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latest comment of the MB31 referees

...A lot of experience. The project is interesting 

perhaps a little too broad. Each group makes its own 

contribution. It would be nice to have more relation between 

the different groups...



Outline of the talk
Previous works: my skills, what I can do and topics 
on which we can start a collaboration (see latest 
work with Lecce, Pavia and Orsay) 

Future works: what I plan to do (a chance for 
future collaborations?)

Recent calculations: pairing from two- and three-
body forces in finite nuclei/
ground-state properties from mean-field 
approaches



PREVIOUS WORKS
parity violating electron scattering

   neutron weak 
charge  >> proton weak charge 

            is  small,  best  observed 
 by  parity  violation 
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PREVIOUS WORKS
parity violating electron scattering
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PREVIOUS WORKS
Relativistic mean field models

GROUND STATE PROPERTIES (RHB in open shell nuclei)

Meson-exchange 
•non linear 
•density dependent

Point coupling 
•linear 
•density dependent
-phenomenological
-chiral dynamics inspired

NEW RELATIVISTIC MEAN-FIELD INTERACTION . . . PHYSICAL REVIEW C 71, 024312 (2005)
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FIG. 1. Differences between the calculated and experimental
binding energies for the O and Pb isotopic chains. The theoret-
ical values are calculated in the RHB model with the DD-ME1
and DD-ME2 mean-field effective interactions, and with Gogny
pairing.

isoscalar and isovector giant resonances. Ground-state proper-
ties have been calculated in the RHB model with the DD-ME2
effective interaction in the particle-hole channel, and with the
Gogny interaction [23] in the pairing channel

V pp(1, 2) =
∑

i=1,2

e−((r1−r2)/µi)2
(Wi + BiP

σ

−HiP
τ − MiP

σP τ ), (9)

with the set D1S [20] for the parameters µi,Wi , Bi,Hi , and
Mi (i = 1, 2).

The fully self-consistent RRPA [11] and R(Q)RPA [24]
have been used to calculate excitation energies of giant reso-
nances in doubly closed and open-shell nuclei, respectively.
The R(Q)RPA is formulated in the canonical basis of the
RHB model and, in both the ph and pp channels, the same
interactions are used in the RHB equations that determine the
canonical quasiparticle basis and in the matrix equations of
the R(Q)RPA.

In general, when compared with the results obtained
with the DD-ME1 interaction [10,11,21], the new inter-
action improves the agreement with experimental data on
ground-state properties of spherical and deformed nuclei and
excitation energies of giant resonances in spherical nuclei.
For instance, in Fig. 1 we display the absolute deviations
of the theoretical masses from the experimental values [17]
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FIG. 2. Absolute deviations of the binding energies calculated
with the DD-ME2 interaction from the experimental values [17].

for the isotopic chains of O and Pb. For the O isotopes the
absolute deviations calculated with DD-ME1 and DD-ME2
are comparable, generally within ≈1 MeV of the experimental
data. For the Pb chain, in contrast, the binding energies
calculated with the DD-ME2 interaction are in much better
agreement with data. However, we are not going to present
here a comparison with all the results that were extensively
discussed in Refs. [10,11,21] for the DD-ME1 interaction.
Rather, selected features of the DD-ME2 interaction will be
illustrated.

The theoretical binding energies of approximately
200 nuclei calculated in the RHB model, with the DD-ME2
plus Gogny D1S interactions, are compared with experimental
values in Fig. 2. Except for a few Ni isotopes with N ≈ Z
that are notoriously difficult to describe in a pure mean-
field approach, and several transitional medium-heavy nuclei,
the calculated binding energies are generally in very good
agreement with experimental data. Although this illustrative
calculation cannot be compared with microscopic mass tables
that include more than 9000 nuclei [3–6], we emphasize that
the rms error including all the masses shown in Fig. 2 is less
than 900 keV. Moreover, since a finite-range pairing interaction
is used, the results are insensitive to unphysical parameters
like, for instance, the momentum cutoff in the pairing channel.
When compared with data on absolute charge radii and charge
isotope shifts from Ref. [19], the calculated charge radii exhibit
an rms error of only 0.017 fm. The predictive power of the
RHB model with the DD-ME2 effective interaction is also
illustrated in Table IV, where we include the calculated binding
energies, radii of charge and neutron density distributions,
and quadrupole and hexadecupole moments of heavy and
superheavy nuclei, in comparison with available experimental
data [17–19,25]. The calculated masses and moments are in
excellent agreement with experimental values. The results
shown in Fig. 2 and Table IV indicate that DD-ME2 could
be used as a basis for a microscopic mass table based on a
relativistic universal energy density functional. Work along
these lines is in progress.
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Larger errors show up sometimes for light nuclei in the
isotopic chains, see Fig. 5. The case 40Ca is notoriously dif-
ficult for PC-F1 and light Ni isotopes are a problem for all
RMF models. The underbinding of 40Ca may be excused by
a missing Wigner energy !41". But 56Ni is already overbound
and a Wigner energy would worsen the situation. The rea-
sons for the deviation have to be searched somewhere else,
probably it is again an isovector mismatch.
The heavier systems perform much better. They are de-

scribed within an error of about 0.4%, with few exceptions.

We also see that NL-Z2 performs best in most cases. Some
slopes and kinks are also apparent in these plots for all
forces. They indicate yet unresolved isotopic and isotonic
trends. Another interesting observation can be made: the
structure of the curves is, with differences in detail, similar
for NL-Z2 and PC-F1 in almost all cases #this is most strik-
ing for the Sn isotopes$. It shows that the fitting strategy #i.e.,
the choice of nuclei and observables$ has direct conse-
quences for the trends of the errors.
A well-visible feature manifests itself in the form of kinks

of the errors that appear at magic shell closures. These kinks
indicate that the jump in separation energies at the shell clo-
sure is too large #typically by about 1–2 MeV$. This, in turn,
means that the magic shell gap is generally a bit too large.
Some SHF forces solve this problem by using effective mass
m*/m!1. This option does not exist in RMF as we have
seen above. But there are other mechanisms active around
shell closures. The strength and form of the pairing can have
an influence on the kink #i.e., shell gap$. Moreover, ground-
state correlations will also act to reduce the shell gap of the
mere mean-field description. This is an open point for future
studies.
Figure 6 shows the relative errors of binding along iso-

tonic chains, assuming again all spherical nuclei. Again,
there are larger fluctuations for the small nuclei, N!20 and
N!28, while the heavier nuclei, N!50 and N!82, stay
nicely within the error bounds. But the heaviest N!126
chain grows again out of bounds at its upper end. Isotonic
chains are a sensitive test of the balance between the Cou-
lomb field and the isovector channel of the effective La-
grangian. All effective forces discussed here produce larger
errors compared to the experimental isotonic chains, which
shows the need for further investigations of this property of
the RMF models.

FIG. 4. Energy per particle versus neutron density for four RMF
forces and the Skyrme force SLy6. The crosses mark data from Ref.
!40".

FIG. 5. Deviation #in %) of
the calculated energies from the
experimental values in spherical
calculations of isotopic chains.
Note that the scales are different
for each figure. The dotted lines
indicate the accuracy that can be
demanded from the models. The
experimental errors are smaller
than the size of the symbols used
in the figure.

NUCLEAR GROUND STATE OBSERVABLES AND QCD . . . PHYSICAL REVIEW C 65 044308

044308-13



PREVIOUS WORKS
Relativistic mean field models

excited STATE PROPERTIES (qrpa in open shell nuclei)

Meson-exchange 
•non linear 
•density dependent

Point coupling 
•linear 
•density dependent
-phenomenological
-chiral dynamics inspired

NEW RELATIVISTIC MEAN-FIELD INTERACTION . . . PHYSICAL REVIEW C 71, 024312 (2005)
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FIG. 3. The isoscalar monopole (a), and the
isovector dipole (b) strength distributions in
208Pb calculated with the effective interaction
DD-ME2. The experimental excitation energies
are 14.1 ± 0.3 MeV [26] for the monopole res-
onance and 13.3 ± 0.1 MeV [27] for the dipole
resonance, respectively.

An important field of applications of self-consistent mean-
field models includes the structure and decay properties of
superheavy nuclei [1]. The relativistic mean-field framework
has recently been very successfully employed in calculations
of chains of superheavy isotopes [29–38]. Because generally

relativistic density-dependent effective interactions provide
a very realistic description of asymmetric nuclear matter,
neutron matter, and nuclei far from stability, one can also
expect a good description of the structure of superheavy nuclei.
In Table IV we have shown that the interaction DD-ME2
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FIG. 4. The RHB+RQRPA isovector dipole strength distributions in 116,118,120,124Sn. The experimental IVGDR excitation energies for the
Sn isotopes are compared with the RHB+RQRPA results calculated with the DD-ME2 effective interaction.
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P. Finelli et al. / Nuclear Physics A 791 (2007) 57–67 65

Fig. 5. Gamow–Teller strength distributions for 48Ca, 90Zr and 208Pb. PN-RQPA results are shown in comparison with
experimental data (arrows) for the GTR excitation energies in 48Ca [26], 90Zr [27,28], and 208Pb [15–17].

3.2. Gamow–Teller excitations

The calculated Gamow–Teller (J π = 1+) strength distributions for 48Ca, 90Zr and 208Pb are
shown in Fig. 5. The one-body Gamow–Teller operator reads:

T GT
β∓ =

A∑

i=1

!(i)τ∓(i). (13)

The corresponding integrated strengths satisfy the Ikeda sum rule:

SGT
β− − SGT

β+ =
∑

f

∣∣〈ψf |T GT
β− |ψi〉

∣∣2 −
∑

f

∣∣〈ψf |T GT
β+

∣∣ψi〉|2 = 3(N − Z). (14)

In addition to the high-energy GT resonance—a collective superposition of direct spin-flip (j =
l + 1

2 → j = l − 1
2 ) transitions—the response functions display a concentration of strength in

the low-energy tail. The transitions in the low-energy region correspond to core-polarization
(j = l ± 1

2 → j = l ± 1
2 ), and back spin-flip (j = l − 1

2 → j = l + 1
2 ) neutron-hole–proton-

particle excitations. The calculated GTR are compared with the experimental excitation energies:
10.5 MeV for 48Ca [26], 15.6 MeV for 90Zr [27,28], and 19.2 MeV for 208Pb [15–17]. Although
one of the parameters of the Landau–Migdal interaction has been adjusted to reproduce the GTR
excitation energy in 208Pb, we find a very good agreement with experiment also for 48Ca and
90Zr. The integrated strengths satisfy the Ikeda sum rule with high accuracy. This is an important
test of the internal consistency of our relativistic PN-RPA. We note that the Ikeda sum rule is
exhausted by the calculated GT strength only when the relativistic RPA/QRPA space includes
both the ph excitations formed from ground-state configurations of the fully or partially occupied
states of positive energy, and the empty negative-energy states from the Dirac sea [10]. The
contribution of these configurations to the Ikeda sum rule is of the order of 8–10%.

Finally, for the sequence of even–even Sn target nuclei, we compare in Fig. 6 the PN-QRPA
predictions for the GTR excitation energies with experimental data from Sn(3He, t)Sb charge-



PREVIOUS WORKS
hypernuclei

vanishing spin-orbit splittings

178 P. Finelli et al. / Nuclear Physics A 831 (2009) 163–183

Fig. 3. Binding energies of the Λ in different (s,p, . . .) orbitals of six hypernuclei (cf. Tables 2 and 3), calculated with
the FKVW density functional using the three parameter sets for the ΛN couplings (cf. Table 1). Results are plotted
as functions of the mass number and compared with experimental energies [1]. Also shown is a Woods–Saxon fit [15]
(dashed curves) to guide the eye.

Table 4
P -shell spin–orbit splittings ∆ ≡ #εΛ(p) for six hypernuclei ( 13

ΛC, 16
ΛO, 40

ΛCa, 89
ΛY, 139

ΛLa, 208
ΛPb). Experimental

values [44], or empirical estimates [1,47,48], are shown in comparison with our theoretical predictions (FKVW), using a
broad range of ζ parameters (see Eq. (12)), and other relativistic calculations with (RMFI [11]) or without (RMFII [14])
tensor coupling. All energies are given in keV. The asterisk means that a local fit has been necessary.

Nucleus Exp. ∆

[keV]
FKVW
(0.4 ! ζ ! 0.66)

RMFI [11] RMFII [14]

13
ΛC 152 ± 54 ± 36 [44] −160 ! ∆ ! 510 310 ∼ 1100∗

16
ΛO 300 ! ∆ ! 600 [47] −210 ! ∆ ! 490 270 ∼ 1400

−800 ! ∆ ! 200 [1]

40
ΛCa – −140 ! ∆ ! 420 210 ∼ 1400

89
ΛY 90 [48] −40 ! ∆ ! 180 110 ∼ 700

139
ΛLa – −20 ! ∆ ! 80 50 ∼ 300

208
ΛPb – −20 ! ∆ ! 70 50 ∼ 300

spin–orbit correction and the Pauli-blocking effect at the quark level. Without these corrections
the resulting energy levels show a strong overbinding (cf. Table 4 in Ref. [12]). A very recent
improvement [13] solved the overbinding problem, introducing the scalar polarizability of the
nucleon in a self-consistent way instead of the Pauli blocking correction. In Tables 2 and 3 we
have included the latest update of these calculations.

Fig. 3 provides a further test of the sensitivity of calculated single-Λ energies with respect
to a variation of the ratio ζ = G

Λ(0)
S,V /G

(0)
S,V between contact terms representing the in-medium

condensate background fields for the hyperon and the nucleons. For the six hypernuclei listed in
Tables 2 and 3, the Λ binding energies calculated with the FKVW parameters plus the three best-
fit parameter sets from Table 1 that determine the ΛN couplings, are plotted as functions of the
mass number and compared with empirical energies. Calculations with all three parameter sets
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future WORKS
particle-vibration coupling

Particle-vibration coupling is still an open issue:
so far no theoretical approach is self-consistent

�k
�k +∆�k

Corrections are always on top of the mean-field calculation

E. Litvinova et al.



future WORKS
particle-vibration coupling: opm?

In this approach Exc is expressed in 
terms of the KS orbitals and 

eigenvalues rather than density itself

KS potentials Density

Total energy

Kinetic term External 
potential

Hartree 
potential

Exchange 
correlation term



future WORKS
particle-vibration coupling: opm?

External 
potential

Hartree 
potential

Exchange 
correlation term

Explicit dependence on KS 
orbitals and energies



future WORKS
correlations in mean field models

Correlations between 
different “observables” 
for several relativistic 

and non-relativistic 
functionals 

Correlations between 
nuclear matter and 

finite nuclei 
“observables” 



future WORKS
NON-RELATIVISTIC ENERGY DENSITY FUNCTIONAL FROM 

CHIRAL DYNAMICS

Energy per 
particle

Effective 
mass

Gradient 
function

Spin-orbit 
function



aPPLICATIONS OF IN-MEDIUM CHIRAL DYNAMICS TO 
NUCLEAR STRUCTURE:

a realistic pairing interaction
(NUCL-TH/1111.4946, submitted to prC)

latest WORKS

With D. Vretenar and T. Niksic (University of Zagreb); Many thanks to N. Kaiser, W. Weise 
and J. Holt (Technical University of Munich) for numerical results.



INTRODUCTION

Keep things as simple as possible: find a fast and computationally efficient 
way to include a realistic pairing in HFB calculations (of course, using 
explicit formulas is not an option).

Solve the gap equation for symmetric nuclear matter.

Use a parametrized pairing force that, on one hand, reproduces the 
realistic pairing gap in symmetric nuclear matter and, on the other hand, is 
easy to use for finite systems. Try to include all the physical informations. 
Not only the pairing gap at some Fermi momentum, but all kF-dependence: 
fix parameters in order to reproduce Δ(kF).

Test the realistic potential in finite nuclei: pairing gaps in isotopic and 
isotonic chains.

realistic? 2-body plus 3-body (with some approximations)



∆(k, kF ) = − 1

4π2

� ∞

0

p2V (p, k)∆(p, kF )�
[E(p, kF )− E(kF , kF )]2 +∆(p, kF )2

dp

V: pairing potential Δ: pairing field

ε: quasiparticle energy εF: Fermi energy

the gap equation

Two-body: N3LO by Machleidt & Entem [Phys. Rep. 503 (2011) 1].

Three-body: effective two-body density-dependent interaction developed by Holt, 
Kaiser and Weise [PRC 81 (2010) 024002]. See also Hebeler et al. [PRC 82 (2010) 
014314 and nucl-th/1104.2955].

For the energies we could use the bare mass (MN) but it would be better to use an 
effective mass (M*) [Fritsch, Kaiser and Weise, NPA 750 (2005) 259 or Holt, 
Kaiser and Weise, nucl-th/1107.5966].

V(p,k) = V2B(p,k) + V3B(kF,p,k)

E(p, kF )− E(kF , kF ) =
p2 − k2F
2M∗(kF )



2-body interaction (n3lo)

LO

NLO

N2LO

N3LO

Phase shifts of np scattering as calculated 
from NN potentials at different orders of ChPT

(black dots are experimental data)

[See also Epelbaum, Hammer and Meissner, RMP 81 (2009) 1773]
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With N3LO interaction, 
pairing gaps in good agreement 
with known calculations 
(several realistic interactions: 
AV18, CD-Bonn, Nijmegen,...). 
 
See Hebeler, Schwenk and 
Friman, PLB 648 (2007) 176 
for recent Vlowk calculations.Fermi momentum



effective mass m*
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Holt, Kaiser and Weise, nucl-th/1107.5966

The two-body interaction includes long-range one- and two-pion exchange contributions and a set 
of contact terms contributing up to fourth power in momenta. 

In addition they add the leading order chiral 3N interaction with its parameters cE, cD and c1,3,4.

Substantial agreement with
non relativistic Skyrme 
phenomenology at saturation 
density (0.7 < M*/M < 1).

Effective nucleon mass M*/M
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Pairing gaps are changed: 
a generalized reduction in 
magnitude and a small shift of 
the maxima towards smaller 
momenta. 

Similar results are well-known
in literature [with Gogny 
interaction, EPJA 25 (2005); 
more details about medium 
corrections in Cao, Lombardo 
and Schuck, PRC 74 (2006) 
64301].



3-body interaction

ci known from πN scattering

cD and cE fixed from binding 
energies of light nuclei (3He, 4He) 
and/or nd scattering length



3-body interaction

In-medium NN interaction generated by the one-
pion exchange (cD) and short-range component 

(cE) of the chiral three-nucleon interaction.

3 body ➜ 2 body density dependent
Holt et al., [PRC 81 (2010) 024002]

In-medium NN interaction generated by the 
two-pion exchange component (c1,c3,c4) of 

the chiral three-nucleon interaction. 

in-medium nucleon propagator

1 2 3

4
5 6



3-body interaction
Holt et al., [PRC 81 (2010) 024002]

In-medium NN interaction generated by the 
two-pion exchange component (c1,c3,c4) of 
the chiral three-nucleon interaction. 

In-medium NN interaction generated by the one-
pion exchange (cD) and short-range component 

(cE) of the chiral three-nucleon interaction.

1 2 3 4

5
6

The attraction is 
reduced by the 
action of the 
three-body forces 
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Fermi momentum

Pairing gaps are changed: 
a small reduction in 
magnitude and a relevant 
shift of the maximum 
towards smaller momenta. 

Known calculations for 
pairing gaps with three-
body forces included in the 
nuclear potential are: 
Hebeler and Schwenk, PRC 
82 (2010) 014314; Zuo, 
Lombardo, Schulze and 
Shen, PRC 66 (2002) 
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neutron matter with 2b and 3b preliminary!

neutron matter
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In nuclear matter the pairing interaction has a separable form in momentum space 

�k|V 1S0 |k�� = −Gp(k)p(k�)
p(k) = e−a2k2

Gaussian ansatz

The two parameters G and a 
can be adjusted to reproduce 
the density dependence of the 
gap at the Fermi surface. The 
ansatz can be tested over well 
known calculations (like Gogny). 
Energies (pairing and binding) 
and gaps are reproduced with 
very high accuracy.

[Y. Tian et al., PLB 676 (2009) 44; Veselý, Dobaczewski, Michel and Toivanen, JoP Conf. Ser., 267 (2011) 012027]

separable pairing by Y. tian

http://adsabs.harvard.edu/cgi-bin/author_form?author=Michel,+N&fullauthor=Michel,%20N.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Michel,+N&fullauthor=Michel,%20N.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Toivanen,+J&fullauthor=Toivanen,%20J.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Toivanen,+J&fullauthor=Toivanen,%20J.&charset=UTF-8&db_key=PHY


finite nuclei calculations

�
h− µ ∆
∆ −h+ µ

��
U
V

�

k

= Ek

�
U
V

�
Δ: pairing field

In the hamiltonian h we have
Vph: particle-hole potential

Three possible choices for Vph:

 FKVW: Density-dependent point coupling model constrained by in-medium chiral 
interactions, see Finelli et al. [NPA 770 (2006) 1] for ground-state calculations. 
Applications also for excited-state properties and, in particular, hypernuclei in the 
last years.

 PC-F1: Non-linear point coupling model, see Burvenich et al. [PRC 65 (2002) 
044308]; see also Madland et al. [PRC  46 (1992) 1757] for the first application to 
finite nuclei.

 PC-D1: Density-dependent point coupling model, see Niksic et al. [PRC 78 (2008) 
034318] and, for density-dependent theories, Typel et al. [NPA 656 (1999) 331]. 

μ: chemical potential
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8
[E(N0 + 2)− 4E(N0 + 1)+

6E(N0)− 4E(N0 − 1) + E(N0 − 2)]

State-dependent
single-particle statesTheory

Occupation factors

Empirical Estimates

Five-points formula

Δk are the diagonal matrix elements of the pairing part of the RHB single-nucleon 
hamiltonian in the canonical basis (the basis that diagonalizes the 1-particle density matrix)

∆̄ =
�

k ∆kvkuk�
k vkuk

Alternative choice

pairing gaps in finite nuclei

[Lalazissis, Vretenar and Ring, PRC 57 (1997) 2294; Bender, Rutz, Reinhard and Maruhn, EPJA 8 (2000) 59]

[Bender, Rutz, Reinhard and Maruhn, EPJA 8 (2000) 59]

Alternative approach

Theoretical gaps are provided by ΔLCS (Lowest Canonical State) which denotes the diagonal pairing matrix element Δi 
corresponding to the canonical single-particle state Φi whose quasi-particle energy is the lowest.
Experimental gaps extracted from binding energies through three-point mass differences centered on odd-mass nuclei.
[Hebeler, Duguet, Lesinski and Schwenk, PRC 80 (2009) 44321]
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With N3LO pairing 
gaps in reasonable 
agreement with exp. 
data.

With the inclusion of 
three-body forces 
pairing gaps are 
reduced by 30/40 % 
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(2009) 044321].

In some cases the 
pairing gaps collapse
because of the 
“wrong” mean field 
single particle states.

Binding energies in 
very good agreement.
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In some cases the 
pairing gaps collapse
because of the 
“wrong” mean field 
single particle 
states.

Of course, different 
p-h interactions play 
a role, because of 
the single-particle 
states.

Binding energies still 
in very good 
agreement for every 
p-h interaction.



CONCLUSIONS

 Infinite systems: with the introduction of 3-body 
forces the pairing gap is reduced in magnitude and 
shifted towards smaller momenta.                             

 Finite nuclei: with the introduction of 3-body forces 
pairing gaps in finite nuclei are strongly reduced 
respect to the 2-body case. [See K. Hebeler et al., PRC 80 (2009) 

044321 and 1104.2955, T. Duguet et al., nucl-th/1004.2358v1 and references 

therein]. Additional effects have to be included in order 
to reproduce empirical data. [Particle vibration Coupling?, Vigezzi 
et al., nucl-th/1001.1057].
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We study the predictions of three mean-field theoretical 
approaches in the description of the ground state properties 

of some spherical nuclei far from the stability line. 

We compare binding energies, single particle spectra, 
density distributions, charge and neutron radii obtained with 

different approaches. 

The agreement between the results obtained with the three 
different approaches indicates that these results are more 
related to the basic hypotheses of the mean-field approach 

rather than to its implementation in actual calculations.
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Figure 1: (color on line) Energy per particle for (a) pure neutron matter and (b) symmetric

nuclear matter and symmetry energy (c) calculated with different theories. The dots indicate the

Correlated Basis Function results of Ref. [40]. The full lines correspond to the auxiliary field

diffusion Monte Carlo calculation of Ref. [39]. The other lines show the results we have obtained

in HF calculations by using the D1M interaction (red dashed lines) and SLy5 force (blue dotted

lines), and in RH calculations by using the DDME2 lagrangian (green dashed dotted line). The

dotted vertical lines indicate the value of the empirical saturation density ρ0 = 0.16 fm−3.
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exp AFDMC CBF D1M SLy5 DDME2

ρ0 0.16 ± 0.01 0.16 0.16 0.16 0.16 0.15

e(ρ0, 0) -16.0 ± 0.1 -16.00 -16.00 -16.01 -15.98 -16.13

KV 220 ± 30 276 269 217 228 278

asym 30-35 31.3 33.94 29.45 32.66 33.20

L 88 ± 25 60.10 58.08 25.41 48.38 54.74

Table II: Infinite nuclear matter properties at saturation density ρ0 for various calculations. The

saturation density ρ0 is expressed in fm−3. All the other quantities in MeV.
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defined as the sum ρ = ρp + ρn of the proton, ρp, and neutron, ρn densities, both of them

also constant. The energy per nucleon e = E/A for asymmetric matter is usually written as

a function of even powers of the asymmetry parameter δ = (ρn − ρp)/ρ,

e(ρ, δ) = e(ρ, 0) + esym(ρ) δ2 + O(δ4) . (1)

Around the stability minimum of symmetric nuclear matter, at density ρ0, the two coeffi-

cients of this equation are expanded in powers of the parameter ε = (ρ − ρ0)/(3 ρ0). For

symmetric nuclear matter we have

e(ρ, 0) = aV +
1

2
KV ε2 + . . . , (2)

where there are not terms of first order in ε, because e(ρ, 0) has a minimum in ρ0, and

KV = 9ρ2
0

∂2e(ρ, 0)

∂ρ2

∣∣∣∣
ρ=ρ0

(3)

is called volume compression modulus. The symmetry coefficient in Eq. (1) is expanded as

esym(ρ) = asym + L ε + . . . , (4)

where asym is usually called symmetry energy, and

L = 3ρ0
∂esym(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

(5)

has recently attracted great attention since it is closely related to some neutron stars prop-

erties and to the size of the nuclear neutron skin [38].

We show in Table II the values of some nuclear matter quantities calculated at the satu-

ration density ρ0. In Fig. 1 the EOS of pure neutron matter (upper panel), the symmetric

nuclear matter (medium panel) and the symmetry energy esym (lower panel) are shown.

Therein we compare our results with some empirical values and those obtained with mi-

croscopic nucleon-nucleon interactions of Argonne-Urbana type, within the auxiliary field

diffusion Montecarlo (AFDMC) [39] and the correlated basis function (CBF) [40] approaches.

We observe in Table II that the saturation densities and the energies per nucleon agree

within 2% and 0.4%, respectively. The values of KV are very similar in the two HF calcu-

lations (D!M and SLy5), being also close to the commonly accepted empirical value. The

value obtained with DDME2 is slightly larger, but in agreement with the result of the mi-

croscopic calculations. Also the MF asym are rather similar, within 6%, while we observe

large differences in the L values.
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Figure 2: (color on line) Binding energies per nucleon calculated with the three different MF models

and compared with the experimental values [41]. The lines are drawn to guide the eyes.
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Single particle proton levels 
below the Fermi surface

energies (I)
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Figure 3: (color on line) (a) Energies of the s.p. proton (hole) levels, just below the Fermi surface,

compared to the experimental separation energies [41]. (b) Energies of the proton (particle) levels,

just above the Fermi surface. (c) Proton energy gaps g = εp − εh. The lines have been drawn to

guide the eyes.
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Single particle proton levels 
above the Fermi surface

Proton energy gap εp-εh
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Figure 4: (color on line). Differences between the s.p. energy of the least bound proton level and

that of the 1s1/2 level, calculated with the three different MF models.
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energies (II)

Differences between 
the s.p. energy of the 
least bound proton 
level and that of the 
1s1/2 level, calculated 
with the three 
different MF models.



Wave functions of the proton 2s1/2 
levels for the calcium isotopes.
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Figure 5: (color on line.) Proton distributions for the various calcium isotopes we have considered.

Full, dotted and dashed-dotted lines indicate, respectively, D1M, Sly5 and DDME2 results.
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Figure 6: (color on line.) Wave functions of the proton 2s1/2 levels for the calcium isotopes. Full

and dotted lines represent the D1M and SLy5 results, respectively. For the relativistic calculations

we show both the upper (u) and lower (l) components with dashed and dashed dotted lines.
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proton distributions

Proton distributions for the 
various calcium isotopes 
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Figure 9: (color on line.) Neutron distributions for the various calcium isotopes we have considered.

The meaning of the lines is the same as in Fig. 5.
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Figure 10: (color on line.) Matter distributions for the various calcium isotopes we have considered.

The meaning of the lines is the same as in Fig. 5.
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neutron and matter distributions

Neutron distributions for the 
various calcium isotopes

Matter distributions for the 
various calcium isotopes
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Figure 11: (color on line) (a) Charge rms radii compared with the empirical values of Ref. [73].

(b) Neutron rms radii.
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Figure 12: Neutron skins calculated with the three different approaches as a function of the relative

neutron excess. The full lines show a linear fit do the data, the dashed lines present the predictions

of the model proposed in Ref. [76].
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1.  The properties of infinite nuclear matter at saturation densities are very similar for 
the three approaches. The only exception is L. Above the saturation point, the behaviors 
of the EOS are remarkably different, especially in the case of PNM.

2.  In our calculations all the 16 nuclei investigated are bound. This MF prediction could be 
in contrast with the experimental evidence (the neutron drip line for the oxygen isotopes 
starts with the 26O nucleus, therefore 28O is experimentally an unstable system)

3.  The proton s.p. energies around the Fermi surface have similar values for all the three 
calculations. 

4.  In each isotopes chain, the energy available to arrange the proton s.p. levels decreases 
with increasing neutron number. As a consequence the density of states increases.

5.  The study of the density distributions indicates a good agreement at the nuclear sur- 
face for all the three types of calculations. In the nuclear interior we have observed very 
different behaviors when the proton and neutron densities are separately considered. 
These differences in the nuclear center are much smaller when the total matter is 
considered.

conclusions (i)



6.  The large differences of the proton distributions in the nuclear interior are due to the 
s proton waves. 

7.  The values of the charge rms radii are very similar in all the three calculations and 
agree very well with the available experimental data and with their empirical 
extrapolations. Our results show a small increase of these radii with the neutron numbers.

8.  Neutron skins are larger in light than in heavy nuclei. This is not a trivial geometrical 
effect.

The most important message emerging from our investigation is the 
convergence of the results of the 3 MF models for all the nuclei 
investigated. This indicates the importance of producing and 
investigating exotic nuclei. The comparison between the observed 
properties and the MF predictions is going to confirm, or not, the 
MF model itself, and not a specific implementation of it.

conclusions (ii)



more slides....



separable pairing by Y. tian (more)



separable pairing by Y. tian (more)



Theoretical gaps are provided by the diagonal 
pairing matrix element corresponding to the 
canonical single-particle state whose quasi-
particle energy is the lowest.

Results from DUGUET ET AL. (2)



π π π

c1, c3, c4 cD cE

First-order contribution from chiral three-nucleon forces, 
2N and 3N accounts only for 70% of the pairing gaps

Results from DUGUET ET AL. (3)
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effective nucleon masswithout Δ

with Δ

Fritsch, Kaiser and Weise,
NPA 750 (2005) 259

Holt, Kaiser and Weise, 
nucl-th/1107.5966

3-loop calculation of nuclear matter in CHPT by 
including the effects from 2π exchange with 
single and double 
virtual Δ excitation. 

Regularization dependent short-range 
contributions with NN-contact coupling terms.

The two-body interaction comprises long-range 
one- and two-pion exchange contributions and a 
set of contact terms contributing up to fourth 
power in momenta. 

In addition they add the leading order chiral 3N 
interaction with its parameters cE, cD and c1,3,4.


