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(important in determining a neutron star’s maximum mass), symmetry energies
(important in determining the typical stellar radius and in the relative proton
fraction) and specific heats (important in determining the local temperature).
These characteristics play important roles in determining the matter’s compo-
sition, in particular the possible presence of additional components (such as
hyperons, a pion or kaon condensate, or quark matter), and also significantly
affect calculated neutrino opacities and diffusion time scales.

The evolution of a PNS proceeds through several distinct stages [1,2] and
with various outcomes, as shown schematically in Fig. 1. Immediately following
core bounce and the passage of a shock through the outer PNS’s mantle, the
star contains an unshocked, low entropy core of mass Mc ! 0.7 M! in which
neutrinos are trapped (the first schematic illustration, labelled (1) in the figure).
The core is surrounded by a low density, high entropy (5 < s < 10) mantle
that is both accreting matter from the outer iron core falling through the shock
and also rapidly losing energy due to electron captures and thermal neutrino
emission. The mantle extends up to the shock, which is temporarily stationary
at a radius of about 200 km prior to an eventual explosion.

Fig. 1. The main stages of evolution of a neutron star. Shading indicates approximate
relative temperatures.

After a few seconds (stage 2), accretion becomes less important if the super-
nova is successful and the shock lifts off the stellar envelope. Extensive neutrino

✓  

M. Prakash et al., arXiv:astro-ph/0012136v1

2/

Neutrino opacity of N. M.: an astrophysical scenario

From a qualitative point of view...

16



2 Madappa Prakash et al.

(important in determining a neutron star’s maximum mass), symmetry energies
(important in determining the typical stellar radius and in the relative proton
fraction) and specific heats (important in determining the local temperature).
These characteristics play important roles in determining the matter’s compo-
sition, in particular the possible presence of additional components (such as
hyperons, a pion or kaon condensate, or quark matter), and also significantly
affect calculated neutrino opacities and diffusion time scales.

The evolution of a PNS proceeds through several distinct stages [1,2] and
with various outcomes, as shown schematically in Fig. 1. Immediately following
core bounce and the passage of a shock through the outer PNS’s mantle, the
star contains an unshocked, low entropy core of mass Mc ! 0.7 M! in which
neutrinos are trapped (the first schematic illustration, labelled (1) in the figure).
The core is surrounded by a low density, high entropy (5 < s < 10) mantle
that is both accreting matter from the outer iron core falling through the shock
and also rapidly losing energy due to electron captures and thermal neutrino
emission. The mantle extends up to the shock, which is temporarily stationary
at a radius of about 200 km prior to an eventual explosion.

Fig. 1. The main stages of evolution of a neutron star. Shading indicates approximate
relative temperatures.

After a few seconds (stage 2), accretion becomes less important if the super-
nova is successful and the shock lifts off the stellar envelope. Extensive neutrino

2 Madappa Prakash et al.

(important in determining a neutron star’s maximum mass), symmetry energies
(important in determining the typical stellar radius and in the relative proton
fraction) and specific heats (important in determining the local temperature).
These characteristics play important roles in determining the matter’s compo-
sition, in particular the possible presence of additional components (such as
hyperons, a pion or kaon condensate, or quark matter), and also significantly
affect calculated neutrino opacities and diffusion time scales.

The evolution of a PNS proceeds through several distinct stages [1,2] and
with various outcomes, as shown schematically in Fig. 1. Immediately following
core bounce and the passage of a shock through the outer PNS’s mantle, the
star contains an unshocked, low entropy core of mass Mc ! 0.7 M! in which
neutrinos are trapped (the first schematic illustration, labelled (1) in the figure).
The core is surrounded by a low density, high entropy (5 < s < 10) mantle
that is both accreting matter from the outer iron core falling through the shock
and also rapidly losing energy due to electron captures and thermal neutrino
emission. The mantle extends up to the shock, which is temporarily stationary
at a radius of about 200 km prior to an eventual explosion.

Fig. 1. The main stages of evolution of a neutron star. Shading indicates approximate
relative temperatures.

After a few seconds (stage 2), accretion becomes less important if the super-
nova is successful and the shock lifts off the stellar envelope. Extensive neutrino

✓  

M. Prakash et al., arXiv:astro-ph/0012136v1

2/

Neutrino opacity of N. M.: an astrophysical scenario

From a qualitative point of view...

16



ar
X

iv
:a

st
ro

-p
h
/0

3
0
3
1
7
1
v
1
  
7
 M

ar
 2

0
0
3

Improved models of stellar core collapse and still no explosions:
What is missing?

R. Buras, M. Rampp, H.-Th. Janka, and K. Kifonidis1

1Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany
(Dated: February 2, 2008)

Two-dimensional hydrodynamic simulations of stellar core-collapse with and without rotation are
presented which for the first time were performed by solving the Boltzmann equation for the neutrino
transport including a state-of-the-art description of neutrino interactions. Although convection
develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock,
the models do not explode. This suggests missing physics, possibly with respect to the nuclear
equation of state and weak interactions in the subnuclear regime. However, it might also indicate a
fundamental problem of the neutrino-driven explosion mechanism.

PACS numbers: PACS numbers: 97.60.Bw, 26.50.+x, 95.30.Jx, 95.30.Lz

Despite of more than three decades of theoretical
research and numerical modeling, the processes which
cause the explosion of massive stars are still not under-
stood. Current observational data of supernovae (SNe)
do not provide direct information. Although neutrinos
(ν) and gravitational waves could yield such insight, the
ν events detected in connection with SN 1987A were
too sparse to constrain the SN mechanism. Progress in
our understanding of the complex phenomena in collaps-
ing stars and nascent (“proto-”) neutron stars (PNSs) is
therefore mainly based on hydrodynamic simulations.

Stars more massive than about 10 solar masses (M!)
develop an iron core in a sequence of nuclear burning
stages. This iron core becomes gravitationally unstable
when it reaches a mass close to its Chandrasekhar limit
and collapses to a neutron star. A hydrodynamic shock
forms when nuclear density is reached and the matter be-
comes incompressible. There is general agreement, sup-
ported by detailed numerical models, that this shock is
not able to promptly cause a SN explosion. Instead, it
suffers from severe energy losses by the photodisintegra-
tion of iron nuclei to free nucleons. It finally stalls after
having reached densities low enough that electron neutri-
nos (νe) can rapidly escape in a luminous outburst and
thus drain even more energy from the shock-heated mat-
ter [3, 4, 29].

While ν losses damp the shock in this early phase, the
situation changes some 50 ms later. As more stellar mat-
ter falls onto the collapsed inner core, the shock is pushed
to larger radii and the density and temperature behind
the shock decrease. On the other hand, the central core
begins to settle and heats up, thus radiating more ener-
getic neutrinos. Both effects lead to the situation that
νe and ν̄e can now be absorbed with a small probability
(10–20%) by free neutrons and protons behind the shock.
A region of ν heating between the so-called “gain radius”
and the shock front develops [2]. If the ν energy deposi-
tion is efficient enough, the stalled shock can be revived
and drives a “delayed” explosion.

The success of pioneering calculations [2] could be

maintained in later models only by invoking neutron-
finger convective instabilities in the PNS [33]. These
boost the ν luminosities and thus enhance the ν-energy
transfer to the shock. Explosion energies similar to those
of observed SNe required even higher ν fluxes. It was pro-
posed that these could be obtained when pions appear in
large numbers in the PNS matter [25]. The existence
of neutron-finger instabilities, however, depends on very
specific thermodynamical properties of the equation of
state and on the details of the ν transport [5]. The for-
mation of pions in hot PNS matter, on the other hand,
is highly uncertain and requires particular assumptions
about their dispersion relation.

While all simulations addressed so far were performed
in one dimension (1D) assuming spherical symmetry
(neutron-finger convection was treated by a mixing-
length approach), SN 1987A provided evidence for large-
scale mixing processes which carried radioactive nuclei
from the region of their formation near the PNS into
the helium and hydrogen shells of the exploding star.
Simulations suggested that their origin may be linked
to hydrodynamic instabilities behind the stalled shock
already during the first second of the explosion [16].
Two-dimensional (2D) [9] and most recently also three-
dimensional (3D) [12] models that take into account ν

effects then showed that convective overturn indeed de-
velops in the ν heating region and is helpful for shock
revival, thus making explosions possible even when spher-
ically symmetric models fail [19].

The multi-dimensional situation is generically differ-
ent because it allows accretion to continue while shock
expansion already sets in. Narrow downflows bring cold,
low-entropy matter close to the gain radius, where the ν

energy deposition is strongest. At the same time heated
matter can rise in buoyant bubbles, thus pushing the
shock farther out and reducing energy loss by the ree-
mission of neutrinos. Although this increases the effi-
ciency of ν-energy transfer, convection is still no guar-
antee that explosions occur [19]. A particular concern
with all multi-dimensional models which yielded explo-
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= [ 1, (!̂σ1 · !̂σ2) , Ŝ12(r̃) ]⊗ [ 1 , (!̂τ1 · !̂τ2) ]v̂6
12

spin isospin

Ĥ = T̂0 + v̂18
ij

(Argonne potential)

Static part
q → 0



No experiments available

✓  Effective N-N interaction in medium CBF theory
(Correlated Basis Function)

How can we get these parameters?

✦  Variational method
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〈Ĥ〉2 =
N∑

i<j

〈FG, ij|1
2
F̂2

[
t̂1 + t̂2, F̂2

]
+ F̂2

( )
F2|ij,FG〉av̂6

12

(ŵ6
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CBF and Landau-CBF...are they comparable?
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Dynamic Response of neutron matter

density-density response function spin-spin response function

LµνIm
[
H̃µν

]
→ 8 ε′ε

[
Im[χρρ(q, w)](1 + cos θ) + Im[χσσ(q, w)](3 − cos θ)

]

including also F2

Iwamoto et al., Phys. Rev. D 25,313 (1982)
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An hint of result . . .

✓  Neutrino mean free path

Ω " #kv f

Ω " 2 q # k

Ω " #kB T

A

B

C

Ω " kv f

0.1 0.2 0.3 0.4 0.5

k

#0.2

#0.1

0.1

0.2

0.3

0.4

Ω

−kBT < −vf2q/(1 − vf )

A = (2q/(vf+1), vf2q/(vf+1)) B =
(2q, 0) C = (2q/(1−vf ),−vf2q/(1−
vf ))

Ω " kv f

Ω " #kv f

Ω " 2 q # k

Ω " #kB T

D

E

F

0.2 0.4 0.6 0.8

k

#0.4

#0.2

0.2

0.4

Ω

−kBT > −vf2q/(1 − vf )

D = (2q/(vf +1), vf2q/(vf +1))
E = (2q, 0) F = (2q + kBT,−kBT )

(4.35)

(4.44)

−kBT < −vf2q/(1− vf ) −kBT > −vf2q/(1− vf )

ω ω = −csk (4.30)

4.15 4.16
q = 40Mev T = (40, 45, 50)Mev q = 10Mev

T = 40Mev

T = 0

✓  Phase space
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Summary and perspective

✓  CBF theory is used to model the low-energy, interacting hamiltonian Hint

in dense matter

✓  

✓  

Evaluation of Landau parameters: No discrepancy within the static
properties

Landau dynamical response
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Neutrino mean free path and finite-temperature effects

Extension to asymmetric nuclear matter in β-equilibrium

Evaluation of Landau parameters: No discrepancy within the static
properties
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