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MOTIVATION & OBJECTIVES

MOTIVATION & OBJECTIVES

I Short range repulsion in many-body interacting systems makes
“standard” perturbative calculations not suitable and the introduction of
a well-behaved effective Hamiltonian essential.

I Effective interactions based on ab initio microscopic approaches allow for
a consistent calculation of the equilibrium and non equilibrium
properties.

I The main problem related to the description of the non-equilibrium
properties consists in the calculation of the probability of collisions
between quasiparticles in the vicinity of the Fermi surface
(Landau-Abrikosov-Khalatnikov formalism).

I Medium modifications of the scattering cross section have been
consistently taken into account through an effective interaction obtained
from the matrix elements of the bare interaction between correlated
states (CBF).
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MOTIVATION & OBJECTIVES

MOTIVATION & OBJECTIVES

I Scattering cross section obtained in CBF effective interaction approach
has been tested through comparison with results obtained form
G-matrix perturbation theory in neutron matter.

I The calculation of transport coefficients has been carried out using the
Hartree Fock approximation for the effective mass.

I The purpose of this work is to investigate concepts and assumptions
employed in this procedure through the analysis of a simpler system
well known in literature: the hard-sphere case.
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THE HARD-SPHERE MODEL

THE HARD-SPHERE MODEL
The details of the repulsive potential are not really relevant to reproduce the main
properties of of several systems of fermions (classical and quantum liquids, nuclear
matter).

The fermion hard-sphere fluid: a system
of point-like spin one-half particles
interacting through the potential

v(rij) =

{
∞ rij < a
0 rij > a

The restriction to purely repulsive
potential enables to neglect the
possibility of Cooper pairs formation.

2 Introduction

The solid line of Fig. 1 shows the radial distribution function1 of a Lennard-Jones fluid

obtained from computer simulations at density ρ such that ρσ3 = 0.85 and temperature

T such that T/ε = 0.88. The open dots represent the results obtained including only the

repulsive component of the Lennard-Jones potential, while the dashed line corresponds to

the radial distribution function of a hard sphere fluid. It clearly appears that the simple

hard core potential provides a remarkably accurate description of the system ground state.

Figure 1: Radial distribution function of a Lennard-Jones fluid at density ρ such that
ρσ3 = 0.85 and temperature T such that T/ε = 088. Solid line: results of a computer
simulation carried out using the full Lennard-Jones potential. Open dots; same as the
solid line, but including only the repulsive component of the potential. Dashed line:
results of the hard sphere model.

1The radial distribution function g(r), to be discussed in Chapter 3, is trivially related to the proba-
bility of finding two particles at relative distance r in the system ground state.

Using CBF effective interaction approach for the hard sphere model, we can derive
several properties:

X energy per particle

X self-energy
X effective mass

X momentum distribution
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THEORY AND TOOLS FOR CALCULATION

G-MATRIX

I The problem has been studied by several authors using different
methods and employing the usual diagrammatic techniques

I The systematic treatment in many-body perturbation theory of short
range repulsion is based on the replacement of the bare interaction
potential with the reaction matrix

〈p′|v|p〉 → 〈p′|G|p〉 .

G = + + + . . . ≡

Figure 2: Diagrammatic representation of the ladder diagrams, describing two-body multiple
scattering processes. The bare interaction and the reaction matrix are represented by dashed
and wavy lines, respectively.

multiple scattering processes, usually referred to in diagrammatic language as ladder series,
makes the resulting reaction matrix a well-behaved operator, best suited for perturbative calcu-
lations in different schemes, such as scattering theory to in free space, time-ordered perturbation
theory and the Green’s function method. The main difference between the three cases is the
form of the free particle propagators, which determines the explicit form of the integral equation
defining for the reaction matrix. Summing up ladder diagrams in free space – the t-matrix
method – is equivalent to solving the Lippman-Schwinger equation, while when the presence of
the filled Fermi sea is taken into account – the G-matrix method – the same procedure leads to
the Bethe-Goldstone equation or to the Bethe-Salpeter equation, respectively, depending on the
use of time-ordered (Goldstone) or standard (Feynman) perturbation theory [4].

Variational approaches, originally developed to describe classical and quantum liquids, have
been also successfully used to study strongly interacting fermion systems in the high density
regime, relevant to the understanding of the properties of astrophysical compact objects.

In this Thesis, we will adopt Correlated Basis Functions (CBF) perturbation theory and
the cluster expansion technique [5, 6]. This formalism has been recently employed to obtain an
effective interaction suitable for use in perturbation theory in the basis of the non interacting
Fermi gas [7, 8].

Motivated by the universality of the repulsive nature of the interaction at short distance,
we will investigate the accuracy of the CBF effective interaction approach studying a variety of
properties of the fermion hard sphere system. Within this model, the potentials shown in Fig. 1
are replaced by

v(r) =

�
∞ r < a
0 r > a

, (1)

where r denotes the distance between the two interacting particles. Note that neglecting the
long-range attractive interaction prevents the possible formation of Cooper pairs, leading to the
transition to a superconducting or superfluid phase.

It is long known that the hard sphere model provides an accurate description of several
properties of dilute Fermi systems. Algebraic expressions of the ground state energy, the single-
particle energy and the momentum distribution can be written as power series in the parameter
(kF a), where kF is the Fermi momentum [9]. We will use the results obtained from these
expansions in low density limit as benchmarks to assess the accuracy of the effective interaction
approach, thus providing the basis for its generalisation to neutron matter.

2

I The sum all (infinite) multiple scattering processes (ladder series)
between free particles (t-matrix) or in presence of the Fermi sea
background (G-matrix) makes the resulting reaction matrix a
well-behaved operator, best suited for perturbative calculations

I t-matrix and G-matrix are distinguished by the different forms of the
internal line propagators and the integral equation which defines the
reaction matrix

5 / 28



INTRODUCTION EQUILIBRIUM PROPERTIES NON EQUILIBRIUM PROPERTIES SUMMARY & PROSPECTS

THEORY AND TOOLS FOR CALCULATION

LOW-DENSITY FERMI GAS
The hard-sphere model provides an accurate description of several
properties of dilute Fermi systems. Algebraic expressions of the ground state
energy, the single-particle energy and the momentum distribution can be
written as power series in the parameter

c ≡ (kFa) , kF = (6π2ρ/ν)1/3 and ν the degeneracy of the system.

The g.s. energy per particle

E
N

=
k2

F
2m

[
3
5

+
2
π

c +
12

35π2
(11− 2 ln 2) c2 + 0.780c3 +

32
9π3

(4π − 3
√

(3))c4 ln c + O(c4)

]
At the second order in c2 the effective mass m?

1
m?

=
1
k

de(k)

dk
,

m?(kF)

m
= 1 +

24
15π2 (7 ln 2− 1)c2

[R.F.Bishop,Ann-Phys:11(1973)]

We will use the results as benchmarks to assess the accuracy of the effective
interaction approach.
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THEORY AND TOOLS FOR CALCULATION

CORRELATED BASIS FUNCTION

The correlated basis ground state is defined by

|Ψ0〉 ≡
F̂|Φ0〉

〈Φ0|F̂†F̂|Φ0〉1/2

The Fermi gas wave function is a Slater determinant of planet waves

Φ0 = A [φ1(x1) . . . φA(xA)]

The correlation operator reflects the structure of the potential

F̂ = S
∏
j>i

F̂ij , F̂ij =
∑

p

Ôp
ijf

p(rij)

The variational principle

EV = 〈Ψ0|H|Ψ0〉 =
〈Φ0|F̂†HF̂|Φ0〉
〈Φ0|F̂†F̂|Φ0〉

≥ E0

Correlation functions are obtained variationally by minimising EV
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THEORY AND TOOLS FOR CALCULATION

CLUSTER EXPANSION FORMALISM

Clustering property is required for the the many body correlation operator F̂

F̂(x1, . . . , xN) = F̂(x1, . . . , xp)F̂(xp+1, . . . , xN)

Factorization of F̂ is the basis of the cluster expansion formalism.

Matrix elements of many body operators involve integration over the
coordinates of a huge number of particles. They can can be expanded

〈O〉 =
〈Φ|F†OF|Φ〉
〈Ψ|Ψ〉 = O0 +

∑
n

(∆O)n

Each term (∆O)n corresponds to the contribution of an isolate subsystem
(cluster) involving an increasing number (n) of particles.

This expansion can be represented by generalized Mayer diagrams.
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THEORY AND TOOLS FOR CALCULATION

SUMMATION OF RELEVANT DIAGRAMS(FHNC)

I The cluster decomposition of the (∆O)n is derived in terms of
I the short range correlation function h(rij) = f 2(rij)− 1 from the expansion of

F†F
I the Slater function `(x) with x ≡ (kFrij), from expansion of |Φ|2

`(x) =
ν

N

∑
|k|<kF

eik·r12 =
3
x3

(sin x− x cos x)

I Diagrams can be classified according to their topological structure.
I Relevant diagrams can be summed up to all orders solving a set of

coupled integral equations (FHNC equations)
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THE GROUND STATE ENERGY FOR THE HARD-SPHERE SYSTEM

I Within this approach, upper bounds to
the g.s. energy of different systems
(liquid helium, nuclear & neutron matter,
Fermi HS ) have been obtained

I The correlation function are determined
through the minimisation of 〈H〉with
boundary condition f (a) = 0 , f (d) = 1
and the additional constraint f ′(d) = 0

I The correlation range d is the only
variational parameter

I Comparison with the low-density results
through the dimensionless parameter z

E0 =
3k2

F

10m
(1 + z)

I a = 1 fm, m = 1 fm−1, ν = 4
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THEORY AND TOOLS FOR CALCULATION
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THEORY AND TOOLS FOR CALCULATION

CBF EFFECTIVE INTERACTION

Correlated states are obtained form the non interacting Fermi gas (FG)

|n〉 = F|nFG〉 , F =
∏
j>i

f (rij)

For the hard sphere case

f (rij ≤ a) = 0 , lim
rij→∞

f (rij) = 1 ,

The effective interaction
Veff =

∑
j>i

veff(rij) ,

is defined by the relation

〈H〉 =
1
N
〈0|H|0〉
〈0|0〉 ≡ KFG + 〈0FG|Veff|0FG〉 ,where KFG = 3k2

F/10m

I CBF effective interaction is defined in terms of its expectation value on
the ground-state
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THE DEFINITION OF THE EFFECTIVE INTERACTION
Goal: estimate the ground state energy
at fist order in perturbation theory in
the Fermi Gas states
Strategy: adjust the range of the
correlation function in order to
reproduce FHNC result at two-body
cluster level

EFHNC
0 =

3k2
F

10m
+ (∆E)2
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(∆E)2 =
ρ

2

∫
dr
[

1
m
|∇f |2 + v(r)

] [
1−

1
ν
`2(kFr)

]

I Two-body cluster approximation
understimates FHNC energy

I We need a shorter correlation
(stronger effective interaction) to
reproduce the FHNC energy
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THEORY AND TOOLS FOR CALCULATION

THE EFFECTIVE INTERACTION
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veff(r) =
1
m

[∇f (r)]2
As the Fermi momentum increases

I the correlation range decreases
I the slope increases

Veff contains purely kinetic contributions, deriving from the derivative of the
correlation function
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SELF-ENERGY: THE SECOND ORDER

The perturbative expansion Σ(k,E) = Σ(1)(k) + Σ(2)(k,E) + . . .

ΣHF (k)

(a)

ΣHF(k) =
1
ν

∑
σ,k′σ′

n0
<(k′)〈kσ k′σ′|veff|kσ k′σ′〉a

Σp(k, E)

(b)

q q′
k′

Σh(k, E)

(c)

q q′
k′

Σp (k,E) =
m
ν

∑
σ,k′σ′,qτ,q′τ ′

|〈qτ q′τ ′|veff|kσ k′σ′〉a|2

q2 + q′2 − k′2 − 2mE− iη
×n0

>(q)n0
>(q′)n0

<(k′)

Σp(k, E)

(b)

q q′
k′

Σh(k, E)

(c)

q q′
k′

Σh (k,E) =
m
ν

∑
σ,k′σ′,qτ,q′τ ′

|〈qτ q′τ ′|veff|kσ k′σ′〉a|2

k′2 − q2 − q′2 + 2mE− iη
×n0

<(q)n0
<(q′)n0

>(k′)

|lm〉a ≡ 1√
(2)

(lm〉 − |ml〉)

n0
>(k) = θ(k− kF) , n0

<(k) = θ(kF − k)
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NUMERICAL RESULTS

THE IMAGINARY PART

Note that

Σp(k,E < EF) = 0

Σh(k,E > EF) = 0
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NUMERICAL RESULTS

For comparison, we report
ImΣ(k, k2/2m) obtained from
low-density expansion
including terms up to order c2

[R.Sartor and C.Mahaux, Phys.Rev.C21(1980)]
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NUMERICAL RESULTS

THE ELEMENTARY EXCITATION SPECTRUM
The self energy is responsible for shifting the pole of the Green’s function

G(k,E) =
1

E− e0(k)− Σ(k,E)

I The new poles determine energy e(k) and the damping Γk of the
quasiparticles state

I For small Γk, the propagation of quasiparticle states (Landau’s Fermi
liquid theory ) is described in by

G(k,E) =
Zk

E− e(k) + iΓk

The energy of quasiparticle

e(k) = e0(k) + ReΣ[k, e(k)]

Quasiparticle lifetime

τ−1
k = Γk = ZkImΣ[k, e(k)]

The residue of the Green’s function

Zk =

[
1− ∂

∂E
ReΣ[k,E]

]−1

E=e(k)
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NUMERICAL RESULTS

ENERGY OF QUASIPARTICLE

6

A. Effective mass and single particle spectrum

The energy of a quasiparticle of momentum k, e(k), is
obtained solving the equation

e(k) = e0(k) + Re Σ[k, e(k)] . (23)

Substitution of Eq. (19) in the above equation yields the
Hartee-Fock spectrum, represented by the dashes lines of
Fig. 7, while the result obtained including second order
corrections is displayed by full lines. For comparison, the
dot-dash lines show the kinetic energy spectrum.

FIG. 7: (colour online) quasiparticle energy, computed from
Eq. (23) at c = 0.2 [panel (A)] and 0.5 [panel(B)]. The dashed
and solid lines correspond to the first order (i.e. Hartree-
Fock) and second order results, respectively. For comparison,
the dot-dash lines show the kinetic energy spectrum.

From Eqs. (17) and (22) it also follows that the quasi-
particle lifetime is related to the self energy through

τ−1
k = ZkIm Σ[k, e(k)] , (24)

where

Zk =

[
1 − ∂

∂E
Re Σ(k, E)

]−1

E=e(k)

, (25)

is the residue of the Green’s function of Eq. (22) at the
quasiparticle pole.

The quasiparticle spectrum is conveniently
parametrized in terms of the effective mass m!,
defined by Eq. (3).

The total derivative of e = e(k) is performed using
Eq. (23), and keeping in mind that, since Re Σ(k, E)
is evaluated at the quasiparticle pole, k and E are not

independent of one another. As a consequence, one finds

de

dk
=

k

m
+

∂

∂k
Re Σ(k, e) +

∂

∂e
Re Σ(k, e)

de

dk
, (26)

implying

de

dk
=

[
k

m
+

∂

∂k
Re Σ(k, E)

]

×
[
1 − ∂

∂E
Re Σ(k, E)

]−1

E=e(k)

. (27)

Note that at first order the self energy depends on k only,
and the above equation reduces to

de

dk
=

k

m
+

∂ΣHF (k)

∂k
, (28)

with ΣHF given by Eq. (19).
The dot-dash and solid lines of Fig. 8 show the c-

dependence of the ratio m!/m at k = kF , evaluated at
first and second order in the CBF effective interaction,
respectively. Inclusion of the energy-dependent contri-
butions to the self energy, resulting in a correction to
the spectrum, leads instead to a drastic change in the
behaviour of the effective mass. While in the Hartee-
Fock approximation the ratio m!/m is less than one and
monotonically decreasing with c, the full result turns out
to be larger than one and monotonically increasing. The
results of the low density expansion, represented by the
dashed line, exhibit the same features as those obtained
from the self energy at second order. As in the case of the
ground state energy, the low density expansion appears
to provide quite accurate results for c <∼ 0.4.

FIG. 8: (colour online) c-dependence of the ratio m!/m at k =
kF , obtained from Eqs. (23) and (3). The dot-dash and solid
lines represent the results of calculations carried out using the
first and second order approximations to the self energy. For
comparison, the dashed line shows the results computed using
the low density expansion of Eq. (4).

The energy of quasiparticle is
obtained solving the equation

e(k) = e0(k) + ReΣ[k, e(k)]

The single particle spectrum can
be parametrized in term of the
effective mass m?

m? =

[
1
k

de(k)

dk

]−1
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The energy of quasiparticle is
obtained solving the equation

e(k) = e0(k) + ReΣ[k, e(k)]

The single particle spectrum can
be parametrized in term of the
effective mass m?

m? =

[
1
k

de(k)

dk

]−1

Since Re Σ(k,E) is evaluated at
the quasiparticle pole e(k), k and
E are non independent variables
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THE EFFECTIVE MASS

de(k)

dk
=

[
k
m

+
∂

∂k
ReΣ (k,E)

] [
1− ∂

∂E
ReΣ (k,E)

]−1

 0.8

 1

 1.2

 1.4

 0.2  0.4  0.6  0.8

m
* (k

F
)/

m
 	

k/kF 

veff S&M  HF

I Enhancement for m? due to the
energy-dependent corrections to
the self-energy

I At Hartree Fock level m?/m < 1
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MOMENTUM DISTRIBUTION

I Momentum distribution describes the occupation probability of the
single-particle of momentum k (see Källén-Lehman representation of
G(k,E) )

G(k,E) =

∫ ∞
0

dE′
[

Pp(k,E)

E− E′ − µ+ iη
+

Ph(k,E)

E + E′ − µ− iη

]
, µ = e(kF)

I In term of the particle (hole) spectral functions

n(k) =

∫ ∞
0

dEPh(k,E) = 1−
∫ ∞

0
dEPp(k,E)

I In terms of the quasiparticles properties

n(k) = Zkθ(kF − k) + δn(k)

with Zk from the quasiparticle pole and δn(k) a smooth contribution
arising from more complex excitations of the system (k><kF).
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NUMERICAL RESULTS

MOMENTUM DISTRIBUTION

Exploiting Dyson’s equation, n(k) can be determined through the knowledge
of the self-energy Σ(k,E), computed at the second order

The discontinuity at k = kF is given by

n(kF − η)− n(kF + η) = ZkF = Z

n(k) = n<(k) + n>(k)

with

n<(k > kF) = n>(k < kF) = 0

n<(k < kF) = 1 +

[
∂

∂E
ReΣp(k,E)

]
E=e0(k)

n>(k > kF) = −
[
∂

∂E
ReΣh(k,E)

]
E=e0(k)
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NUMERICAL RESULTS

CBF effective interaction in comparison with low-density expansion

[R.Sartor and C.Mahaux, Phys.Rev.C21(1980)]

M&S

CBF veff

N =

(
4π
3

k3
F

)−1 ∫
d3k n(k)

Tn(k) =
ν

2mρ

∫
d3k n(k)k2

kF N T [fm−1] Tn(k)[fm−1] ∆T (%)

0.2 1.003 (0.998) 0.0150 0.0132 (0.0127) 12.5(15.3)
0.4 1.000 (0.983) 0.0775 0.0615 (0.0584) 20.6 (24.6)
0.6 1.001 (0.958) 0.2331 0.1727(0.1533) 25.9 (34.2)
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NUMERICAL RESULTS

CBF Effective interaction in comparison with CBF variational results

[A.Fabrocini,S. Fantoni,A.Polls,andS.Rosati,NuovoCimentoA56,33(1980)]

[S.Fantoni and V.R. Pandharipande, Nucl.Phys.A427, 473(1984)]

Momentum distribution of the hard sphere system (a = 1 fm , kF = 0.55)
corresponds to nuclear matter at density ρNM = 0.16 fm−3 and kF = 1.33 fm−1

Nucleons in NM ∼ hard spheres of radius a = 0.55/1.33 ∼ 0.4 fm

Calculation simpler in the effective interaction approach than in the
non-orthogonal CBF perturbation theory
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BOLTZMANN LANDAU’S KINETIC THEORY

Scattering of quasiparticles in a normal Fermi fluid is analysed in the
framework of BL’s kinetic theory: the kinetic equation for the single QP
distribution function n(p, r, t) takes the form of a non homogeneus continuity
equation

∂n
∂t

+
∂n
∂r
· v +

∂n
∂p
· F = I(n)

Following the Landau’s interpretation of QP energy e(p, r, t) as QP
Hamiltonian

∂n
∂t

+
∂n
∂r

∂e
∂p
− ∂n
∂p

∂e
∂r

= I(n)

The collision integral I(n) describes the rate of particles entering into an
infinitesimal region of phase space due to two particle collisions.
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THE SCATTERING PROBABILITY
At low T, we can consider only binary collisions 1, 2→ 3, 4 (and the inverse
process 3, 4→ 1, 2), and define the scattering probabilityW(12; 34) though
the Fermi’s golden rule

2π
~
|〈3, 4|T |12〉|2 ≡ 1

V2W(12; 34)δ(p1 + p2 − p3 − p4)δ(σ1 + σ2, σ3 + σ4)

I = − 1
V2

∑
2

∑
3,4

W(12; 34)δ(p1 + p2 − p3 − p4)δ(σ1 + σ2, σ3 + σ4)

× [n1n2(1− n3)(1− n4)− (1− n1)(1− n2)n3n4]

In low-T regime only QP states next to the Fermi surface are involved in
collision |pi| = pF

A-K reference frame: W(12; 34) =W(θ, φ)

I θ the angle between the incoming momenta p1 and p2

I φ the angle between the planes containing (p1,p2) and (p3,p4)

Ecm =
p2

F

2m
(1− cosθ) and θcm = φ
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MEDIUM EFFECTS

I Nuclear medium mainly affects the flux of incoming particles and the
phase-space available to the final state particles, leaving the transition
probability unchanged

W(θ, φ) =
16π3

m?2

(
dσ
dΩ

)
vac

I Include the effects of medium-modifications in the scattering amplitude
through CBF veff

dσ
dΩ

=
m?2

16π2 |veff(q)|2 ,

I The resultingW(θ, φ) can be used the calculate the QP lifetime &
transport coefficients

ηAK =
1
5
ρm?v2

Fτ
2

π2[1− λη]

where τ = 8π4

m?3〈W〉T2 , 〈W〉 ≡
∫ dΩ

2π
W(θ,φ)
cos(θ/2) and λη = 〈W[1−3 sin4(θ/2)sin2φ]〉

〈W〉
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W(θ, φ) = π|veff(q)|2 , |q| = pF
√

(1− cos θ)(1− cosφ)

 0.98

 0.99

 1

 1.01

0 π/4 π/2 3/4π π

 W
(φ

 )
 /
 W

0
  

 φ =  θcm  

  W(φ ) / W(φ =0) 

 θ = 0
 θ = π/4

 θ = π/2
 θ = 3π/4
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SUMMARY & PROSPECTS

I CBF effective interaction has been employed to compute the self-energy
for a hard-sphere system. Calculation of second order terms in Veff has
been carried out

I Quasiparticle properties have been obtained (single particle energy,
effective mass, momentum distribution), significantly affected by energy
dependent second order corrections.

I Comparison with results obtained in low-density expansion:
X good agreement for density corresponding to kF & 0.3 fm−1, 0.4 fm−1

X discrepancies at higher density, where contributions of higher power of c are
not negligible

I The strategy of including the effect of correlations in the definition of the
effective potential allows perturbative calculations in the basis of FG:
remarkable simplification in comparison with CBF non-orthogonal
perturbation theory.

I Comparison with results obtained in different many-body techniques
could be performed.
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Thank you!
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EULER-LAGRANGE EQUATION

From the expression of the energy obtained by the two-body cluster
expansion

(∆E)2

N
=
ρ

2

∫
dr

1
m

(∇f )2gFG(r) ∼
∫

F[f , f ′]dr

Correlation functions are obtained solving the Euler-Lagrange equation

g′′ −
[

a′′(r)
a(r)

+ λ

]
g(r) = 0

a2(r) = r2gFG(r) , g(r) = a2(r)f 2(r)

with boundary conditions

f (a) = 0 , f (d) = 1 , f ′(d) = 0

λ is a Lagrange multiplier introduced to impose the constraint on the
derivative.

28 / 28



REMARKS

Ambiguity involved in the calculation kinetic term

〈T〉2b = − ρ

2m

∫
dr f (r)

[
∇2, f (r)

](
1− 1

ν
`2(kFr)

)
Integrating by parts the kinetic term, the derivatives acting both on the
correlation function and gFG(r) can be removed.

〈T〉2b =
ρ

2m

∫
dr (∇f )2

(
1− 1

ν
`2(kFr)

)

The two-body cluster expansion of the effective potential

〈0FG|Veff |0FG〉2b =
ρ

2

∫
dr veff(r)

(
1− 1

ν
`2(kFr)

)
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THE GREEN’S FUNCTION
With the CBF effective interaction we can obtain the one particle Green’s
function as expectation value on FG states.

From Dyson’s equation

G(k,E) = G0(k,E) + G0(k,E)Σ(k,E)G(k,E)

G0(k,E) is the Green’s function of the non interacting system

G0(k,E) =
θ(k− kF)

E− e0(k) + iη
+

θ(kF − k)

E− e0(k)− iη

The proper self-energy Σ(k,E) accounts for the effect of interaction

G(k,E) =
1

E− e0(k)− Σ(k,E)

The calculation of Σ(k,E) can be carried out perturbatively in the effective
potential Veff and using the basis of non interacting FG.
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DISPERSION RELATIONS

Im
[
Σpol (k, ω)

]
=

1
2
π
∑

q,q′,k′

∣∣〈q, q′, k′|veff|k〉
∣∣2δ( q2

2m
+

q′2

2m
− k′2

2m
− ω

)
n>(q)n>(q′)n<(k′)

Im [Σcor (k, ω)]

=
1
2
π
∑

q,q′,k′

∣∣〈q, q′, k′|veff|k〉
∣∣2δ(k′2

2m
− q2

2m
− q′2

2m
+ ω

)
n<(q)n<(q′)n>(k′)

Re[Σ (k, ω)] =
1
π
P
∫ ∞
−∞

Im[Σ (k, ω′)]
ω − ω′ dω′
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NEUTRON MATTER

golden rule. The corresponding cross section at momentum
transfer q reads

 

d!
d!

! m?2

16"2 jv̂eff"q#j2; (15)

v̂eff being the Fourier transform of the effective potential.
The effective mass can also be extracted from the quasi-
particle energies computed in Hartree-Fock approxima-
tion. For symmetric nuclear matter at equilibrium, we
find m?"pF#=m ! 0:65, in close agreement with the lowest
order CBF result of Ref. [22].

In Fig. 3 the in-medium neutron-neutron cross section at
Ec:m: ! 100 MeV obtained from the effective potential,
with # ! #0 and #0=2, is compared to the corresponding
free space result. As expected, screening of the bare inter-
action leads to an appreciable suppression of the scattering
cross section.

Replacing the cross section in vacuum with the one
defined in Eq. (15), the medium modified scattering proba-
bility can be obtained from Eq. (6). The resulting W"$;%#
can then be used to calculate &T2 from Eqs. (1)–(5).

The effect of using the medium modified cross section is
illustrated in the lower panel of Fig. 1. Comparison be-
tween the solid line and the dashed line shows that inclu-
sion of medium modifications leads to a large increase of
the viscosity, ranging between $75% at half nuclear matter
density to a factor of $6 at # ! 2#0. Such an increase is
likely to produce appreciable effects on the damping of
neutron-star oscillations.

In conclusion, we have computed the shear viscosity of
pure neutron matter using an effective interaction derived

from a dynamical model that can also be used to obtain the
EOS. While our results are interesting in their own right, as
they can be employed in a quantitative analysis of the
effect of viscosity on neutron-star oscillations, we empha-
size that the work described in this Letter should be seen as
a first step towards the development of a general approach,
allowing for a consistent calculation of the properties of
neutron star matter.

The authors are grateful to V. Ferrari, for drawing their
attention to the subject of this paper, and to R. Schiavilla,
for providing a code for the calculation of the N-N scat-
tering cross section. Useful discussions with I. Bombaci
are also gratefully acknowledged.
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FIG. 3 (color online). Differential neutron-neutron scattering
cross section at Ec:m: ! 100 MeV, as a function of the scattering
angle in the center of mass frame. Solid line: Cross section in
vacuum, calculated with the v0

8 potential. Dot-dashed
line: Medium modified cross section obtained from the effective
interaction described in the text at # ! 0:08 fm%3. Dashed
line: Same as the dot-dashed line but for # ! 0:16 fm%3.
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