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MOTIVATION & OBJECTIVES

MOTIVATION & OBJECTIVES

» Short range repulsion in many-body interacting systems makes
“standard” perturbative calculations not suitable and the introduction of
a well-behaved effective Hamiltonian essential.

» Effective interactions based on ab initio microscopic approaches allow for
a consistent calculation of the equilibrium and non equilibrium
properties.

> The main problem related to the description of the non-equilibrium
properties consists in the calculation of the probability of collisions
between quasiparticles in the vicinity of the Fermi surface
(Landau-Abrikosov-Khalatnikov formalism).

» Medium modifications of the scattering cross section have been
consistently taken into account through an effective interaction obtained
from the matrix elements of the bare interaction between correlated
states (CBF).
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MOTIVATION & OBJECTIVES
:

MOTIVATION & OBJECTIVES

> Scattering cross section obtained in CBF effective interaction approach
has been tested through comparison with results obtained form
G-matrix perturbation theory in neutron matter.

> The calculation of transport coefficients has been carried out using the
Hartree Fock approximation for the effective mass.

> The purpose of this work is to investigate concepts and assumptions
employed in this procedure through the analysis of a simpler system
well known in literature: the hard-sphere case.
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THE HARD-SPHERE MODEL

The details of the repulsive potential are not really relevant to reproduce the main
properties of of several systems of fermions (classical and quantum liquids, nuclear
matter).

‘rwrv\v\\\v\\\;lw‘

The fermion hard-sphere fluid: a system i e
of point-like spin one-half particles w0 | ——- 35(2) ]
interacting through the potential : 000 gl 1
N o0 T <a zor |
o(ryj) = { 0 ri>a T L 1

|
The restriction to purely repulsive o ]
| W

potential enables to neglect the
possibility of Cooper pairs formation.
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Using CBF effective interaction approach for the hard sphere model, we can derive
several properties:

v energy per particle v effective mass
v self-energy v/ momentum distribution
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THEORY AND TOOLS FOR CALCULATION

G-MATRIX

> The problem has been studied by several authors using different
methods and employing the usual diagrammatic techniques

> The systematic treatment in many-body perturbation theory of short
range repulsion is based on the replacement of the bare interaction
potential with the reaction matrix

®lolp) = (P'19]p) -

> The sum all (infinite) multiple scattering processes (ladder series)
between free particles (t-matrix) or in presence of the Fermi sea
background (G-matrix) makes the resulting reaction matrix a
well-behaved operator, best suited for perturbative calculations

> t-matrix and G-matrix are distinguished by the different forms of the
internal line propagators and the integral equation which defines the
reaction matrix
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THEORY AND TOOLS FOR CALCULATION

LOW-DENSITY FERMI GAS

The hard-sphere model provides an accurate description of several
properties of dilute Fermi systems. Algebraic expressions of the ground state
energy, the single-particle energy and the momentum distribution can be
written as power series in the parameter

¢ = (kea) , ke = (65%p/v)"? and v the degeneracy of the system.
The g.s. energy per particle

E K [3 2 12 ) 5 32 4 4
N o §+;c+357(11721112)c +0.780c +ﬁ(47r73ﬂ3))c Inc+ O(c*)

At the second order in ¢? the effective mass m*

1 lde(k) m*(ke) 24 2
w ok dk - m e 7in2-le

[R.E.Bishop,Ann-Phys:11(1973)]

We will use the results as benchmarks to assess the accuracy of the effective
interaction approach.
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CORRELATED BASIS FUNCTION

The correlated basis ground state is defined by

F|o)

|\I/0> T S——
(@0|FTF|@0)!/2

The Fermi gas wave function is a Slater determinant of planet waves

o = A[g1(x1) ... pa(xa)]

The correlation operator reflects the structure of the potential
F= SHF,‘]' s Fij = ZOZ}W(TU)
j>i P
The variational principle

(®o|FTHF|®y) o

Ey = (Wo|H[Wo) — ‘2ol
(@o|FTF| Do)

Correlation functions are obtained variationally by minimising Ey
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THEORY AND TOOLS FOR CALCULATION

CLUSTER EXPANSION FORMALISM

Clustering property is required for the the many body correlation operator F

F(x1,...,xn) = F(x1, ..., %) F(xp11, ..., Xn)

Factorization of F is the basis of the cluster expansion formalism.

Matrix elements of many body operators involve integration over the
coordinates of a huge number of particles. They can can be expanded

_ (®|FTOF|®) _
(0) = T Oo + %:(AO)n

Each term (AO), corresponds to the contribution of an isolate subsystem
(cluster) involving an increasing number (1) of particles.

This expansion can be represented by generalized Mayer diagrams.
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THEORY AND TOOLS FOR CALCULATION
:

SUMMATION OF RELEVANT DIAGRAMS(FHNC)

> The cluster decomposition of the (AO), is derived in terms of

> the short range correlation function h(r;) = f? (r;j) — 1 from the expansion of
FtF
> the Slater function £(x) with x = (krr;;), from expansion of |®|?

£(x) = Z e*m2 = Z (sinx — xcosx)
N ke
» Diagrams can be classified according to their topological structure.

> Relevant diagrams can be summed up to all orders solving a set of
coupled integral equations (FHNC equations)
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THE GROUND STATE ENERGY FOR THE HARD-SPHERE SYSTEM

Within this approach, upper bounds to
the g.s. energy of different systems
(liquid helium, nuclear & neutron matter,
Fermi HS ) have been obtained

The correlation function are determined
through the minimisation of (H) with
boundary condition f(a) =0, f(d) =1
and the additional constraint f'(d) = 0

The correlation range d is the only
variational parameter

Comparison with the low-density results
through the dimensionless parameter z

_ 3K
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THE GROUND STATE ENERGY FOR THE HARD-SPHERE SYSTEM

Within this approach, upper bounds to
the g.s. energy of different systems
(liquid helium, nuclear & neutron matter,
Fermi HS ) have been obtained

The correlation function are determined
through the minimisation of (H) with
boundary conditionf(a) =0, f(d) =1
and the additional constraint f'(d) = 0
The correlation range d is the only
variational parameter

Comparison with the low-density results
through the dimensionless parameter z
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THEORY AND TOOLS FOR CALCULATION
:

CBF EFFECTIVE INTERACTION

Correlated states are obtained form the non interacting Fermi gas (FG)

n) = Flnge) , F=]]f0ry)

j>i
For the hard sphere case
f(Ti]' S a) = 0 N hm f(Ti]') =1 s
jj— 00

Yx]

The effective interaction

Vetr = Y _ esr(r) ,

j>i
is defined by the relation

_ 1 (0]H|0)

(H) = 00) = Krc + (Orc|Vex|Orc) , where Krg = 3ki/10m

> CBF effective interaction is defined in terms of its expectation value on
the ground-state
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THE DEFINITION OF THE EFFECTIVE INTERACTION

Goal: estimate the ground state energy
at fist order in perturbation theory in
the Fermi Gas states

Strategy: adjust the range of the
correlation function in order to
reproduce FHNC result at two-body
cluster level

EEHNC _ 13(;; + (AE)

(AE), /dr [7|Vf|2+v( )} {1 - %EZ(kpr)

» Two-body cluster approximation
understimates FHNC energy

» We need a shorter correlation
(stronger effective interaction) to
reproduce the FHNC energy

)

d [fm]

0.275
0.27
0.265
0.26
0.255
0.25
0.245
0.24
0.235
0.23

" thne
2bc —--mm ]
c=0.2 E

0.2 0.4 0.6 0.8 1

c=kpa
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THEORY AND TOOLS FOR CALCULATION

THE EFFECTIVE INTERACTION

4 T T

0.2 r T T T

As the Fermi momentum increases

Ueff( )

V() > the correlation range decreases

§\>—‘

> the slope increases

Vet contains purely kinetic contributions, deriving from the derivative of the
correlation function
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THEORY AND TOOLS FOR CALCULATION

SELF-ENERGY: THE SECOND ORDER
The perturbative expansion $(k,E) = XM (k) + S (k,E) + ...

1
Sur(k) = = D nL (k) (ko Ko’ |oeg[ko Ko )a

o k/o’

m |<q7— q/Tl‘UefflkU k,UI>n|2 0 0 /N0 /1
- Xn n n- (k
Z , /q2+ql2—k/2—2mE—i77 >(q) >(q) <( )

ok o’ qr,q'T

m (q7 @' 7' |vet| ko K o’ )q? 0 0 /N0 s
- Xn n n< (k
Y g atramiiy @@ E)

okol.qr.q'T

|Im), = %(lm) — |ml))

n (k) = Ok — k) , n (k) = 0(ks — k)
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THE IMAGINARY PART

0.08

0.06

Im 2(k,E) [fm™']

0.02

R IR I IR |

0.00 =

Note that
Yp(k,E<Ep)=0

Su(k,E > Er) =0
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0.005 i i .
= [ __CBF v c=0.3 )
= 0.004 = _ _Sartor & Mahaux j
< [ ]
~ I el
g 0.003 = s :
& : 1 For comparison, we report
o F 1 ImX¥(k,k*/2m) obtained from
~0.002 - — low-density expansion
4 r 1. .
= F { including terms up to order c*
>_<E 0.001 [~ ]
0.000
0.0 2.0

[R.Sartor and C.Mahaux, Phys.Rev.C21(1980)]
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NUMERICAL RESULTS

THE ELEMENTARY EXCITATION SPECTRUM
The self energy is responsible for shifting the pole of the Green’s function
1
E —eo(k) — 3(k,E)
» The new poles determine energy e(k) and the damping I of the
quasiparticles state

» For small I', the propagation of quasiparticle states (Landau’s Fermi
liquid theory ) is described in by

G(k,E) =

G(k7 E) T E-— e(k) + il

The energy of quasiparticle
e(k) = eo(k) + ReX[k, e(k)]
Quasiparticle lifetime
7' =Ty = ZdmX[k, e(k)]
The residue of the Green’s function
7 = |1 = ZRexik, E] 1

OE E=e(k)
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!
ENERGY OF QUASIPARTICLE
A DA R RS
0.6 — c=0.5 “
|- 7 -
0.4 . The energy of quasiparticle is
F . obtained solving the equation
0.2 — o -
— = e B 1 e(k) = eo(k) + ReX[k, e(k)]
\ ] L PN PR T
g 0.0 02 04 06 08 1.0
- 0.10 T
— F IEERE . .
= 008EL  c—02 /3 The single pfartlcl'e spectrum can
T 2 1 be parametrized in term of the
0.06 - E effective mass m*
0.04 |- - o
E ] N 1 de(k)
0.02 (A) - m = % dk
0.00 ===2 —

0.0 01 02 03 04 0.5

k [fm "]
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NUMERICAL RESULTS
:

ENERGY OF QUASIPARTICLE

A
06 c¢=05 > The energy of quasiparticle is
i - obtained solving the equation
0.4 -
0.2 - . - E e(k) = eo(k) + ReX[k, e(k)]
D R The single particle spectrum can
g 0.0 02 04 06 08 10 N
010 premrpreee e e be parametrized in term of the
— F /] effective mass m*
24 0.08 c=0.2 —
© 0.06F = = [1 de(k):| -1
0.04 = k- dk
0.02 - A) Since Re X(k, E) is evaluated at
0.00 E=EL Lo the quasiparticle pole e(k), k and

0.0 0.1 02 031 0.4 05 E are non independent variables
k [fm |
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NUMERICAL RESULTS
:

THE EFFECTIVE MASS

-1

de(k)
dk

k 0 J
~[E4 Zren )] [1- SRen(kE)

1.4 T T T
» Enhancement for m* due to the
£ 12 ] energy-dependent corrections to
< the self-energy
‘g T
------- » At Hartree Fock level m* /m < 1
08 . . .
0.2 0.4 0.6 0.8
Kike
Veif —— S&M HF --mmm

19/28



INTRODUCTION EQUILIBRIUM PROPERTIES NON EQUILIBRIUM PROPERTIES SUMMARY & PROSPECTS
[e]e]e} 000000000000 0000e000 0000 [e]

NUMERICAL RESULTS
:

MOMENTUM DISTRIBUTION

» Momentum distribution describes the occupation probability of the
single-particle of momentum k (see Killén-Lehman representation of
G(k,E))

o e / PP(kaE) Ph(k,E) _
R e R e vl RS

> In term of the particle (hole) spectral functions

n(k) = / dEP,(k,E) =1 — / dEP,(k,E)
0 0
> In terms of the quasiparticles properties
n(k) = Z0(kr — k) + on(k)
with Z; from the quasiparticle pole and én(k) a smooth contribution

arising from more complex excitations of the system (kZkg).
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MOMENTUM DISTRIBUTION

Exploiting Dyson’s equation, n(k) can be determined through the knowledge

of the self-energy 3 (k, E), computed at the second order

The discontinuity at k = kr is given by

n(ke —n) —ntkp +n) =Zi, =2

n(k) = n<(k) +n> (k)

with

ne(k > ke) = ns(k < kp) = 0

ne(k < ke) =1+

n>(k>kp):—[

0
OE

0
9 Rex
OE o

{—ReEP (, E)}

k)

E=eq(K)

E=e (k)

n(k)

1.07
pPoooooonong,
[ o B
0.87&<><><><><><><><><>
[ c=0.3
06 ° 8 c=05 -
[ <
© c=0.7
04— -
<
02~ ° -
[ 0 o
L ©
<o
0ol L 2P088Rnanee
0.0 0.5 1.0 1.5
k/kp

2.0
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NUMERICAL RESULTS
:

MOMENTUM DISTRIBUTION

Exploiting Dyson’s equation, n(k) can be determined through the knowledge
of the self-energy 3 (k, E), computed at the second order

The discontinuity at k = kr is given by

nike —n) —nlke +n) =Zi, = Z 10—

08l b

n(k) = n<(k) + nx (k) i 7

with . ]

7’1<(k > k}:) = n>(k < kp) =0
04} ]
3]
ne(k <kr) =1+ |:87EReEp(k’ E):| i | | |
E=¢y (k) ozb b b
c=kpa

Tl>(k > kp) = — [%ReEh(k, E):|

E=e (k)
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SUMMARY & PROSPECTS

CBEF effective interaction in comparison with low-density expansion

1.0 g

0.9
0.8

0.7

0.6

0.5 L { I b
0.95

=
I 0.90

v E
Y 0.85¢ 3
~ E . E
9 0.80F ]
0.99F ]
0.98F

0.97F

0.96
0

A I R RN B
3 @ =

Rosooe E
E 999??00%;

S R I Y
002040608 1.0
k/kg

n(k>kg)

0.15F
0.10f

ﬁﬁﬁ?}?:%mb‘ﬂé N

00 B
101214 16 1.8 2.0

F

[R.Sartor and C.Mahaux, Phys.Rev.C21(1980)]

+ CBF Veff
¢ M&S

(%”k,%) - / Prn(k)

Tty = ﬁ / Pk n(k)k

[ ke | N | T 1 | Tawlfm™] [ AT(%) |
0.2 | 1.003 (0.998) | 0.0150 | 0.0132 (0.0127) | 12.5(15.3)
0.4 | 1.000 (0.983) | 0.0775 | 0.0615 (0.0584) | 20.6 (24.6)
0.6 | 1.001(0.958) | 02331 | 0.1727(0.1533) | 25.9 (34.2)
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NUMERICAL RESULTS
CBEF Effective interaction in comparison with CBF variational results
[A.Fabrocini,S. Fantoni,A.Polls,andS.Rosati,NuovoCimentoA56,33(1980)]
1.0 Lo T T T
koooccas,,, ~  CBF.Z-071
0.8 08 oy 8 c=0.55, 2=63
0.8 0.6 — —
z z
S 0.4 = 04— -
0.2 0.2 —
~o
0.0 0.0 I | TP foools
0.0 0.0 0.5 1.0 1.5 2.0
k/kp

[S.Fantoni and V.R. Pandharipande, Nucl.Phys.A427, 473(1984)]

Momentum distribution of the hard sphere system (a2 =1 fm , kr = 0.55)

corresponds to nuclear matter at density pxm = 0.16 fm > and kp = 1.33 fm ™’

Nucleons in NM ~ hard spheres of radius a = 0.55/1.33 ~ 0.4 fm

Calculation simpler in the effective interaction approach than in the

non-orthogonal CBF perturbation theory
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BOLTZMANN LANDAU’S KINETIC THEORY

Scattering of quasiparticles in a normal Fermi fluid is analysed in the
framework of BL's kinetic theory: the kinetic equation for the single QP
distribution function n(p, r, t) takes the form of a non homogeneus continuity
equation

on  On on
5+5~v+%-F_I(n)

Following the Landau’s interpretation of QP energy e(p, r, t) as QP
Hamiltonian

o onoe _onve
ot  ordp Opor

The collision integral Z(n) describes the rate of particles entering into an
infinitesimal region of phase space due to two particle collisions.

24 /28
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THE SCATTERING PROBABILITY
At low T, we can consider only binary collisions 1,2 — 3,4 (and the inverse
process 3,4 — 1,2), and define the scattering probability W(12;34) though
the Fermi’s golden rule

™ 1
3.4|TN2)f =

?L|< W(12, 34)5(p1 + p2 —p3 — p4)(5(0’1 + 02,03 + 0'4)

Sl= \

ZZ W(12;34)8(p1 + p2 — p3 — pa)d(o1 + 02,03 + 04)
2 34

X [1’11712(1 — 113)(1 — 1’14) — (1 — 1’11)(1 — nz)l’l31’l4]

In low-T regime only QP states next to the Fermi surface are involved in
collision |pi| = pr
A-K reference frame: W(12;34) = W(6, ¢)

> 6 the angle between the incoming momenta p; and p»

> ¢ the angle between the planes containing (p1, p2) and (ps, p4)

2
Eom = 5—;1(1 —cosf) and O = ¢

)
)
&
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MEDIUM EFFECTS

> Nuclear medium mainly affects the flux of incoming particles and the
phase-space available to the final state particles, leaving the transition
probability unchanged

167° [ do
we.o) = o (55)

> Include the effects of medium-modifications in the scattering amplitude
through CBF v,
do m*?
a9 = 16n2 [vesi(@)[*
> The resulting W(6, ¢) can be used the calculate the QP lifetime &
transport coefficients

1 o 2
= = T <+ 1
Ak = 5P O N,
_ gt _ [ dQ W(0,9) _ (W[1=3sin*(8/2)sin®$])
where 7 = OV 1 w) = T cos(07) and A\, = 5<W>
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W(0,¢) = mloee(q)* . |ql = pryv/(1 — cos0)(1 — cos ¢)

W(o)/W(¢ =0)

1.01 : : .
1 == -
o S, o
; '..,....~ ‘__,-“_
= S .
= 0.99 i
0.98 L L L
0 /4 n/2 3/4n n
¢= 8cm
8=0 — P —
Q= T/4 =eeeeenen 0 = 3m/4
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SUMMARY & PROSPECTS

> CBF effective interaction has been employed to compute the self-energy
for a hard-sphere system. Calculation of second order terms in V¢ has
been carried out

> Quasiparticle properties have been obtained (single particle energy,
effective mass, momentum distribution), significantly affected by energy
dependent second order corrections.

» Comparison with results obtained in low-density expansion:

v good agreement for density corresponding to kr > 0.3 fm~1,0.4 fm~!
v discrepancies at higher density, where contributions of higher power of c are
not negligible
> The strategy of including the effect of correlations in the definition of the
effective potential allows perturbative calculations in the basis of FG:
remarkable simplification in comparison with CBF non-orthogonal
perturbation theory.

» Comparison with results obtained in different many-body techniques
could be performed.
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EULER-LAGRANGE EQUATION

From the expression of the energy obtained by the two-body cluster
expansion

B2 ¢ [l (v Pgscr) ~ [ FIflar

Correlation functions are obtained solving the Euler-Lagrange equation

[

a*(r) = r’gra(r) , §(r) = a*(Nf*(r)
with boundary conditions
fl@)=0, fd)=1, f'(d)=0

A is a Lagrange multiplier introduced to impose the constraint on the
derivative.
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REMARKS

Ambiguity involved in the calculation kinetic term

(T =~ [ aefto) [0 (1 L £

Integrating by parts the kinetic term, the derivatives acting both on the
correlation function and gr¢(r) can be removed.

(T)y = ﬁ /dr (Vf)? (1 - %zz(kﬂ))

The two-body cluster expansion of the effective potential

1
<01:(;‘ Veff |OFG>2b = g/drveff(r) (1 — ;Zz(kﬂ‘)>
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THE GREEN’S FUNCTION
With the CBF effective interaction we can obtain the one particle Green’s
function as expectation value on FG states.

From Dyson’s equation

G(k,E) = Go(k, E) + Go(k, E)S(k, E)G(k, E)

Go(k, E) is the Green'’s function of the non interacting system

0(k — kr) 0 (ke — k)

Go(k,E) = E—eo(k) +in ' E—eo(k) —in

The proper self-energy X(k, E) accounts for the effect of interaction

1

G“B:Efmmfzma

The calculation of X(k, E) can be carried out perturbatively in the effective
potential V¢ and using the basis of non interacting FG.



DISPERSION RELATIONS

Im [Epol (k, w)]

/ q/2 k,z
77#2“7‘7 klveff|k’(5 7_,_7_7

2m  2m
q q/ k/

Im [Eeor (k, w)]

) ”>(¢7)”>(‘7/)”<(k,)

12
/ q q ’ ’
= *7T E [(9,4", K |vets k) ’ J ( Toom 2m+w> n<(@)n<(q)n> (k)

qq/ V'

w—w

ReX (k,w)] = P/

* Im[2 (k,w')]



NEUTRON MATTER

(do/dQ)p, [mb]
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