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Introduction
       The electroweak interactions with nuclei are 
characterized by two kinds of scaling phenomena.

 First kind: indepedence of the momentum transfer q

 Second kind:  independence of nuclear species

                        (independence of     )kF
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Introduction
       The electroweak interactions with nuclei are 
characterized by two kinds of scaling phenomena.

 First kind: indepedence of the momentum transfer q

 Second kind:  independence of nuclear species

                        (independence of     )kF

In the present study we focused on 
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Introduction

   We restrict our attention to an interacting, infinite, 
homogeneus, non-relativistic ensemble of nucleons, 
enclosed in a large volume V.

   Our aim is not to provide a detailed numerical study 
of scaling phenomena but develop an analytic 
model as long as possible.
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• To explore with a simple model what role 
short- and long-range correlations play in 
the scaling function.

• To study several properties of scaling 
(scaling violations, asymmetry, shift, how 
scaling is approached for large momenta).

Our goal:
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The model
The basic formula we start with reads:

(see: K. Gottfried, Ann. of Phys., 21, 29 (1963)).

Where:

n(k)               is the momentum distribution
                     is the two-body force between the nucleons (potential)
                     is the pair correlation function (related by a F.T. to the n(k))
C  r 1−r 2 

C  r 1−r 2 
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The model
The basic formula we start with reads:

(see: K. Gottfried, Ann. of Phys., 21, 29 (1963)).

Where:

n(k)               is the momentum distribution

                     is the two-body force between the nucleons (potential)

                     is the pair correlation function (related by a F.T. to the n(k))

We applied it to an interacting, infinite, homogeneous, non-
relativistic system of nucleons. 

C  r 1−r 2 

C  r 1−r 2 
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The model
So, we assume a momentum distribution, parametrized as:

that takes in account:

-  the existence of a high-momentum tail (as suggested by experimental data)

-  the existence of a Fermi surface (as the Luttinger theorem says about a 
“normal” Fermi system)

α=0 .2 β1=0 .4 β2=4
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The model
So, we assume a momentum distribution, parametrized as:

that takes in account:

-  the existence of a high-momentum tail (as suggested by experimental data)

-  the existence of a Fermi surface (as the Luttinger theorem says about a 
“normal” Fermi system)

     n(k) is a very simple 
parametrization but able to 
capture both short- and long-
range correlations in a simple form 
that allows for analytic 
calculations.

α=0 .2 β1=0 .4 β2=4
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The model
From this momentum distribution:

the pair correlation function is obtained according to the definition:

and one gets:
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The model

     In the figure you can see:

     the marked difference between 
the two correlation functions at 
short distances, while they 
coincide at large distances.

     This behaviour nicely illustrates 
the role of short-range 
correlations.
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The model
Here we plot the Coulomb Sum Rule, a quantity depending only upon the n(k)

through the following equation: 

You can see that the two lines

coincide at large momenta 

(uncorrelated fermions); 

at medium momenta they differ

due to the action of correlations

among the fermions;

for small momenta, this

difference tends to disappear.
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The model
Now, we employ a mixture of a Wigner and Majorana force, namely 

where       is the space exchange operator and       a parameter varying over

the range                  . 

Px γ
0≤γ≤1

     This very simple, instantaneous 
potential is meant to represent 
an effective NN interaction in 
the medium arising from the 
ladder diagrams summed up via 
the Bethe-Goldstone equation.
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The model
Starting from

and the normalization of the momentum distribution

we want to reproduce some properties of nuclear matter (binding energy,

density, compressibility).

So we start by choosing “reasonable” values of the parameters for n(k)

and v(r).

The model
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The model
Choosing:

                          Of course, this set of parameters is far from unique.

                                                

The model

α=0 .2 β1=0 .4 β2=4
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The model
We obtain the binding energy versus       : 

                          

                                                

The model

k F

kF
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Setting up the propagator
     To calculate the scaling function, starting from our n(k) and v(r), 

we need the single particle propagator G(k, ω).

    So, we can build the two-particle propagator (or density-density 
correlation function).

    The scaling function is simply related to the Π(q, ω) by 

G  k 
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Setting up the propagator
To do this, we start from the equation of the binding energy:

Doing a Fourier Transform of the potential:

We obtain:
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Setting up the propagator
To do this, we start from the equation of the binding energy:

Doing a Fourier Transform of the potential:

We obtain:

Expression for the single particle energy
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Setting up the propagator
So the single-particle energy (hole) reads:

                                

     Note the discontinuity

     (~ 6.5 MeV) due to the 
discontinuity in n(k).
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Setting up the propagator
The single-particle energy (particle) is related to the previous equation:

                                

     Note, again, the discontinuity

     (~ 6.5 MeV) due to the 
discontinuity in n(k).
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Setting up the propagator
    With the previous elements, we propose a form for the single fermion 

propagator that reads as follows:

    of course, for an infinite, homogeneous, interacting many-body 
system of nucleons.

    We propose a kind of mean-field approximation of G, that provides 
the correct system energy and momentum distribution.
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Setting up the propagator
    With the previous elements, we propose a form for the single fermion 

propagator that reads as follows:

    This structure of the propagator tells us that in our model:

    the holes exist below, but also above, the Fermi surface         and

    the particles exist above, but also below, the Fermi surface.                   
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Results
    Starting from G, one can compute Π and so the response function is 

easily derived:  

 

   The response function of our model (blue line) and the response

    function of the Free Fermi gas (green line) plotted versus ω for 

                                        up to                                      in step of            .
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Results
    From the response, one can obtain the scaling function per proton 

according to:  

   Using the usual dimensionless scaling function
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Results
    

 

- The scaling function obtained spans a range of energy loss that 
extends to larger values than that seen for the Fermi gas model (a 
clear indication of the role of correlations among the nucleons).

- The widths seen in our model are somewhat larger than those of the 
Fermi gas and the peak heights are somewhat lower. 

- The peak positions in our model are shifted to higher energy loss 
than for the Fermi gas.
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Results
    

 

    To investigate better the scaling behaviour of our model we follow the 
usual procedures and display f versus the well-known scaling variable

   

    The scaling functions for different q

     tend to group together very closely 
when displayed versus the scaling 
variable, that is they scale.

     Noting that the coalescence 
occurs at a peak value       >0, it is 
interesting to investigate that…

   

    Unlike for the Fermi gas in our model the scaling functions are no 
longer perfectly symmetric around their maxima (as observed 
experimentally).
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Results
    

 

     With  a simple modification of the scaling variable, one can move the 
peak positions to zero:

     where                                                  with

   

     Solid line: q-dependent energy shift 

     Dashed line: the energy shift obtained in a RMF studies of       . 
12 C
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Results
    

 

    To see better the asymmetry of the scaling function, we plotted the above  
   on a semilog scale:

   

     Here the asymmetry, while small, is clearly apparent.

     Unfortunately it is not enough so to agree with the experiment.
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Results
    

 

     In concluding this research we have plotted the scaling function versus q, 
in the scaling region, for                                               according this 
formula: 

    where                                                and           ω’ = ω – 30 MeV

   

   

     A constant energy shift

   

   

     Basically, we have fixed a 
value of scaling function 
and we have explored the 
behaviour of f vs q. 
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Results
    

 

     In concluding this research we have plotted the scaling function versus q, 
in the scaling region, for                                               according this 
formula: 

    where                                                and           ω’ = ω – 30 MeV

   

   

     A constant energy shift

   

   

     It is clear that the 
scaling regime is 
approached from 
above, an occurrence 
which is in accord 
with the experimental 
data. 
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Results
    

 

     If the high momentum tail in n(k) is set to 0, then the contributions 
extending to large         essentially disappear.

   

     It is very suggestive that in the present model the origin of the 
tails, in the scaling function, is principally due to the short-range 
physics, as is often assumed to be the case. 
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Results
    

 

     To understand better the role of the tail of n(k), we have repeated the 
entire calculation using a stronger high momentum tail.

    Also in this case we are able to reproduce the density, binding energy and 
compressibility and we find scaling.

   

     The scaling function 
occurring in this case is 
found to be more 
asymmetric than the 
previous one.
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Summary
• A momentum distribution has been chosen with low- and high-k 

components.

• We have restricted our study to the infinite, homogeneous,  non-
relativistic nuclear matter.

• We have devised a single-particle Green function that leads to the 
known properties of nuclear matter.

• From the Green function we have obtained the electron scattering 
response function.

• For the latter we have explored several aspects of scaling. 
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The End

Thanks to all!!!
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Results

The dashed lines represent the momentum distribution with a stronger 
tail and the potential with a bigger repulsion and lower range 

attraction. 
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