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Chapter 16

Plane Waves as exact solutions

of Einstein’s equation

16.1 What kind of solutions are gravitational
waves?

16.1.1 Linearized plane wave

We have seen that if we consider a small perturbation of a flat spacetime,

Y = N + Py, hw| < 1 (16.1)



h,. satisfies the Einstein equations in vacuum which, by a suitable choice of

the gauge, can be reduced to

DFh;u/ =0
(16.2)
huu,u = %huu,u
These equations admit plane waves solutions of the form
huy = Ape’ (16.3)

provided k is a null vector, and satisfies the further constraint of being

orthogonal to the polarization tensor A, i.e.
kok® =0 and ALk =0 (16.4)

We have seen that in the TT-gauge the metric of a linearized plane gravita-

tional wave propagating along the x-direction can be written as
ds* = —c*dt® + dz® + (1 + hyy)dy® + 2hy,dydz + (1 — hy,)dz®,  (16.5)

where the metric functions depend on (¢ — %) only. The component of the

Riemann tensor for such a metric are

1
Rambn = 5 [han,mb + hmb,an - hmn,ba - hab,mn] + O(h2)7 (166)
where and Rl a6 = —kokphmy - It is easy to show that:
Rambnkn = 0; (167)

which means the wave vector is an eigenvector of the Riemann tensor.
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In the TT-gauge the only non vanishing components of the Riemann

tensor are:
1 d?hep
2¢2 dt?2

RaOﬁO =

16.2 Plane waves: exact solutions

We want to find an exact solution of Einstein’s equations in vacuum, which

satisfies the following conditions:
1) Rambnkn = O; 2) kaka =0 (168)

We also impose that

3)  kayp =0, (16.9)

i.e. that the “rays” are parallel. Condition 3) implies 1), since

kmisig = Fmigs = Ropgqk

msq' e

The vector k identifies a congruence of worldlines z#(\) so that k* = &,
The condition ks = 0 implies that
gk =0 - (ﬁ + Faﬂk“> da’ _ 0 (16.10)
ozB dA
le.
‘STI: N paw%% ~0, (16.11)

which means that £k is a geodesic vector.
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How can we choose the coordinates in such a way that the metric is as

simple as possible? We note that
kaip — kpia = ka,p — Tk — ko + Togku = kap — kpa; (16.12)
it follows that, since kg3 = 0,
kap—kga =0 (16.13)
which means that £, is the gradient of a scalar function wu(x*)
ko = u(z") 4 (16.14)

and consequently k is hypersurface orthogonal. Then, we can choose
the coordinate line 2° as coincident with the worldline to which & is

tangent, and since k is anull vector, this will be a null coordinate; thus we

0 1 .2

put 2° =, and in this coordinate system, (u,z!, 2%, x3), the components

of k are ko = (1,0,0,0).

As  k* is a null vector ¢g*’k,ks = 0 . Consequently , if we choose

the first tetrad vector as coincident with % we find that
g0 =&9.89 =k .k =o. (16.15)

Now we can make a coordinate transformation, z® (z®), a=1,2,3 (three

degrees of freedom) and put

@ =g"%=0, ¢®=1. (16.16)



It follows that, being ¢°*gap = d3,

9°*9a0 = 9900 + 9" 910 + 9% 920 + 9% 930 = 930 =1 = gzo =1

9°*9a1 = %901 + 6" 911 + 9%%921 + 6% 931 =931 =0 — g31 =0

Similarly
832 =833 =0

Moreover, since k43 =0, it follows that

Gap,3 = 0

Thus the metric is independent of the coordinate z3.
Proof:

k‘a;g =0 — ka,g — Fgﬂku =0.
Since k, = (1,0,0,0), then

ka’lB - 0 — Fgﬂkl‘ - 0

1

(16.17)

1 o
Fgﬂku = 59 K (gaa,,@ + 980,00 — ga,B,U) ku == (ga3,,3 + 983,00 — gaﬁ,3) = 07

2

and consequently

9op3 =0 q.ed..

Thus, at this point the situation is this:

931 =932 =933 =0; g30=1; gap3 =0



9005 901> 902 7 05 911, G12, 913 7# 0.
Let us now define

goo = 2my(u, z', 2°) gor = my(u, z', %) go2 = ma(u,z', 2%)

(16.18)

and set 2 =v and ' =2z, 22 = y. The metric becomes

ds® = 2modu? + 2dudv + 2my dudz + 2madudy + g11dx? + 2¢12drdy + goody?.
(16.19)

The 2-metric

g11d2” + 2g12dxdy + goody®
can be put in the form
2 2 2
P’ (u,z,y) (do” + dy”)

through a coordinate transformation involving only x and y, therefore

the metric becomes

ds? = 2modu® + 2dudv + 2mydudz + 2medudy + p? (dx2 + dyz)

Jgap=1| 0 p> 0 0 |- (16.20)
0 0 p* 0
0 0 0 0



If we now calculate the the components of the Einstein equations, we find

that R,, =0, and Ry, =0 reduce to the same equation

0? 0?
— 4+ == |Inp= 16.21
(83:2 +8y2> np=20 (16.21)
the solution of which gives
Inp = Ref(z + iy) (16.22)

where f is an arbitrary, analytic function of x and y.
At this point we can make a rotation in the (z, y)-plane in order to set p = 1.

We now compute the Einstein equations R,, = R,y = 0. We find:

2Ry = (mQ,w - ml,y),y =0,

2Ruy = (m2az - mlay)az = 07

therefore we can set

(mg,m — ml,y) = F'(u)

It can be shown that with the following coordinate transformation

’

S]]

=23+ [mydz — JF'(u)z y

) Z = xcos(u) + ysin(u) (16.23)

7 = —zsin(u) + ycos(u)
and
(U = EF,_I(U)



the metric can be cast in the form
ds* = [2dudi + dz* + dy?| + H (1,7, 7)d’, (16.24)
where the function H(%,Z,7y) satisfies the equation
0? 0? -

which comes from Rz = 0. It should be stressed that eq. (16.25) is a
linear equation, but H(%,Z,y) can now be arbitrarily large.

The simplest solution is
H = (z* - 7*)h(7). (16.26)
It should be noted that

e the part between square brackets in the metric (16.24) is the flat line-

element, indeed

—Adt+d2 +det +dy? —  2dudv + dz? + dy?

where u = %(z —ct) , v= %(z#—ct) . Thus eq. (16.24) represent

a flat spacetime plus “something traveling along the u-direction”.

e Since eq.(16.25) is linear, two independent solutions of this equation
can be superimposed. It follows that waves that propagate in the same

direction do not interact.



Since a solution of eq. (16.25) regular in the whole Ty plane does
not exist, H always owns a singularity. However, the following change of
coordinates

I S S T
x = Ta(u), V=T~ cdaz —ibby,

n 11
y=7pb(u), with h(u)= % _ _%’

allows to cast the metric in a singularity-free form

ds® = 2dudv + a®(u)dz® + b (u)dy?, (16.27)

where @ and b are arbitrary functions of u which satisfy the constraint im-

posed by Einstein’s equations
a"b+ab" =0 (16.28)

If wenow put a=1+75 , b=1-5 and linearize assuming « small, we

find

ds® = 2dudv + (1 + a)dz® + (1 — a)dy?

which is the metric of a weak plane-gravitational wave solutions of Einstein’s
equations which describes the perturbations of a flat spacetime discussed in

chapter 11.

In conclusion, the metric of an arbitrarily strong gravitational wave, exact

solution of Einstein’s equations in vacuum, can be written as
ds* = [2dudv + dz* + dy?| + H (1,7, 7)dv’, (16.29)
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with

H = (7> — 7*)h(7) (16.30)
or as
ds® = 2dudv + o (u)dz® + b (u)dy?, (16.31)
with
a’b+ab" = 0.

We define a “sandwich wave” as a region of spacetime confined between
two parallel planes, where the Riemann tensor is non vanishing, and which

propagates in flat spacetime at the speed of light.

y Y t, > t,

t=t,
F\’XBHV 7£ 0 I?(Buv 7£ 0 t:t2

=
—_— — VA
C Wﬁuv — O // C
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The same wave can be represented in terms of the u-v coordinates, as a

projection on the (u,v)-plane as follows

16.2.1 Null Fields

Let us consider a plane electromagnetic wave, whose vector potentialis A, =

Re <pueik“””a) , where

puk* =0 (16.32)

12



k,k* = 0.
The electromagnetic tensor is
Fuy = Ay — Ay = Re ([puky — pok,Je™=")

For a plane electromagnetic wave the two invariants F),, F'** and F, ;wﬁ v
vanish; indeed
FuF" = H* — E? = Re ([pyk, — pok,)[p"k" — pkt]e*==") =

Re ([ kK = ok + -~ Jeikes) =,
and

v 1 @ 7B 1 Q ], 2ike T
FIWFH = FHV'EGNVaﬁF b= H-E = §€uuaﬂRe ([p/.tku - pl/ku][p k'/B - p’Bk ]62 ka ) =0.

Such null fields represent electromagnetic fields far from the sources.

The stress-energy tensor of the null field can be found from the action

1
Sp=—7 / d*u/—gF,, F".

T,, is the functional derivative of Sg with respect to g, .

Let us assume that g, suffers an infinitesimal variation

Guv = Guv + 0G0

The action Sg is not stationary with respect to this variation, because the

dynamical variables are z* and A* , while g, is an external field.
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Therefore 6Sg will be a linear functional of dg,, :

1
5SE = §/d4x\/__ngw5.guu

The coefficients of the linear combination are the components of the stress-
energy tensor, which can be shown to be

1
T,y = Fo F& — 1 Gy Fop FOP.

If the field is null FaﬁFafB =0 and kup® = k,k* =0 . In addition we

have seen that F,, = p.k, — p ko, and
FOH/FE = (pakv - pl/ka) (paku - puka) = papakuku_pukapaku_pakupuka+pukapuka =

Pap*kvky
Setting p,pt = ,
Ty = ®k,k,. (16.33)
In a locally inertial frame if, for example, the wave travels along the x-axis,
k* =(1,1,0,0) ,
Too = ®(ct — x) is the energy-density carried by the wave,
cTor = c®(ct — z) is the energy which flows across a surface perpendicular

to the x-axis per unit time.

The Poynting vector is SY =cT% , W =T =& , then
S=cW

A null field is pure radiation which propagates at the speed of light.
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16.3 Gravitational waves generated by null

fields

Let us now assume that the gravitational wave is generated by some kind
of source. As a first example we shall compute the gravitational field of a
plane electromagnetic wave, with stress-energy tensor given by eq. (16.33).
Choosing the coordinates as in section 16.2, so that the wave vector is £, =

(1,0,0,0), the Einstein equations plus the “parallel-ray” condition give

81G 811G
Ruu = ’ﬂ'—ij — Ruu = W—Tuua k,u;u =0. (1634)

ct c*
Since the only non-vanishing component of the stress-energy tensor is 7Ty,

the metric can be put in the same form as in (16.24), and eq. (16.34) becomes

1 1
SSAH(y ) = b)) o hWAf(,y) = — o B(u),
2 ct ct
(16.35)
the solution of which is
o, o 1847 G
f=z"+y h(u) = — i O (u), (16.36)
817G
H(z,y,u) = == (a* + ") (u).
Hence the metric describing a plane electromagnetic wave is
ds® = 2dudv + dz? + dy® + h(u)(z® + y*)du’. (16.37)

Incidentally, it should be noted that in this case h(u) is negative, a condition

which we will use in the following.
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Let us now assume that the wave is generated by

e a) a massless particle

e b) a beam of massless particles

traveling along the z-direction.

a) The stress-energy tensor of a massless particle has the form of eq. (16.33),

and the only non vanishing component is
Tuu = p0(u)d(r), (16.38)

where p is the particle momentum If we use polar coordinates on the plane

(z,y) and write H(z,y,u)= h(u)f(r) Einstein’s equations give

ih(u)Af(T) = ——pd(u)d(r), (16.39)



and consequently

167G
-

a) h(u)=0(u), b) Af(r)= po(r). (16.40)

The solution of eq. (16.40b) can easily be found, since we know the Green

function of the problem. In fact

Alog(r?) = 276(r), (16.41)
therefore
f= —g log(r?), r? = 2% + 9, (16.42)
c
and
H= —i—cjpé(u) log(r?). (16.43)

This solution has been derived in an alternative way by Bonnor and Aichel-
burg & Sexl ! , by boosting the Schwarzschild solution in the limiting case
when the velocity of the boost tends to the speed of light and the mass of
the particle tends to zero, keeping its energy finite. In this case the gravi-
tational field gets squashed on the surface orthogonal to the line of motion,
which becomes the wavefront, and we are left with the impulsive plane wave

(16.43) generated by a massless particle.

'W.B. Bonnor Commun. Math. Phys. 13 (1981) 29

P.C. Aichelburg and R.U. Sex| Gen. Relativ. Grav. 2 (1971) 303
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b) If the source of the wave is a beam of particles of constant density p for

r<Tg

Tou = po(u), r <To (16.44)
and the solution of the Einstein equations is
H= —F,mjé(u), r < 7. (16.45)

In all these cases the only nonvanishing Weyl scalar is ¥y # 0 and the
solution is Petrov Type N.
It should be noted that the two solutions (16.43) and (16.45) are impulsive

gravitational waves.

16.4 Impulsive waves and spacetime shifts

Impulsive, plane-fronted, pure gravitational waves are the most elementary
wave-like solutions of Einstein’s equations. The idea of interpreting these
waves as shifts in space and time is originally due to Penrose, and it is
known as the ‘scissor-and-paste’ procedure. It operates in the following way.

Consider a flat spacetime
ds® = 2dudv + dz* + dy?, (16.46)

where © and v are null coordinates

z—1t z+t

\/5 )

(16.47)

u =

18



Cut the spacetime along the surface u = 0, and assume that for u > 0 the

coordinate v is replaced by a shifted coordinate

v—=>v+0(u)f(z,y), (16.48)

where © is the Heaviside step-function, and f = f(z,y) is an unspecified

function.
v u- v U
\
at shift paste
For v > 0 the metric becomes
ds® = 2du[dv + O (u) f ;dz'] + dz® + dy?, i=1,2. (16.49)

If we now introduce the following set of new coordinates
U=u
t=v+0O(u)f (16.50)
Al £Ei,
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the metric (16.49) takes the form
ds® = 2da[dd — §(a) f (z,y)da] + di* + dij?, (16.51)

which is flat everywhere except on the null surface &« = v = 0. Therefore
the transformation (16.50) “glues” together the two parts of flat spacetime,
u < 0 and wu > 0, that have been shifted with respect to each other, by
introducing an impulsive “disturbance” traveling along v = 0 at the speed
of light.

The solution (16.51) has the same form as eq. (16.24), and represents
a wave traveling in flat spacetime along the positive z-direction. The only

non-vanishing component of the Ricci tensor is
| .

where A is the laplacian operator in the transverse coordinates Z and 7.
Consequently, the metric (16.51) represents a pure gravitational impulsive
wave if

Af =0, — f=a%—9 (16.53)

or an impulsive wave associated to a distribution of massless particles if

Af # 0. (16.54)
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16.5 The focussing properties of a gravita-
tional plane wave

We shall now study the focussing properties of a gravitational plane wave,

following a paper published by Roger Penrose in 1965 2.

We write the metric in a general form originally due to Brinkman, which
includes both the metric of a pure gravitational wave, (16.24), and that

generated by a plane electromagnetic wave (16.37)
ds® = 2dudv + h;j(u)z's! du® + §;;dx'da’ (16.55)
= 2dudv + (h112% + hopy® + 2h1awy)du’® + dz? + dy?, i,j=1,2.
All coordinates vary in the range (—oo, +00), thus covering the entire mani-

fold. Without loss of generality we can assume that h;; is symmetric. If h;;

is traceless (vanishing Ricci tensor)
hit+hoa =0 = hpa® + hapy” = h(u)(z® — ¢?), (16.56)

the metric represents a pure gravitational wave, linearly polarized if hyo = 0.
If
hij(u) = h(u)dy,  with  h(u) <O0. (16.57)

then

hiiz® + hooy® = h(u)(z® + 32). (16.58)

2R.Penrose, Rev. of Mod. Phys. 37 (1965) 215-220;
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In this case the Weyl tensor vanishes, and the metric represents a pure elec-
tromagnetic wave.
In the following we shall use u as a parameter continuously increasing

with time on any timelike or null curve that is not parallel to the world lines
u = const x; = const, i=1,2. (16.59)

These lines can be parametrized with the function v.

A “sandwich” wave is a wave in which h;; vanishes outside a certain range

(a,b) of values of u. So the spacetime is flat for v < a and for v > b, but

22



curved in between. We shall now see, following Penrose’s approach, how a
null cone can be forced to focus again to a second vertex by the passage of a
plane wave.

a) Before the passage of the wave

Let Q be a point in the manifold and let us consider the complete null cone
through Q, i.e. the set of points lying on all null geodesics through Q. Assume

Q has coordinates
Q: (z; =0, v = vy, u=1uy < a), (16.60)

so that Q lies in the flat region preceeding the passage of the wave. Near Q

the equation of the null cone will be

ds® = 2dudv + 6;;dz'dr! =0  —  2(u—ug)(v —vp) + di;z’z’ =0 (16.61)

or
v = —éfij:r ! + vy, (16.62)
where
o=ty (16.63)
Y (u—ug)’ )
Be n, the vector normal to the hypersurface
1 o
Y(z%) =v+ ifijxlxj —v=0 (16.64)
]_ / Z ]
Ty = Efijx x (16.65)
Ny =1
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% where we have assumed that f;; is symmetric. Since X is a null surface,
n, 1s a null vector.

b) Inside the ‘sandwich’ wave

We shall assume that in the curved region the equation of the light-cone has
the same structure of eq. (16.64), with f;; function of u, and determine the
equation for f;; by requiring that the vector n,, remains null, i.e. that X

remains a null surface. This condition gives:

gaﬂnan/g = 2¢"nyn, + ¢"’n’ + g**n’ + gyynz (16.66)
= féjxixj — hix'a? + 89 (fux®) (fah)
= [f;j — hy + fkiflcj] z'zd.
Hence
Fii = hig + fFifi; = 0, u > a. (16.67)

This equation says how the light-cones are deformed by the passage of the

wave. The trace of the previous equation is
fii— b+ Yt =0, (16.68)

and, since ht < 0 ( =0 for a pure gravitational wave (eq. 16.56), and < 0

for an electromagnetic wave (eq. 16.37)), it must be

£+ R <o (16.69)

remember that  32p(z'27) = dj27 + &lz' comsequently n; = fi;(z'2d),; =

3

f’ijmja Z7.7:172
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By the Schwarz inequality

FEife > %(ff)z, (16.70)
hence
fit + %( )2 <o. (16.71)

By introducing a new function

z(u) = exp{%/ff(u)du} z(u) >0, (16.72)

and using eq. (16.71) we find:

"

]_ ; 1 "
2’% =SUP+fi<o, - <o (16.73)
Consequently
1 N n
(ean{ / filwdu))’ <0, u>a (16.74)

where the strict inequality holds at least for some value of u.

The consequences of eq. (16.74) are the following. Let us consider a
sandwich wave confined between a and b along the u-axis, and the point Q
given by eq. (16.60) such that ug = —oo. Then f;; = 0 (see eq. 16.63) for
u < a. That means that in the region near Q the null cone coincides with

the null hyperplane v = vy, and that

(emp{%/ff(u)du})l =0 — (exp{%/ff(u)du}) = const.  (16.75)
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In the region u > a the function (exp{3 [ fi(u)du}) has negative sec-
ond derivative ( eq. 16.74), therefore we espect that it becomes zero, and
consequently f;; becomes infinite, for some value of u = u;, with u; > a.

We shall assume that the wave is “weak” in the sense that h;; becomes
zero before uy, so that u; > b. In this case, if uy remains very large and
negative, the form of the null cone in the vicinity of v = a will not change
very much and u; will remain finite and greater than b. That is to say that
fi; will become infinite on the other side of the sandwich wave.

We shall now compute f;; for an electromagnetic and a gravitational
wave.

1) Electromagnetic wave. Let us consider, for example, a sandwich wave

of constant amplitude
ds® = 2dudv — a*[0O(u) — O(u — b)](z? + y*)du® — dz* — dy? (16.76)

where o is a constant and © is the Heaviside step-function. According to
(16.76) hia = 0 and hy; = hgs = —a?, and eq. (16.67) in the curved region

becomes

fatfh+fh+a®=0 (16.77)
f12 + f12f11 + f21f22 = 0

f22+f122+f222+a2:0
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Since for u <0 fi; = i if wuy — oo then fi3 = f, =0, and

u—1ug)’

consequently  fio = 0 also inside the sandwich. Thus egs. (16.77) become

fu+fa+a®=0 (16.78)

f;2+f222+“2:0

These equations are easily integrated

v dfll ]- -1 fll
— [ du= — u=-——tan" — 16.79
/0 B fh + a? B o g ( )
hence

fi1 = fz2 = —atan(au). (16.80)

Finally

—atan(au) 0
fij = ,  a<u<hb (16.81)
0 —atan(au)

2) Pure gravitational wave. Let us again consider a sandwich wave of

constant amplitude and constant polarization
ds® = 2dudv + a’[0(u) — O(u — b)](2® — y*)du® + da” + dy® (16.82)
According to (16.82), hip = 0, hy1 = —hoy = a® and eq. (16.67) gives

fil + f121 +a”=0 (16-83)

f22+f222_a2:0
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whose solution is

fi1 = —atan(au) and foo = atanh(au).
—atan(au) 0
fij = , a<u<b.
0 +atanh(au)

c) After the passage of the wave

The spacetime is flat and eq. (16.67) for f;; becomes
fgj + fkifkj = 0, u > b.

Let us introduce the matrix p;; inverse to fj;.

Defii =0k — D ifii+0%fi=0 — D ifij=-0%fij

(16.84)

(16.85)

(16.86)

(16.87)

where the prime indicates differentiation with respect to u. By multiplying

eq. (16.86) by p% we get
Pt + b =0, = =" ifii+ fi; =0

and multiplying again by p¥ to the right

_pillfijpij + fyp? =0, — Pi=38 = pu=du

The solution of eq. (16.89) is

Dij (U) = U(Sz'j — Qij,

28
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where g;; is constant, symmetric (since f;; is symmetric), and it is determined

by the values that p;; assumes at u = b.

Let us assume that eu* =7 when wu* > b, i.e. the components of f;;
do not diverge inside the sandwich (in other words, the wave is weak). Then
for uw >b we have (compare with egs. (16.81) and (16.85))

1) For a pure electromagnetic wave.

S S 0
—atan(au
pz.j:< an(aw) 1 ) a<u<b. (16.91)
0 —atan(au)

In this case eq. (16.90) gives

1

q12 ) qu + atan(au)’ qi1 + atan(au) ( )
The eigenvalues are coincident.
2) For a pure gravitational wave.
1 0
pij = (‘“ta“(‘“” 1 ) . a<u<bh (16.93)
0 +a tanh(au)
In this case eq. (16.90) gives
—0 S — ! (16.94)
2 =75 = atan(au)’ = atanh(au) '

The eigenvalues are distinct.

We shall now compute the null geodesics which generate the null cone

from @Q in the two cases. The equation of the light-cone is

ds® = 2dudv + hyz'z’ du® + da® + dy® = 0. (16.95)
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If we use wu as a parameter it becomes
W' + hijz's! + za” =0, (16.96)

v can be computed by differentiating eq. (16.62)

!

1 . . 1 ! : ] ; s\ 7
v = —Efisz.fj +v — v = 3 [f ij2'2! + fij(2'z?) ] ) (16.97)

and by making use of eq. (16.67)

! i

fii=hij—frife;, — v = —%hij:cixbr% 1" fijixj—% fii(zta?) . (16.98)
By substituting this expression of v in eq. (16.96) we find

frifeata? — fij(@'2?) + 2zt =0, (16.99)
whose solution is
x; = fial. (16.100)

In the flat region behind the wave u > b, eq. (16.100) can easily be
integrated by using the following properties of the matrices f and p:

i)p =1, where I;; = &,

i) pf=1 — f= —pf.

Therefore eq. (16.100) can be written as
x = —pfx, (16.101)
and multiplying by f on both sides

fx =—fpfx=—fx —  (f&x) =0. (16.102)
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The solution is clearly

where the constants m’ are different for each geodesic.
If the eigenvalues of ¢;; are coincident, say ¢; = ¢, when u = ¢ all geodesics

will pass through the point
R: (u=gq, z; =0, v =1)-

This is the case of anastigmatic focusing induced by a pure electromagnetic
wave: all null geodesics through Q will be focused in R after passing through
the wave. There is one exception, the geodesic which is parallel to the prop-
agation direction

U = U, z; =0

which cannot be parametrized by v and is not included in eq. (16.103).
If the ¢; are distinct, say (g1, ¢2) with ¢; < ¢ and ¢; > b, choosing the

axis x1, T2 in such a way that g¢;; is diagonal as in example 2, we see that
zy=0  when  u=gq. (16.104)

Thus all null geodesics passing through Q (with the exception of that parallel
to the propagation direction) will pass through some point of the spacelike
line

1 =0, g # 0 u = q, v = vyg. (16.105)
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This is the case of astigmatic focusing induced by a pure gravitational wave.

The focusing properties of plane waves lead to the non existence of a
global Cauchy surface for the evolution of initial data. The reason is the
following. A Cauchy hypersurface is acceptable to specify initial data if
every null geodesic intersect the surface only once. Let us consider a spacelike
surface through Q: it must lie entirely to the past of the future light-cone
from Q. However, after the passage of the wave the cone will fold down to
focuse to the point R (or to a line passing through R). Since the spacelike
surface cannot cross the null cone and remain spacelike everywhere, it will
be forced to remain trapped beneath it. As we have seen before, the only
geodesic through Q which does not converge to R is the one parallel to the
propagation world-line. Let us call it . But the role of Q and R can be
interchanged and in this case the light-cone through R will be focused to Q
with the exception of the null geodesic parallel to the propagation worldline
through R, say 5. « and (8 are the two limiting geodesics of the congruence, in
the sense that any null geodesic passing through Q, as close as we want to «,
will converge to R, except « itself, and conversely, any null geodesic passing
through R, as close as we want to [, will converge to Q, except [ itself. Each
null geodesic of this sequence will intersect the Cauchy surface through Q
just once, except the limiting geodesic 8. As a consequence the evolution of

Cauchy data given on the trapped suface will provide no information about
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a parallel wave which lies beyond the critical geodesic f.
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