Analysis of γ-ray production in NC neutrino-oxygen interactions at energies above 200 MeV

Artur M. Ankowski

INFN & Dept. of Physics, "Sapienza" Università di Roma

In collaboration with O. Benhar, T. Mori, R. Yamaguchi, and M. Sakuda, arXiv:1110.0679, to appear in Phys. Rev. Lett.

December 16, 2011, Trento

Detection of NC events

 Knocked out neutrons (~50% of NC events) do not emit Cherenkov light.

 In water Cherenkov detectors, the threshold momentum of proton is 1.07 GeV/c
[at E=600 (900) MeV, 100.0 (93.7)% of events is below the threshold]

 Hence, an additional signature for NC event might be very useful. Nuclear deexcitation as a prompt signal of NC event

 Nucleon knockout may leave residual nucleus in an excited state.

 Photon produced by deexcitation could provide a useful signal, especially for water Cherenkov detectors.

Structure of the oxygen nucleus and excitation levels of residual nuclei

Cross section for *y* **emission following NC event**

It is a product of

NC x-section for the knockout from each shell

• branching ratios for deexcitation by γ emission

$$\sigma_{\gamma} \equiv \sigma(\nu + {}^{16}_{8}\mathrm{O} \to \nu + \gamma + Y + N)$$

= $\sum_{\alpha} \sigma(\nu + {}^{16}_{8}\mathrm{O} \to \nu + X_{\alpha} + N) B(X_{\alpha} \to \gamma + Y),$

Cross section for y emission accompanying NC event

Our estimate is that

 photons from the s1/2 knockout (of E > 6 MeV) follow <2% NC events

 6-MeV photons (from the p3/2 knockout) follow ~40% NC events

Summary

1 Deexcitation into photons of $E_{\gamma} > 6$ MeV following the NC interaction may provide a useful signature for water Cherenkov detectors

2 The ratio σ(γ)/σ(NC) is largely independent of the axial mass value

B In the important for T2K region $E \lesssim 1$ GeV, the ratio is ~40% for the 6-MeV γ 's from p3/2 knockout. The $E\gamma > 6$ MeV photons from s1/2 hole are just ~2%.

Analysis of the Q²-dependence of QE v_{μ} -nucleus interactions

based on the article A.M.A., O. Benhar, and N. Farina Phys. Rev. D 82, 013002 (2010)

December 16, 2011, Trento

Low-Q² problem: K2K

Low-Q² problem: MiniBooNE

Low-Q² problem: SciBooNE

Are Q² vs. Q²_{rec} *really* equivalent?

Reconstructed Q²

- In scattering off nucleus the true Q^2 cannot be obtained (only $|k_u|$ and θ are measured)
- When ɛ = 0 the rec. Q² is equal to the true Q² corresponding to the scattering off a free neutron with the same muon kinematics
- In general case Q²_{rec} lacks physical meaning but is useful as a quantity for data analysis

Q^2 at the (ω , |q|) plane

Why these conclusions are model-independent?

The presented effects are related to the Jacobian only, not to the specific (model-dependent) cross section

$$\int dE_{\nu} J(Q^2, Q_{\rm rec}^2, E_{\nu}) \frac{d\sigma}{dQ_{\rm rec}^2} \Phi(E_{\nu}) = \int dE_{\nu} \frac{d\sigma}{dQ^2} \Phi(E_{\nu})$$

Relation between Q^2 and Q^2_{rec} is **complicated** and involves **neutrino energy**.

The physics is **relatively simple** in terms of $|\mathbf{q}|$. Using Q² makes the situation more difficult, and Q²_{rec} produces further complications.

New variables

Proposal of new variables

Instead of Q^2_{rec} one may analyze data using

$$\beta = E_{\mu} - |\mathbf{k}'| \cos \theta$$

(7	1	r
	J		L

$$\phi = \frac{1}{m_{\mu} + \beta}$$

Proposal of new variables

Advantages:

- model independent
- contain only measurable quantities
- independent of the interaction's dynamics, work well even for low energy
- sensitive to the axial mass due to

$$\beta = \frac{k \cdot k'}{E_{\nu}} = \frac{Q^2 + m_{\mu}^2}{2E_{\nu}}$$

Results for the MiniBoone flux: beta

Results for the MiniBoone flux: phi

Results for the MiniBoone flux: phi

The probe **transferring momentum |q|** sees the

structures of the size $\sim 1/|\mathbf{q}|$

The probe **transferring momentum |q|** sees the

structures of the size $\sim 1/|\mathbf{q}|$

Comparison of the of the nuclear response at saturation density calculated using the IA and without it [O. Benhar and N. Farina, Phys. Lett. B680, 305 (2009)] suggests validity of the IA for $|\mathbf{q}| \ge 2k_F$

Low-|q|'s in the QE x-section

Low-|q|'s in the QE x-section

	Neutrino energy (GeV)									
	0.2	0.4	0.6	0.8	1.0	1.2	1.4			
$ \mathbf{q} \le 300 \text{ MeV}/c$	97.2%	18.9%	11.9%	10.1%	9.4%	9.1%	9.0%			
$ \mathbf{q} \le 400 \text{ MeV}/c$	100.0%	43.3%	26.2%	21.6%	19.8%	19.1%	18.8%			

	Neutrino energy (GeV)								
	2.0	2.5	3.0	3.5	4.0	4.5	5.0		
$ \mathbf{q} \leq 300 \text{ MeV}/c$	9.1%	9.2%	9.3%	9.3%	9.4%	9.4%	9.5%		
$ \mathbf{q} \leq 400 \; \mathrm{MeV}/c$	18.8%	18.9%	19.1%	19.1%	19.3%	19.3%	19.4%		

Low-|q|'s in the QE x-section

A.M.A., PoS (NUFACT08) 118 (2008)

Low-Q² problem: MiniBooNE

For low |q| one should not rely on the IA, as NN correlations are important.

Neutrino QE cross section at low-Q² is affected by these effects **nearly independently of energy.**

Summary

- The true and reconstructed Q² are not equivalent even when flux-averaged event distributions are considered
- At low |q| the IA is not reliable as NN correlations become significant, what affects the QE cross section at any neutrino energy.
- The proposed variables may be useful in data analysis.

Electroweak nuclear-matter response at moderate momentum transfer

based on the article A.M.A. and O. Benhar Phys. Rev. C 83, 054616 (2011)

December 16, 2011, Trento

Current reduction

The upper and lower Pauli spinor describing onshell Dirac particle are related through

$$\phi_{\sigma} = \mathbf{\hat{p}} \cdot \sigma \chi_{\sigma},$$

what allows to reduce the current as

$$\left(\chi^{\dagger}_{\sigma'}, \phi^{\dagger}_{\sigma'}\right)\left(\Gamma^{\mu}_{V} + \Gamma^{\mu}_{A}\right) \begin{pmatrix}\chi^{\sigma}\\\phi^{\sigma}\end{pmatrix} \to \chi^{\dagger}_{\sigma'}\left(V^{\mu} + A^{\mu}\right)\chi_{\sigma},$$

LO result

$$V^{0} = F^{1},$$

$$V^{k} = \left(F^{1} + F^{2}\right) \frac{i\left[\sigma \times (\mathbf{p}' - \mathbf{p})\right]^{k}}{2M} + F^{1} \frac{(\mathbf{p} + \mathbf{p}')^{k}}{2M},$$

$$A^{0} = F_{A} \frac{\sigma \cdot (\mathbf{p}' + \mathbf{p})}{2M} - F_{P} \frac{\mathbf{p}'^{2} - \mathbf{p}^{2}}{2M^{2}} \frac{\sigma \cdot (\mathbf{p}' - \mathbf{p})}{2M},$$

$$A^{k} = F_{A} \sigma^{k} - F_{P} \frac{(\mathbf{p}' - \mathbf{p})^{k}}{M} \frac{\sigma \cdot (\mathbf{p}' - \mathbf{p})}{2M}.$$

Exact result

$$\begin{aligned} \frac{V^{0}}{\lambda_{p}\lambda_{p'}} &= \left(F^{1} + F^{2}\right)\left[1 + \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}} + i\sigma \cdot (\hat{\mathbf{p}}' \times \hat{\mathbf{p}})\right] \\ &- F^{2}\frac{E_{p'} + E_{p}}{2M}\left[1 - \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}} - i\sigma \cdot (\hat{\mathbf{p}}' \times \hat{\mathbf{p}})\right], \\ \frac{V^{k}}{\lambda_{p}\lambda_{p'}} &= \left(F^{1} + F^{2}\right)\left[(\hat{\mathbf{p}}' + i\sigma \times \hat{\mathbf{p}}')^{k} + (\hat{\mathbf{p}} - i\sigma \times \hat{\mathbf{p}})^{k}\right] \\ &- F^{2}\frac{(\mathbf{p} + \mathbf{p}')^{k}}{2M}\left[1 - \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}} - i\sigma \cdot (\hat{\mathbf{p}}' \times \hat{\mathbf{p}})\right], \\ \frac{A^{0}}{\lambda_{p}\lambda_{p'}} &= F_{A}\sigma \cdot (\hat{\mathbf{p}}' + \hat{\mathbf{p}}) - F_{P}\frac{E_{p'} - E_{p}}{M}\sigma \cdot (\hat{\mathbf{p}}' - \hat{\mathbf{p}}), \\ \frac{A^{k}}{\lambda_{p}\lambda_{p'}} &= F_{A}\left[\sigma^{k} + \hat{p}'^{k}(\sigma \cdot \hat{\mathbf{p}}) + \hat{p}^{k}(\sigma \cdot \hat{\mathbf{p}}') - (\hat{\mathbf{p}}' \cdot \hat{\mathbf{p}})\sigma^{k}\right] \\ &- iF_{A}(\hat{\mathbf{p}}' \times \hat{\mathbf{p}})^{k} - F_{P}\frac{(\mathbf{p}' - \mathbf{p})^{k}}{M}\sigma \cdot (\hat{\mathbf{p}}' - \hat{\mathbf{p}}), \end{aligned}$$

$$V^{0} = F^{1},$$

$$V^{k} = \left(F^{1} + F^{2}\right) \frac{i\left[\sigma \times (\mathbf{p}' - \mathbf{p})\right]^{k}}{2M} + F^{1} \frac{(\mathbf{p} + \mathbf{p}')^{k}}{2M},$$

$$A^{0} = F_{A} \frac{\sigma \cdot (\mathbf{p}' + \mathbf{p})}{2M} - F_{P} \frac{\mathbf{p}'^{2} - \mathbf{p}^{2}}{2M^{2}} \frac{\sigma \cdot (\mathbf{p}' - \mathbf{p})}{2M},$$

$$A^{k} = F_{A} \sigma^{k} - F_{P} \frac{(\mathbf{p}' - \mathbf{p})^{k}}{M} \frac{\sigma \cdot (\mathbf{p}' - \mathbf{p})}{2M}.$$

Data from D.B. Day et al., PRC 40, 1011 (1989)

Neutrino scattering

Exact calculations doable for the nuclear matter

LO approximation fails for |q| > 300 MeV,
 relativistic kinematic is important

Similar conclusions for the MF approach in

J.E. Amaro et al., Nucl. Phys. A 602, 263 (1996); J.E. Amaro et al., Phys. Rep. 368, 317 (2002).

Back-up slides

In neutrino physics many complications result from **non-monoenergetic** beams and the necessity for reconstruction of the probe's energy.

Neutrino scattering off a free neutron

What we know:

• the final state is only p and μ

$$(E_n + E_\nu - E_\mu)^2 - (\mathbf{p}_n + \mathbf{k}_\nu - \mathbf{k}_\mu)^2 = M^2$$

n is at rest

$$(M + E_{\nu} - E_{\mu})^2 - (\mathbf{k}_{\nu} - \mathbf{k}_{\mu})^2 = M^2$$

Hence $E_v = |k_v|$ may be calculated from the measured vector k_{μ} i.e. from $|k_{\mu}|$ and muon production angle θ

Neutrino scattering off a free neutron What we know:

the initial neutron (?) is bound and moves

$$(E_n - \epsilon + E_\nu - E_\mu)^2 - (\mathbf{p}_n + \mathbf{k}_\nu - \mathbf{k}_\mu)^2 = M^2$$

Approximations:
$$p_n = 0$$
 and constant \mathcal{E}

$$E_{\nu}^{\rm rec} \neq E_{\nu}$$

$$Q^{2} = (\mathbf{k}_{\nu} - \mathbf{k}_{\mu})^{2} - (E_{\nu} - E_{\mu})^{2}$$

$$Q^2 = -m_\mu^2 + 2E_\nu(E_\mu - |\mathbf{k}_\mu|\cos\theta)$$

Reconstructed Q²

$$Q_{\rm rec}^2 = -m_{\mu}^2 + 2E_{\nu}^{\rm rec}(E_{\mu} - |\mathbf{k}_{\mu}|\cos\theta)$$