addition to the one 
hard photon exchanged with a nucleon

OPE
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Incident (scattered) electrons are 
accelerated (decelerated) in the 

Coulomb well of  the nucleus.

e

e’

p
n

fm

fm

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

Fig. from A. Aste at Mini-Workshop on Coulomb 
Distortion, JLab May 2005

COULOMB DISTORTION
Exchange of  one or more (soft) photons 

with the nucleus, in addition to the one 
hard photon exchanged with a nucleon

Coulomb Distortion could have the same 
kind of impact as TPE, but gives also a 
correction that is A-dependent.

59



Patricia Solvignon

Effective Momentum Approximation (EMA)

 

          E → E + V

          Ep→ Ep + V }

HOW TO CORRECT FOR COULOMB 
DISTORTION ?

_
_

⇔

   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)

1st method 2nd method

- Focusing of the electron wave function
- Change of the electron momentum

DWBA

➫
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Effective Momentum Approximation (EMA)

 

          E → E + V

          Ep→ Ep + V }
_
_

⇔

   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)

1st method 2nd method

➫

One-parameter model depending only on the 
effective potential seen by the electron on average.

61

- Focusing of the electron wave function
- Change of the electron momentum

DWBA

HOW TO CORRECT FOR COULOMB 
DISTORTION ?
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COULOMB DISTORTION IN QE SCATTERING
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   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)

   Gueye et al., PRC60, 044308 (1999)

data are available for both 12C !21" and 208Pb !22" over a
wide range of incident energies at the same angle. An inter-

polation procedure allowed us to find the incident electron

energy Ee! whose response corresponds to the optimal

matching between the positions of the electron and positron

quasielastic peaks. We chose paths of interpolation which

connect the maxima as well as the minima of the measured

response functions, and in between, we followed the paths of

the constant ratio between maximum and minimum.

Finally, the electron energy Ee! and the relative normal-

ization factor N of the electron and positron spectra are var-

ied to minimize the #2 between the two responses. The ex-
perimental value of the effective Coulomb potential energy

is then obtained as

!VC!"$Ee#!Ee!%/2.

If EMA is a good approximation, we must find a good

matching between the two spectra and a value of N compat-

ible with unity. In addition, the value of VC for different

kinematics on the same target should be the same. The re-

maining differences between the positron and electron re-

sponses, if any, are due to higher-order effects $focusing%.

B. Experimental results

Figures 5, 6, and 7 show the electron and positron re-

sponse functions after radiative corrections for the two 208Pb

and the 12C kinematics. We observe a shift between the elec-

tron and positron responses which increases with the nucleus

charge.

Figures 8, 9, and 10 present the positron response func-

tions for the three kinematics, together with the electron re-

sponses which result from the fitting procedure described in

Sec. III A, i.e., at incident energies Ee#!2!VC! and normal-
ized by the factor N. We note an overall fair agreement be-

tween the positron and electron responses.

The results of the Coulomb potential determination are

summarized in Table I for all the kinematics. For 208Pb the

VC values obtained for the two kinematics covered by this

FIG. 5. Positron and electron response functions for the kine-

matics 208Pb 420 MeV-60°.

FIG. 6. Positron and electron response functions for the kine-

matics 208Pb 262 MeV-143°.

FIG. 7. Positron and electron response functions for the kine-

matics 12C 420 MeV-60°.

FIG. 8. Positron experimental response function for the kine-

matics 208Pb 420 MeV-60° $full circles% compared to the electron
response function at Ee!"Ee#!2!VC!"383 MeV normalized by

the factor N"1.04 $open circles%. The positron elastic tail is at 420
MeV $dotted-dashed line%, the electron elastic tail is at 383 MeV
$dashed line%. Calculations by the Ohio group !14" are shown for
positron at 420 MeV $thick solid line% and for the electron at 383
MeV $thick dashed line%. Calculations by Traini et al. !12" are
shown for a positron at 420 MeV $thin solid line% and for electron at
383 MeV $thin dashed line%. The difference between the thin solid
and thin dashed lines is very small and cannot be distinguished in

the figure.

P. GUÈYE et al. PHYSICAL REVIEW C 60 044308

044308-6

data are available for both 12C !21" and 208Pb !22" over a
wide range of incident energies at the same angle. An inter-

polation procedure allowed us to find the incident electron

energy Ee! whose response corresponds to the optimal

matching between the positions of the electron and positron

quasielastic peaks. We chose paths of interpolation which

connect the maxima as well as the minima of the measured

response functions, and in between, we followed the paths of

the constant ratio between maximum and minimum.

Finally, the electron energy Ee! and the relative normal-

ization factor N of the electron and positron spectra are var-

ied to minimize the #2 between the two responses. The ex-
perimental value of the effective Coulomb potential energy

is then obtained as

!VC!"$Ee#!Ee!%/2.

If EMA is a good approximation, we must find a good

matching between the two spectra and a value of N compat-

ible with unity. In addition, the value of VC for different

kinematics on the same target should be the same. The re-

maining differences between the positron and electron re-
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Coulomb potential established in Quasi-elastic scattering 
regime !
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Note: n/p correction is 

also A-dependent !!

  Improved density calculation (calculated with density distributions 
from R. Wiringa and S. Pieper ).

  Apply coulomb distortion correction.
  In progress: review of  n/p corrections in world data
  Target mass correction to be looked at. 

SLAC E139&E140

CERN EMC

CERN BCDMS
CERN NMC

JLab E03-103 prel.
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To remove struck nucleon’s 
contribution, scale density by 
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Data show smooth behavior as 
density increases… 
               except for 9Be
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