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INntroduction

* The electroweak response is a fundamental
ingredient to describe neutrino - '2C
scattering.

- EXcess, at relatively low energy, of measured
cross section relative to oversimplified
theoretical calculations.

Neutrino experimental communities need
accurate theoretical calculations

« We have first studied the electromagnetic
response of °C for which precise
experimental data are available.

A model unable to describe electron-nucleus
scattering is unlikely to describe neutrino-
nucleus scattering.




First step: electron-nucleus scattering

The electromagnetic inclusive cross section of the process

e+2C e+ X

where the target final state is undetected, can be written as

d?c _ _()z_2 E. LE";’/W“V
dﬂe/ dEef q4 Ee H EM
The leptonic tensor is fully specified by the measured e/

electron kinematic variables
Li"’; — 2[l~cuk’y + k,,k; — g,w(kk’)]

The Hadronic tensor contains all the information on
target structure.

Wiy = (Wl JH WX ) (W |.JY[W0) 6™ (po + ¢ — px)
X




Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the

energy loss.
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Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the
energy loss.
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{ nucleon scattering.
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Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the

energy loss.
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e Elastic scattering and
inelastic excitation of
discrete nuclear states.

* Broad peak due to
quasi-elastic electron-
nucleon scattering.

e Excitation of the nucleon
to distinct resonances
(like the A) and pion
production.



Neutrino-nucleus scattering

The neutral current inclusive cross section of the process

v+ A— vy + X

where the target final state is undetected, can be written as

2o G K

= LS Wi
dQV/dEV/ 47‘(‘2 |k| H

The leptonic tensor is fully specified by the measured Ve
neutrino kinematic variables

The Hadronic tensor contains all the information on
target structure.

Wi = (Wol Ji W x ) (U x| W0) 6" (po + ¢ — px) o’
X




Neutrino-nucleus scattering

The neutral current operator can be written as
= _2 (1 — 2sin’ 9W+@

« Weinberg angle sin® Oy = 0.2312

 |soscalar and isovector terms of the electromagnetic current.
po_ H p
JEM_ ‘]’y,S + ‘]%z

* |sovector term of the axial current, the one-body contributions of which are
proportional to the axial form factor, often written in the simple dipole form

The value of the axial mass obtained on neutrino-deuteron and neutrino-proton
scattering data is Ay ~ 1.03 GeV .



Neutrino-nucleus scattering

Because neutrino beams are always produced as secondary decay products, their
energy is not sharply defined, but broadly distributed.
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Neutral current response

Relativistic Fermi gas calculations require an artificially large nucleon axial mass to
reproduce the data.
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Nuclear hamiltonian
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 Within the nonrelativistic many-body approach, nucleons are point like particles.
The two-body potential

Argonne vig: v1g(T12) va r12)O%,

is controlled by ~4300 np and pp scattering data below 350 MeV of the Nijmegen
database.

e Static part Op 16 = (1,044, 5i;) ® (1, 7;) Deuteron, S and D wave phase shifts
« Spin-orbit OAZ-:’?_S =L;; - Si; ® (1, 755) P wave phase shifts
1
L;; = Q—i(ri —r;) x(V;—V,;) <€»  Angular momentum
1
Sij = 5(07; +0;) <> Total spin of the pair

The remaining operators, associated to quadratic spin-orbit interaction and charge
symmetry breaking effectsare needed to achieve the description of the Nijmegen
scattering data with x° ~ 1.



Nuclear hamiltonian

* In order to accurately reproduce the energy spectrum of light nuclei three body

potential has to be introduced.

lllinois 7

contains the attractive Fujita
and Miyazawa two-pion
exchange interaction, a
phenomenological repulsive
contribution, the two-pion S-
wave contribution and terms
originating from three-pion
exchange diagrams




Energy (MeV)

Nuclear hamiltonian
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Two-body currents

At moderate momentum transfer, the inclusive cross section of the process
¢ +12C — ¢ + X can be written in terms of the response functions

Rag(q,w) = ) (WolJ"*(q,w)|¥s)(¥s]J7(q,w)|¥o)d(w + Ep — Ey),
f

Nuclear current includes one-and two-nucleon contributions

I = ity I

1<J
.a " " ] ] [] ]
 Ji describes interactions involving a single nucleon,

* (X . .
 Ji; accounts for processes in which the vector boson couples to the currents
arisina from meson exchanae between two interactina nucleons.

] z =



Moderate momentum-transter regime

* At moderate momentum transfer, both initial and final states are eigenstates of
the nonrelativistic nuclear hamiltonian

H|Uo) = Ex|Uy) H|Ux) = Ex|Uy)

* In the electron scattering on 2C among the possible states there are

Ux)=["B,p), ["'C,n), ["°B,pn), [ Be,pp) ...

* Relativistic corrections are included in the current operators and in the nucleon
form factors.

« GFMC allows for “exactly” solving the nonrelativistic many-body Schrédinger
equation for nuclei as large as 2C.

* GFMC also allows for extracting dynamical observables from ground-state
properties.




Sum rules of the response functions

* The direct calculation of the response requires the knowledge of all the
transition amplitudes: (¥ ¢|J*(q,w)|Py) .

* The sum rules provide an useful tool for studying integral properties of the
neutrino-nucleus scattering.

@)

Sus () = Caslg) / doRop(q,w)

el

* Using the completeness relation, they can be expressed as ground-state expectation
values of the charge and current operators.

Z/dw % N (WolJL (q,w)Js(q,w)| Vo)
\IJQ| |\IJO




Flectromagnetic longitudinal sum rule of 2C

SOO — OOO <\IJO‘:0Jr (q, wqe)p(qa wqe)‘\IjO>

* Soo vanishes quadratically at
small momentum transfer.

» Satisfactory agreement with the
experimental values.
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Electromagnetic transverse sum rule of °C
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Neutral-current sum rules of 2C

» Except for, the Soo(gq) case, the
sum rules of the response functions
of 12C exhibit a sizable enhancement

due to two-body currents.

A direct calculation of the response
functions is needed to determine
how this excess strength is
distributed in energy transfer.
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Euclidean response function

* Euclidean neutral-current response calculation

oo

FEo5(1,q) = C’ag(q)/ dwe " Ro5(q, w)

Wel

allows us to make a more direct comparison with data. Its implementation in
quantum Monte Carlo algorithms consists in the evaluation of

(ol L (a)e™ = F0)7 J5(q) | Wo)

Eaﬁ(Ta CI) — <\IJO|6_(H_EO)T‘\I]O>

The algorithm:

* The “history” of a standard imaginary time propagation has to be saved.

* The same path has to be followed by e_(H‘EO)TJB(q)]\IJ())

e The matrix element (Ug|JI (q)e™H=F0)T J5(q)|¥o) has to be evaluated.



Euclidean response function

The Euclidean response at finite imaginary time very quickly suppresses the
contribution from large energy transfer.
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12C electromagnetic Euclidean response

In the electromagnetic longitudinal case, destructive interference between the
matrix elements of the one- and two-body charge operators reduces, albeit
slightly, the one-body response.
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12C electromagnetic Euclidean response

In the electromagnetic transverse case, two-body current contributions substantially
iIncrease the one-body response. This enhancement is effective over the whole
iImaginary-time region we have considered.
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“*He neutral-current Euclidean response

At lower momentum transfer, our calculations indicate that the enhancement is
limited to the high-energy transfer region
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“*He neutral-current Euclidean response

Two-body currents enhance the transverse response function over the entire
energy transfer region, and not only in the “dip region”.
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12C neutral-current Euclidean response

Both the vector neutral current and the axial neutral current transverse responses
are substantially enhanced over the entire imaginary-time region we considered.
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Inversion of the Euclidean response

The Euclidean response formalism allows one to extract dynamical properties of
the system from its ground-state.

e Best suited for Quantum Monte Carlo approaches

* Wide range of applicability: atomic physics, cold atoms, neutrino scattering,
neutron star cooling...

Inverting the Euclidean response is an ill posed problem: any set of observations is

limited and noisy and the situation is even worse since the kernel is a smoothing
operator.

3

A

We found historic maximum entropy to be simple to implement and adequate
for our purposes.

Eozﬁ (7-: q) —) RozB (w7 q)



*He electromagnetic response

Preliminary results indicate that the two-body currents do not provide significant
changes in the longitudinal response.

0020 | | | | | | |
—o— World data
———— GFMC Oy,
0.015 —— GFMC O1p42p -
q=300 MeV
Lﬂ-\
N Q
= 0.010 =
3
Q i
0.005 5
25
§ (@]
OOOO 1 1 1 | t  —
0 50 100 150 200 250 300 350 400



*He electromagnetic response

Preliminary results indicate that the two-body currents do not provide significant
changes in the longitudinal response.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.

0020 | | | | | | |
—o— World data
———— GFMC Oy,
0.015 —— GFMC O1p42p -
q=700 MeV
Lﬂ.\
N Q
= 0.010
3
0.005
OOOO ] ] ] ] 1 1 -
0 50 100 150 200 250 300 350 400

w[MeV]



*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.

0.040  +—°— World data

———— GQFMC Oy,
— GFMC O1pt2
0.030 k q=700 MeV S
Lﬂ.\
Q&
~—
0.020
s
0.010 F
0.000 ' "
0 50 100 150 200 250 300 350 400

w[MeV]



Conclusions

 For relatively large momentum transfer, the two-body currents enhancement is
effective in the entire energy transfer domain.

* For small momentum transfer, two-body currents enhancement is limited to the
high energy transfer region.

* “He results for the electromagnetic response obtained using Maximum Entropy
technique are in very good agreement with experimental data.

* We have computed the electromagnetic and neutral-current Euclidean response
of 12C. Its inversion requires massive computing time ~25 million core-hours per
g-value.

* The extension of the factorization scheme underlying the |A is a viable option for
the development of a unified treatment of processes involving one- and two-
nucleon currents in the region of large momentum transfer.
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Future goals

* The chief drawback of the present GFMC method is the exponential growth in
computational requirements with the number of nucleons. This limits the applicability

of the method to A < 12 nuclei at present.

* To deal with larger systems we have developed auxiliary-field diffusion Monte
Carlo method (AFDMC). AFDMC calculations of ground-state energies of nuclei
as large as “°Ca have already been carried out.

 Both GFMC and AFDMC approaches provides momentum distributions that are
useful for the spectral function approach, which allows to fully account for

relativistic effects.

* An interplay between Quantum Monte Carlo and spectral function approaches,
which rely on the same dynamical model, will be extremely beneficial.
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