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Introduction 

• The electroweak response is a fundamental 
ingredient to describe neutrino - 12C 
scattering.

S. Zeller, ECT* Workshop, May 2012 

MiniBooNE Detector 
10 

Aguilar-Arevalo et al., NIM A599, 28 (2009) 
(inside view of MiniBooNE tank) 

•  800 tons of mineral oil  
•  ν interactions on CH2 

•  Cerenkov detector → ring imaging for event reconstruction and PID v 

A model unable to describe electron-nucleus 
scattering is unlikely to describe neutrino-

nucleus scattering.

• Excess, at relatively low energy, of measured 
cross section relative to oversimplified 
theoretical calculations.

Neutrino experimental communities need

accurate theoretical calculations

• We have first studied the electromagnetic 
response of 12C for which precise 
experimental data are available.



First step: electron-nucleus scattering 
The electromagnetic inclusive cross section of the process
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I. DESCRIPTION OF SCIENCE

The electroweak response is a fundamental ingredient to describe the neutrino - 12Carbon

scattering, recently measured by the MiniBooNE collaboration to calibrate the detector aimed

at studying neutrino oscillations. As a first step towards its calculation, we have computed

the sum rules for the electromagnetic response of 12C. The cross section of the process

e+12 C → e′ +X . (1)

can be written in Born approximation as [1]

d2σ

dΩe′dEe′
= −

α2

q4
Ee′

Ee

LµνW
µν , (2)

where α ≃ 1/137 is the fine structure constant, dΩe′ is the differential solid angle specified by

ke′ and q = ke − ke′ is the four momentum transfer of the process. The leptonic tensor Lµν is

fully determined by the measured kinematical variables of the electron, while all information on

target structure, which is largely dictated by nuclear interactions, is enclosed in the hadronic

tensor

W µν =
∑

X

⟨Ψ0|J
µ|ΨX⟩⟨ΨX |J

ν |Ψ0⟩δ
(4)(p0 + q − pX) . (3)

The sum over the final states includes an integral over pX , the spatial momentum of the final

hadronic state, while p0 is the initial four-momentum of the nucleus.

In the nonrelativistic approach, the hadronic tensor can be written in terms of the longitu-

dinal and transverse response functions, with respect to the direction of the three-momentum

transfer q. For instance, taking q along the z-axis, the transverse response is defined by [2]

Rxx+yy(q,ω) =
∑

X

δ(ω + E0 − EX)
[

⟨Ψ0|j
x(q,ω)|ΨX⟩⟨ΨX |j

x(q,ω)|Ψ0⟩+

⟨Ψ0|j
y(q,ω)|ΨX⟩⟨ΨX|j

y(q,ω)|Ψ0⟩
]

(4)

while the longitudinal is given by

R00(q,ω) =
∑

X

δ(ω + E0 − EX)⟨Ψ0|ρ(q,ω)|ΨX⟩⟨ΨX |ρ(q,ω)|Ψ0⟩ (5)

The sum rules are obtained integrating the response functions over the energy transfer and

using the completeness relation of the states |X⟩. For Rxx+yy and R00 one has

Sxx+yy(q) ≡

∫

dωRxx+yy(q,ω) = ⟨Ψ0|j
x(q,ωel)j

x(q,ωel) + jy(q,ωel)j
y(q,ωel)|Ψ0⟩

S00(q) ≡

∫

dωR00(q,ω) = ⟨Ψ0|ρ(q,ωel)ρ(q,ωel)|Ψ0⟩ , (6)

where the target final state is undetected, can be written as

d2�

d⌦e0dEe0
= �↵2

q4
Ee0

Ee
Lµ⌫W

µ⌫ ,

The Hadronic tensor contains all the information on 
target structure.

e0

e 12C

X
The leptonic tensor is fully specified by the measured 
electron kinematic variables

Lµ⌫ = 2[kµk
0
⌫ + k⌫k

0
µ � gµ⌫(kk

0)]

q

EM

EM EM

EM
EM

𝛄

EM
Wµ⌫ =

X

X

h 0|Jµ †| Xih X |J⌫ | 0i�(4)(p0 + q � pX)
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Schematic representation of the inclusive cross section as a function of the 

energy loss.

• Elastic scattering and 
inelastic excitation of 
discrete nuclear states

Electron-nucleus scattering 
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FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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energy loss.

• Elastic scattering and 
inelastic excitation of 
discrete nuclear states.

• Broad peak due to 
quasi-elastic electron-
nucleon scattering.

Electron-nucleus scattering 
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discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
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FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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energy loss.

• Elastic scattering and 
inelastic excitation of 
discrete nuclear states.

• Broad peak due to 
quasi-elastic electron-
nucleon scattering.

• Excitation of the nucleon 
to distinct resonances 
(like the Δ) and pion 
production.

Electron-nucleus scattering 



The neutral current inclusive cross section of the process

where the target final state is undetected, can be written as

The Hadronic tensor contains all the information on 
target structure.

The leptonic tensor is fully specified by the measured 
neutrino kinematic variables
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II. THE NEUTRINO-NUCLEUS CROSS SECTION

Let us consider, for definiteness, charged-current neutrino-nucleus interactions. The formalism discussed in this
section can be readily generalized to the case of neutral current interactions [6]. The double differential cross section
of the process (compare to Eq. (1))

νℓ +A → ℓ− +X , (2)

can be written in the form [7]

d2σ

dΩk′dk′0
=

G2
F V 2

ud

16 π2

|k′|

|k|
Lµν W

µν
A . (3)

In the above equation, k ≡ (k0,k) and k′ ≡ (k′0,k
′) are the four momenta carried by the incoming neutrino and the

outgoing charged lepton, respectively, GF is the Fermi constant and Vud is the CKM matrix element coupling u and
d quarks. The tensor Lµν , defined as (we neglect the term proportional to m2

ℓ , where mℓ is the mass of the charged
lepton)

Lµν = 8
[
k′µ kν + k′ν kµ − gµν(k · k′)− i εµναβ k

′β kα
]
, (4)

is completely determined by the lepton kinematics, whereas the nuclear tensor Wµν
A , containing all the information

on strong interaction dynamics, describes the response of the target nucleus. Its definition

Wµν
A =

∑

X

⟨0|Jµ
A
†|X⟩ ⟨X |Jν

A|0⟩ δ
(4)(p0 + q − pX) , (5)

with q = k−k′, involves the target initial and final states |0⟩ and |X⟩, carrying four momenta p0 and pX , respectively,
as well as the nuclear current operator

Jµ
A =

∑

i

jµi +
∑

j>i

jµij , (6)

where jµij denotes the two-nucleon contribution arising from meson-exchange processes.
In the kinematical region corresponding to low momentum transfer, typically |q| < 400 MeV, in which non rela-

tivistic approximations are expected to work, the tensor of Eq. (5) can be evaluated within highly realistic nuclear
models [8, 9]. However, the event analysis of accelerator-based neutrino experiments requires theoretical approaches
that can be applied in the relativistic regime. The importance of relativistic effects can be easily grasped considering
that the mean momentum transfer of quasi elastic (QE) processes obtained by averaging over the MiniBooNE [5] and
Minerνa [10] neutrino fluxes turn out to be ∼ 640 and ∼ 880 MeV, respectively.
Non relativistic nuclear many-body theory, based on dynamical models strongly constrained by phenomenology,

provides a fully consistent theoretical approach allowing for an accurate description of the target initial state, inde-
pendent of momentum transfer. On the other hand, at large |q| the treatment of both the nuclear current and the
hadronic final state unavoidably requires approximations.

A. The impulse approximation

The Impulse Approximation (IA) scheme, extensively employed to analyze electron-nucleus scattering data [2], is
based on the tenet that, at momentum transfer q such that q−1 << d, d being the average nucleon-nucleon distance
in the target, neutrino-nucleus scattering reduces to the incoherent sum of scattering processes involving individual
nucleons. Moreover, final state interactions between the outgoing hadrons and the spectator nucleons are assumed to
be negligible.
Within the IA picture, the nuclear current of Eq.(6) reduces to the sum of one-body terms, while the final state

simplifies to the direct product of the hadronic state produced at the interaction vertex, with momentum px, and the
state describing the (A− 1)-nucleon residual system, carrying momentum pR, i.e.

|X⟩ −→ |x,px⟩ ⊗ |R,pR⟩ , (7)

implying

∑

X

|X⟩⟨X | →
∑

x

∫
d3px|x,px⟩⟨px, x|

∑

R

∫
d3pR|R,pR⟩⟨pR, R| . (8)

NC

NC NC NC

⌫` +A ! ⌫`0 +X

12C

X

q

Z0

⌫`

⌫`0

Wµ⌫ =
X

X

h 0|Jµ †| Xih X |J⌫ | 0i�(4)(p0 + q � pX)

NC
NC

d2�

d⌦⌫0dE⌫0
=

G2
F

4⇡2

|k0|
|k| Lµ⌫W

µ⌫

Neutrino-nucleus scattering 



The neutral current operator can be written as 

NC

• Isoscalar and isovector terms of the electromagnetic current.
Jµ = Jµ

�,S + Jµ
�,zEM

• Isovector term of the axial current, the one-body contributions of which are 
proportional to the axial form factor, often written in the simple dipole form

• Weinberg angle sin2 ✓W = 0.2312

Jµ = �2 sin2 ✓W Jµ
�,S + (1� 2 sin2 ✓W )Jµ

�,z + Jµ 5
z

Jµ 5
z / GA(Q

2) =
gA

(1 +Q2/⇤2
A)

2

The value of the axial mass obtained on neutrino-deuteron and neutrino-proton 
scattering data is                           .⇤A ⇠ 1.03GeV

Neutrino-nucleus scattering 
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The bump centered at ω ∼ Q2/2M , or x ∼ 1, the position and width of which are determined by the momentum
and removal energy distribution of the struck particle, corresponds to single nucleon knockout, while the structure
visible at larger ω reflects the onset of coupling to two-nucleon currents, arising from meson exchange processes,
excitation of nucleon resonances and deep inelastic scattering.
The available theoretical models of electron-nucleus scattering provide an overall satisfactory description of the data

over a broad kinematical range. In particular, in the region in which quasi elastic scattering dominates, the data is
generally reproduced with an accuracy of few percent (for a recent review on electron-nucleus scattering in the quasi
elastic sector, see Ref. [2]).

FIG. 2: Left panel: inclusive electron-carbon cross sections at θe = 37 deg and beam energies ranging between 0.730 and 1.501
GeV [3, 4], plotted as a function of the energy of the outgoing electron. Right panel: energy dependence of the MiniBooNE
neutrino flux [5].

Because neutrino beams are always produced as secondary decay products, their energy is not sharply defined, but
broadly distributed. As a consequence, in charged-current neutrino scattering processes detecting the energy of the
outgoing lepton, Tℓ, does not provide a measurement of the energy transfer, ω, and different reaction mechanisms can
contribute to the double differential cross section at fixed Tℓ and lepton scattering angle, θℓ. This feature is illustrated
in the left panel of Fig. 1, showing the inclusive electron-carbon cross sections at θe = 37 deg and beam energies
ranging between 0.730 and 1.501 GeV, as a function of energy of the outgoing electron [3, 4]. It clearly appears
that the highlighted 550 < Te′ < 650 MeV bin, corresponding to quasifree kinematics at Ee = 730 MeV, picks up
contributions from scattering processes taking place at different beam energies, in which reaction mechanisms other
than single nucleon knockout are known to be dominant. To gauge the extent to which different contributions are
mixed up in a typical neutrino experiment, consider the energy distribution of the MiniBooNE neutrino flux, displayed
in the right panel of Fig. 2, showing that the fluxes corresponding to energies Eν = 730 and and 961 MeV are within
less than 20% of one another. It follows that, if we were to average the electron-carbon data of the left panel with
the flux of the right panel, the cross sections corresponding to beam energies 730 and 961 MeV would contribute to
the measured cross section in the highlighted bin with about the same weight.
The above discussion implies that the understanding of the flux averaged neutrino cross section requires the develop-

ment of theoretical models providing a consistent treatment of all reaction mechanisms active in the broad kinematical
range corresponding to the relevant neutrino energies.
In Section II we discuss the structure of the neutrino-nucleus cross section, and point out that a consistent treatment

of relativistic effects and nucleon-nucleon correlations requires the factorization of the nuclear vertex. The main
elements of the resulting expression of the cross section, i.e. the nucleon spectral function and the elementary
neutrino-nucleon cross section, are also analyzed. In Section III we briefly review the available empirical information
on the nucleon weak structure functions in the kinematical regimes corresponding to quasi elastic scattering, resonance
production and deep inelastic scattering, while Section IV is devoted to a discussion of the ambiguities implied in the
interpretation of the events labeled as quasi elastic. As an example of the impact of nuclear effects on the determination
of neutrino oscillations, in Section V we analyze the problem of neutrino energy reconstruction. Finally, in Section VI
we summarize the main issues and state our conclusions.

Because neutrino beams are always produced as secondary decay products, their 
energy is not sharply defined, but broadly distributed.

Neutrino-nucleus scattering 



Neutral current response 

can be added to form the total error matrix. For the neutrino
flux and background cross section uncertainties, a re-
weighting method is employed which removes the diffi-
culty of requiring hundreds of simulations with adequate
statistics. In this method, each neutrino interaction event is
given a new weight calculated with a particular parameter
excursion. This is performed considering correlations be-
tween parameters and allows each generated event to be
reused many times saving significant CPU time. The nature
of the detector uncertainties does not allow for this method
of error evaluation as parameter uncertainties can only be
applied as each particle or optical photon propagates
through the detector. Approximately 100 different simu-
lated data sets are generated with the detector parameters
varied according to the estimated 1! errors including
correlations. Equation (4) is then used to calculate the
detector error matrix. The error on the unfolding procedure
is calculated from the difference in final results when using
different input model assumptions (Sec. IVD). The statis-
tical error on data is not added explicitly but is included via
the statistical fluctuations of the simulated data sets (which
have the same number of events as the data).

The final uncertainties are reported in the following
sections. The breakdown among the various contributions
are summarized and discussed in Sec. VD. For simplicity,
the full error matrices are not reported for all distributions.
Instead, the errors are separated into a total normalization
error, which is an error on the overall scale of the cross
section, and a ‘‘shape error’’ which contains the uncer-
tainty that does not factor out into a scale error. This allows
for a distribution of data to be used (e.g. in a model fit) with
an overall scale error for uncertainties that are completely
correlated between bins, together with the remaining bin-
dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential
cross section

The flux-integrated, double differential cross section per
neutron, d2!

dT"d cos#"
, for the $" CCQE process is extracted as

described in Sec. IVD and is shown in Fig. 13 for the
kinematic range, !1< cos#" <þ1, 0:2< T"ðGeVÞ<
2:0. The errors, for T" outside of this range, are too large
to allow a measurement. Also, bins with low event popu-
lation near or outside of the kinematic edge of the distri-
bution (corresponding to large E$) do not allow for a
measurement and are shown as zero in the plot. The
numerical values for this double differential cross section
are provided in Table VI in the appendix.

The flux-integrated CCQE total cross section, obtained
by integrating the double differential cross section (over
!1< cos#" <þ1, 0< T"ðGeVÞ<1), is measured to be
9:429% 10!39 cm2. The total normalization error on this
measurement is 10.7%.

The kinematic quantities, T" and cos#", have been
corrected for detector resolution effects only (Sec. IVD).
Thus, this result is the most model-independent measure-
ment of this process possible with the MiniBooNE detec-
tor. No requirements on the nucleonic final state are used to
define this process. The neutrino flux is an absolute pre-
diction [19] and has not been adjusted based on measured
processes in the MiniBooNE detector.
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FIG. 13 (color online). Flux-integrated double differential
cross section per target neutron for the $" CCQE process. The

dark bars indicate the measured values and the surrounding
lighter bands show the shape error. The overall normalization
(scale) error is 10.7%. Numerical values are provided in Table VI
in the Appendix.
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FIG. 14 (color online). Flux-integrated single differential cross
section per target neutron for the $" CCQE process. The

measured values are shown as points with the shape error as
shaded bars. Calculations from the NUANCE RFG model with
different assumptions for the model parameters are shown as
histograms. Numerical values are provided in Table IX in the
appendix.

FIRST MEASUREMENT OF THE MUON NEUTRINO . . . PHYSICAL REVIEW D 81, 092005 (2010)

092005-15

Relativistic Fermi gas calculations require an artificially large nucleon axial mass to 
reproduce the data.

• Two-body currents?

• Nuclear correlations?

Two-body MEC currents 
and correlations are fully 
accounted for in our 
GFMC calculations of 
response functions and 
sum rules



Nuclear hamiltonian 
• Within the nonrelativistic many-body approach, nucleons are point like particles. 
The two-body potential

v18(r12) =
18X

p=1

vp(r12)Ô
p
12Argonne v18 :

• Static part Ôp=1�6
ij = (1,�ij , Sij)⌦ (1, ⌧ij)

• Spin-orbit Ôp=7�8
ij = Lij · Sij ⌦ (1, ⌧ij)

Lij =
1

2i
(ri � rj)⇥ (ri �rj)

Sij =
1

2
(�i + �j)

The remaining operators, associated to quadratic spin-orbit interaction and charge 
symmetry breaking effectsare needed to achieve the description of the Nijmegen 
scattering data with            .�2 ' 1

Deuteron, S and D wave phase shifts

P wave phase shifts

Angular momentum

Total spin of the pair

is controlled by ~4300 np and pp scattering data below 350 MeV of the Nijmegen 
database.



• In order to accurately reproduce the energy spectrum of light nuclei three body 
potential has to be introduced. 

Illinois 7 
contains the attractive Fujita 
and Miyazawa two-pion 
exchange interaction, a 
phenomenological repulsive 
contribution, the two-pion S-
wave contribution and terms 
originating from three-pion 
exchange diagrams
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Two-body currents 

`+12 C ! `0 +X

R↵�(q,!) =
X

f

h 0|J†↵(q,!)| f ih f |J�(q,!)| 0i�(! + E0 � Ef ),

 Nuclear current includes one-and two-nucleon contributions

J↵ =
X

i

j↵i +
X

i<j

j↵ij

• 	   describes interactions involving a single nucleon, j
↵
i

•	     accounts for processes in which the vector boson couples to the currents   
arising from meson exchange between two interacting nucleons.
j↵ij
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At moderate momentum transfer, the inclusive cross section of the process 

                                 can be written in terms of the response functions




Moderate momentum-transfer regime 
• At moderate momentum transfer, both initial and final states are eigenstates of 
the nonrelativistic nuclear hamiltonian

Ĥ| 0i = EX | 0i Ĥ| Xi = EX | Xi

• In the electron scattering on 12C among the possible states there are

• Relativistic corrections are included in the current operators and in the nucleon 
form factors.

• GFMC allows for “exactly” solving the nonrelativistic many-body Schrödinger 
equation for nuclei as large as 12C.

| Xi = |11B, pi , |11C, ni , |10B, pni , |10Be, ppi . . .

• GFMC also allows for extracting dynamical observables from ground-state 
properties.



• The sum rules provide an useful tool for studying integral properties of the 
neutrino-nucleus scattering. 

• Using the completeness relation, they can be expressed as ground-state expectation 
values of the charge and current operators. 

Z
d!=

• The direct calculation of the response requires the knowledge of all the 
transition amplitudes:                             .

S↵�(q) = C↵�(q)

Z 1

!el

d!R↵�(q,!)

h f |J↵(q,!)| 0i

S↵�(q)
X

f | f ih f |
=

h 0| | 0i

h 0|J†
↵(q,!)J�(q,!)| 0i

Sum rules of the response functions



Electromagnetic longitudinal sum rule of 12C

• S00 vanishes quadratically at 
small momentum transfer.

• Satisfactory agreement with the 
experimental values.
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Electromagnetic transverse sum rule of 12C 

• Large two-body contribution 
needed for a better agreement 
with experimental data.

• Comparison with experimental 
data made difficult by the     
peak. 
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Neutral-current sum rules of 12C
3

would require relativistic kinematics, but this is not ex-
pected to significantly impact the sum rules obtained as
ground-state expectation values [38–40]. Note that the
sum rules as defined above include the elastic and in-
elastic contributions; the former are proportional to the
square of electroweak form factors of the nucleus. In the
large q limit, these nuclear form factors decrease rapidly
with q, and the sum rules reduce to the incoherent sum of
single-nucleon contributions. The normalization factors
C

↵�

are chosen such that S
↵�

(q ! 1) ' 1, for example

C

�1
xy

= � q

m

G

A

(Q2
qe)

h
Z

e
G

p

M

(Q2
qe)�N

e
G

n

M

(Q2
qe)

i
, (6)

where Z (N) is the proton (neutron) number, G

A

is the weak axial form factor of the nucleon nor-
malized as G

A

(0) = g

A

(g
A

=1.2694 [20]), and
e
G

p

M

=
�
1� 4 sin2✓

W

�
G

p

M

/2 � G

n

M

/2 and e
G

n

M

=�
1� 4 sin2✓

W

�
G

n

M

/2 � G

p

M

/2 are its weak vector form
factors (here, G

p

M

and G

n

M

are the ordinary proton
and neutron magnetic form factors, determined from fits
to elastic electron scattering data o↵ the proton and
deuteron and normalized to the proton and neutron mag-
netic moments: Gp

M

(0) = µ

p

and G

n

M

(0) = µ

n

).
The ground-state wave function of 12C is obtained from

a Green’s function Monte Carlo (GFMC) solution of the
Schrödinger equation including the Argonne v18 (AV18)
two-nucleon [34] and Illinois-7 (IL7) three-nucleon [41]
potentials. The wave function is evolved in imaginary
time via a GFMC propagation starting from a variational
wave function that contains both explicit ↵-clustering
and the five possible J⇡=0+ p-shell states. The predicted
ground-state energy, rms charge radius, and charge form
factor have been found to be in excellent agreement with
experimental data [17].

The sum rules S

↵�

(q) in 12C are shown in Fig. 1: re-
sults S1b (S2b) corresponding to one-body (one- and two-
body) terms in the NC are indicated by the dashed (solid)
lines. The two-body axial currents are those of Set I;
we find that Set II leads to very similar results. Note
that both S

1b
↵�

and S

2b
↵�

are normalized by the (same)

factor C
↵�

, which makes S1b
↵�

(q) ! 1 in the large q limit.

In the small q limit, S1b
00 (q) and S

1b
0z (q) are much larger

than S

1b
↵�

for ↵� 6= 00, 0z. In a simple ↵-cluster pic-

ture of 12C, one would expect S

1b
↵�

(12C)/C
↵�

(12C) '
3S1b

↵�

(4He)/C
↵�

(4He), as is indeed verified in the ac-
tual numerical calculations to within a few %, except for
S

1b
00 /C00 and S

1b
0z /C0z at low q

<⇠ 1 fm �1, where these
quantities are dominated by the elastic contribution scal-
ing as A

2. In the ↵ particle, the operators j

0 †
j

0 and
(j0 †

j

z + j

z †
j

0) can connect its dominant S-state com-
ponents in the left and right wave functions, while the
remaining operator combinations cannot and only con-
tribute through S-to-D, D-to-S, and D-to-D transitions—
D is the D-state component, which has a probability of
' 15%.
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FIG. 1. (Color online) The sum rules S
↵�

in 12C, correspond-
ing to the AV18/IL7 Hamiltonian and obtained with one-body
only (dashed lines) and one- and two-body (solid lines) terms
in the NC.

Except for S2b
00 (q), the S

2b
↵�

(q) sum rules are consider-

ably larger than the S1b
↵�

(q), by as much as 30-40%. This
enhancement was not seen in calculations of neutrino-
deuteron scattering [18]; the deuteron R

↵�

(q,!) response
functions at q = 300 MeV/c are displayed in Fig. 2 (note
thatR00 is multiplied by a factor of 5). Two-body current
contributions in the deuteron amount to only a few per-
cent at the top of the quasielastic peak of the (largest in
magnitude) R

xx

and R

xy

, but become increasingly more
important in the tail of these response functions, con-
sistent with the notion that this region is dominated by
two-nucleon physics [17]. The very weak binding of the
deuteron dramatically reduces the impact of two-nucleon
currents, which are important only when two nucleons
are within 1–2 inverse pion masses.
Correlations in np pairs in nuclei with mass number

A�3 are stronger than in the deuteron. The two-nucleon
density distributions in deuteron-like (T=0 and S=1)
pairs are proportional to those in the deuteron for sepa-
rations up to ' 2 fm, and this proportionality constant,

• A direct calculation of the response 
functions is needed to determine 
how this excess strength is 
distributed in energy transfer.

• Except for, the           case, the 
sum rules of the response functions 
of 12C exhibit a sizable enhancement 
due to two-body currents.

S00(q)

12C

jIA
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jIA+MEC

jIA
jIA+MEC

jIA
jIA+MEC



• Euclidean neutral-current response calculation

E↵�(⌧,q) = C↵�(q)

Z 1

!el

d!e�!⌧R↵�(q,!)

E↵�(⌧,q) =
h 0|J†

↵(q)e
�(H�E0)⌧J�(q)| 0i

h 0|e�(H�E0)⌧ | 0i

allows us to make a more direct comparison with data. Its implementation in 
quantum Monte Carlo algorithms consists in the evaluation of

The algorithm:

• The “history” of a standard imaginary time propagation has to be saved.

• The same path has to be followed by e�(H�E0)⌧J�(q)| 0i

• The matrix element                                                   has to be evaluated.h 0|J†
↵(q)e

�(H�E0)⌧J�(q)| 0i

Euclidean response function 
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Ê

R
xx

Ê,

· ≠
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· ≠

The Euclidean response at finite imaginary time very quickly suppresses the 
contribution from large energy transfer.

Euclidean response function 



12C electromagnetic Euclidean response 
In the electromagnetic longitudinal case, destructive interference between the 
matrix elements of the one- and two-body charge operators reduces, albeit 
slightly, the one-body response.
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !
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) region of the
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erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
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plication that excess transverse strength is generated by
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excellent agreement with data.
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with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
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calculation. Those presented here were performed with
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or from the ANC. For Exx(q, ⌧) these individual contri-
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tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
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Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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increase the one-body response. This enhancement is effective over the whole 
imaginary-time region we have considered.
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that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
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the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
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plication that excess transverse strength is generated by
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, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
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At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean
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panel) and interference (lower panel) E↵�(q, ⌧), having
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creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
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gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
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or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
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in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
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hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
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At lower momentum transfer, our calculations indicate that the enhancement is 
limited to the high-energy transfer region
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Two-body currents enhance the transverse response function over the entire 
energy transfer region, and not only in the ‘‘dip region’’.
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FIG. 2. (Color online) Euclidean neutral-weak transverse
(top panel) and interference (lower panel) response functions
(↵� = xx and xy in the notation of Ref. [1]) of 12C at q = 570
MeV. See text for further explanations.

q charge-changing weak transitions to specific low-lying
states, such as the �-decays and electron and muon cap-
tures studied in Refs. [25, 26], where it amounts to a
few percent. In principle, the enhancement in the quasi-
elastic region could be measured in parity-violating in-
clusive (~e, e0) scattering at backward angles. However,
the smallness of the factor (1� 4 sin2 ✓W ), to which the
relevant (VEM-ANC) interference response function is
proportional, makes experiments of this type extremely
di�cult.

In order to obtain more detailed information on the
energy dependence of the R↵�(q,!) response, we em-
ploy the maximum entropy (MaxEnt) method to invert
E↵�(q, ⌧). We describe the method here very briefly, sev-
eral standard references are available [15, 16]. The nu-
merical inversion of a Laplace transform E↵�(q, ⌧) with
its associated statistical errors is a notoriously ill-posed
problem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
MaxEnt method is based on Bayesian statistical infer-
ence: the “most probable” response function is the one
that maximizes the posterior probability Pr[R|E ], i.e.,
the conditional probability of R given E. Bayes theo-
rem states that the posterior probability is proportional

to the product Pr[E|R ] ⇥ Pr[R ], where Pr[E|R ] is the
likelihood function and Pr[R ] is the prior probability. Ar-
guments based on the central limit theorem show that
the asymptotic limit of the likelihood function is given
by Pr[E|R ] / exp(��2/2) with �2 defined as follows.
Let N⌧ and N! be the numbers of grid points in the
variables ⌧ and !, respectively. Then the Laplace trans-
form in Eq. (2) reads (the q-dependence and subscripts
↵� of E↵�(q, ⌧) and R↵�(q, ⌧) are suppressed for simplic-
ity hereafter)

Ei =
N!X

j=1

Kij Rj , (4)

where Kij = exp(�⌧i !j) and Rj = �!j R(!j), and the
�2 follows from

�2 =
N⌧X

i,j=1

�
Ei � Ei

� �
C�1

�
ij

�
Ej � Ej

�
, (5)

where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the �2. The
GFMC errors on Ei are strongly correlated in ⌧ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.
Limiting ourselves only to the �2 minimization would

implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =
N!X

i=1

h
R(!i)�M(!i)�R(!i) ln[R(!i)/M(!i)]

i
�!i ,

(6)
where the positive definite function M(!) is the default

model. It is worthwhile mentioning that the above ex-
pression is applicable even whenR(!) andM(!) have dif-
ferent normalizations. The entropy measures how much
the response function di↵ers from the model. It vanishes
when R(!) = M(!), and is negative when R(!) 6= M(!).
The maximum entropy method adds to the simple �2

minimization the use of the prior information that the
response function can be interpreted as a probability dis-
tribution function. We employ historic maximum en-

tropy by minimizing ↵S � �2/2 with the parameter ↵
adjusted to make the �2 equal to one. While more re-
fined methods relying on Bayes statistical inference have
been developed, we found historic maximum entropy to
be simple to implement and adequate for our purposes.
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(↵� = xx and xy in the notation of Ref. [1]) of 12C at q = 570
MeV. See text for further explanations.
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proportional, makes experiments of this type extremely
di�cult.

In order to obtain more detailed information on the
energy dependence of the R↵�(q,!) response, we em-
ploy the maximum entropy (MaxEnt) method to invert
E↵�(q, ⌧). We describe the method here very briefly, sev-
eral standard references are available [15, 16]. The nu-
merical inversion of a Laplace transform E↵�(q, ⌧) with
its associated statistical errors is a notoriously ill-posed
problem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
MaxEnt method is based on Bayesian statistical infer-
ence: the “most probable” response function is the one
that maximizes the posterior probability Pr[R|E ], i.e.,
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by Pr[E|R ] / exp(��2/2) with �2 defined as follows.
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variables ⌧ and !, respectively. Then the Laplace trans-
form in Eq. (2) reads (the q-dependence and subscripts
↵� of E↵�(q, ⌧) and R↵�(q, ⌧) are suppressed for simplic-
ity hereafter)
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where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the �2. The
GFMC errors on Ei are strongly correlated in ⌧ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.
Limiting ourselves only to the �2 minimization would

implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =
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model. It is worthwhile mentioning that the above ex-
pression is applicable even whenR(!) andM(!) have dif-
ferent normalizations. The entropy measures how much
the response function di↵ers from the model. It vanishes
when R(!) = M(!), and is negative when R(!) 6= M(!).
The maximum entropy method adds to the simple �2

minimization the use of the prior information that the
response function can be interpreted as a probability dis-
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tropy by minimizing ↵S � �2/2 with the parameter ↵
adjusted to make the �2 equal to one. While more re-
fined methods relying on Bayes statistical inference have
been developed, we found historic maximum entropy to
be simple to implement and adequate for our purposes.

Both the vector neutral current and the axial neutral current transverse responses 
are substantially enhanced over the entire imaginary-time region we considered.

12C neutral-current Euclidean response

q=570 MeV



The Euclidean response formalism allows one to extract dynamical properties of 
the system from its ground-state. 

• Best suited for Quantum Monte Carlo approaches

• Wide range of applicability: atomic physics, cold atoms, neutrino scattering, 
neutron star cooling…

Inverting the Euclidean response is an ill posed problem: any set of observations is 
limited and noisy and the situation is even worse since the kernel is a smoothing 
operator.

E↵�(⌧,q) R↵�(!,q)

Inversion of the Euclidean response 

We found historic maximum entropy to be simple to implement and adequate 
for our purposes. 



4He electromagnetic response 
Preliminary results indicate that the two-body currents do not provide significant 
changes in the longitudinal response. 
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Preliminary results indicate that the two-body currents do not provide significant 
changes in the longitudinal response. 
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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4He electromagnetic response 
Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents significantly enhance the transverse response function, not only 
in the dip region, but also in the quasielastic peak and threshold regions.
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Two-body currents significantly enhance the transverse response function, not only 
in the dip region, but also in the quasielastic peak and threshold regions.
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Two-body currents significantly enhance the transverse response function, not only 
in the dip region, but also in the quasielastic peak and threshold regions.
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Two-body currents significantly enhance the transverse response function, not only 
in the dip region, but also in the quasielastic peak and threshold regions.
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4He electromagnetic response 
Two-body currents significantly enhance the transverse response function, not only 
in the dip region, but also in the quasielastic peak and threshold regions.
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Conclusions

• 4He results for the electromagnetic response obtained using Maximum Entropy 
technique are in very good agreement with experimental data. 

• For relatively large momentum transfer, the two-body currents enhancement is 
effective in the entire energy transfer domain.
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• For small momentum transfer, two-body currents enhancement is limited to the 
high energy transfer region.

• We have computed the electromagnetic and neutral-current Euclidean response 
of 12C. Its inversion requires massive computing time ~25 million core-hours per 
q-value.

• The extension of the factorization scheme underlying the IA is a viable option for 
the development of a unified treatment of processes involving one- and two- 
nucleon currents in the region of large momentum transfer.



Future goals

• The chief drawback of the present GFMC method is the exponential growth in 
computational requirements with the number of nucleons. This limits the applicability 
of the method to A ≤ 12 nuclei at present.

• To deal with larger systems we have developed auxiliary-field diffusion Monte 
Carlo method (AFDMC). AFDMC calculations of ground-state energies of nuclei 
as large as 40Ca have already been carried out.
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• Both GFMC and AFDMC approaches provides momentum distributions that are 
useful for the spectral function approach, which allows to fully account for 
relativistic effects.

• An interplay between Quantum Monte Carlo and spectral function approaches, 
which rely on the same dynamical model, will be extremely beneficial. 
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Thank you


