LECTURE 4

4.0 Introduction

The theoretical approach described in the previous lecture is based on the assumption that the degrees of freedom
associated with the carriers of the NN interaction can be eliminated in favor of a static NN potential. While this
procedure appears to be most succesful at p ~ pg, as matter density (and therefore the nucleon Fermi momentum)
increases the relativistic propagation of the nucleons, as well as the retarded propagation of the virtual meson fields
giving rise to nuclear forces, are expected to become more and more important.

In principle, relativistic quantum field theory provides a well definied theoretical framework in which relativistic
effects can be taken into account in a fully consistent fashion. Due to the complexity and nonperturbative nature
of the interaction, however, the ab initio approach to the nuclear many problem, based on the QCD lagrangian,
involves prohibitive difficulties. In fact, even the structure of individual hadrons, like the proton or the = meson, is
not yet understood at a fully quantitative level in terms of QCD degrees of freedom. Let alone the structure of highly
condensed hadronic matter at supernuclear densities.

It has to be pointed out, however, that when dealing with condensed matter it is often convenient to replace the
lagrangian describing the interactions between elementary constituents, be it solvable or not, with properly constructed
effective interactions. For example, the properties of highly condensed system bound by electromagnetic interactions
are most successfully explained using effective interatomic potentials. In spite of the fact that the lagrangian of
quantum electrodynamics is very well known and can be treated in perturbation theory, nobody in his right mind
would ever use it to carry out explicit calculations in solid state physics.

The fact that most of the time nucleons in nuclear matter behave as individual particles interacting through boson
exchange (see Lecture 3), suggests that the fundamental degrees of freedom of QCD, quarks and gluons, may indeed
replaced by nucleons and mesons, to be regarded as the degrees of freedom of an effective field theory.

In this section we will describe a simple model in which nulcear matter is viewed as a static uniform system of
nucleons, described by Dirac spinors and interacting through exchange of a scalar and a vector meson, called o and
w, respectively. Note that throughout this Lecture we will use a system of units in which A =¢ = 1.

4.1 The o-w model

The basic ingredient of the o-w model is the lagrangian
L=LN+LB+ Lint, (1)

where L, Lp and L;,; describe free nucleons and mesons and their interactions, respectively. The dynamics of the
free nucleon field is dictated by the Dirac Lagrangian (we use the standard notation ¢ = y*a,, v* and a, being the
Dirac gamma matrix and the component of a generic four-vector, respectively)

Ly (z) = () (i —m) ¥(z) , 2)

where the nucleon field, denoted by (z), combines the two four-component Dirac spinors describing proton and
neutron, ¢, (z) and ¥, (z), into a single eight-component spinor according to

Y(z) = ( Zﬁ Eﬁ; ) : 3)
The meson lagrangian reads
Lo(z) = Lu(@) + Lo(a) = =3P (@) Fuu (&) + 312 Va(@)VH(2) + 30,00 6(2) = 3m2o(@? (@)
where
F(z) =0,V,(z) — 8, Vu(2) , (5)

V,(z) and o(z) are the vector and scalar meson fields, respectively, and m,, and m, the corresponding masses.



In specifying the form of the interaction lagrangian we will require that, besides being a Lorentz scalar, L;,:(x)
give rise to a Yukawa-like meson exchange potential in the static limit. Hence, we write

Lint(z) = godx)p () (2) — 9 Vi (2)(2)7 () , (6)

where the g, and g, are coupling constants and the choice of signs reflect the fact that the NN interaction contains
both attractive and repulsive contributions.

The equations of motion for the fields follow from the Euler-Lagrange equations associated with the lagrangian of
eq.(1). The meson fields satisfy

(O +m3) é(z) = go P(@)¢(2) (7)
and
(O +m3) Vu(z) = 8,0"V, = g Y(2)1uth(z) , (8)
while the evolution of the nucleon field is dictated by the equation
(@ — 97 VH(2)) = (m — gop(z))] () =0 . 9)

The above coupled equations are fully relativistic and Lorentz covariant. However, their solution is extremely difficult.
Here we will restrict ourselves to the discussion of an approximation scheme widely used to solve egs.(7)-(9), known
as mean field approximation, that essentially amounts to treat ¢(z) and V,,(z) as classical fields.

We replace the meson field with their mean values in the ground state of static and uniform nuclear matter

¢(x) = (p(z)) , V(@) = (Vu(2)) , (10)

where (¢(z)) and (V,(z)) must be computed from the equations of motion. In static and uniform nuclear matter the
baryon and scalar densities, np = 91 and n, = Y1), as well as the current Ju = Yyu, are constants, independent of
z. As a consequence, the mean values of the meson fields are also constants satisfying the relations

mg (@) = g (Y1) (11)
my, (Vo) = gu(99) (12)

The nucleon equation of motion, rewritten in terms of the mean values of the meson fields, reads
(@ = 97 (V) — (m — g ()] () = 0 . (14)

In static and uniform matter, the nucleon states must be four-momentum eigenstates, and the correponding field can
be written

1/)(1_) — ¢keikz — wkeik“z" — ¢kei(k0t7k.r) . (15)

Substitution into eq.(14) yields
[(§ = 907 (VF)) = (m = go (D)) ¥ = [y (B* = 9 (VH)) — (m — g5 ($))] Y = 0 . (16)

The above equation can be recast in a form reminiscent of the Dirac equation defining

Ky = ku — 9,(V¥) (17)

m* = m = g,() . (18)

In terms of the above quantities we can write

(B - m*) i = 0. (19)



The corresponding energy eigenvalues can be found from

AV Vsl
(+m") (K—m") = K —m"* = K, Koty —m? = KK, 000 e S v -, (20)
implying
(EKuk™ —m*) i =0, (21)
leading to
(k" —m**) =0 (22)
and
_ — — 2 *2 _ 2 2
Ko = B = ko = 9,(Vo) = /K2 + m2 = \/[k — g (V)2 + (m — g, ()" . (23)

It follows that the energy eigenvalues associated with nucleons and antinucleons can be written
ex = Ex + 9. (Vo) (24)

and
ex = By — gw(%) s (25)

respectively. The above equations give the nucleon (and antinucleon) energies in terms of the mean meson fields, which
are in turn defined in terms of the ground state expectation values of the nucleon densities and current, according to
eqs.(11)-(13).

The ground state expectation value of an operator ¥T')) can be evaluated exploiting the fact that each nucleon state
is specified by its momentum, k, and spin and isospin projections. Denoting the average of ¥4 in a single particle
state by (EFzﬁ)ka, where the index « labels the spin-isospin state, we can write the ground state expectation value as

3
aro =Y [ % TP Bler — ex) (26)

where the #-function restricts the momentum integration to the region corresponding to energies lower than the Fermi
energy er. To obtain the single particle average (1)y,1), ., we use eq.(19), implying

ko = (v -k + gy (V) +m™) . (27)

The quantity defined by the above equation can be regarded as the single nucleon hamiltonian, whose eigenvalues are
given by (compare to eq.(24))

{ko)io = (¥ ko¥)icq = Bic + 9 (Vo) - (28)
The ground state expectation value of the baryon density can be readily evaluated from egs.(27) and (28) noting that
0 0 Ok
6(%) <¢ 0w>ka 6<V0) ( k + .qw <VO>) gw </d} 8(%) 1/1)ka gw <¢ ¢>ka Y ( 9)
implying

W' =1. (30)

It follows that np can be obtained using eq.(26), leading to

d*k

np = (YY) =v /Wo(eF —ex) , (31)



where v is the degeneracy of the momentum eigenstate (v = 2 and 4 for pure neutron matter and symmetric nuclear
matter, respectively). Note that Eq.(31) yields the familiar result ng = 2 k%./(37?) in the case of symmetric nuclear
matter and spherical Fermi surface.

The same procedure can be applied to calculate the ground state expectation value {(¢yi1b) (i = 1,2,3). Taking the
derivative with respect to k; we find

k ) .
i o)y = g (B 9u0V0)) = 2% = 61 5o = 12017 o = 7" (32)
leading to
. 3 :
<E’YZ¢) = V/ % (%—%) 9(€F - ek) = I// % /dEk 0(6F - ek) =0. (33)

The above result follows from the fact that, by definition, ex = er — g, (Vo) everywhere on the boundary of the
integration region. The vanishing of the baryon current, that could have been anticipated, as we are dealing with
uniform matter in its ground state, implies that the space components of the mean values of the vector field also
vanish, i.e. that (V;) = 0. As a consequence, the energy eigenvalues depend upon the magnitude of the nucleon
momentum only, according to

ex = ex = VI + (m — g5 {9))? + g (Vo) , (34)

and the occupied region of momentum space is sphere. Eq.(31) then shows that in symmetric nuclear matter, with
Z=(A—Z)=A/2, the baryon density takes the familiar form np = 2k}, /(37°), kr being the Fermi momentum.
Finally, the scalar density n, = (¢1)) can be evaluated from the derivative of (1)fkgt)xq with respect to m:

o o = o = (0 T ) = (P00 = Bk (35)
yielding
o (m—gale) .
W = R (0o O (%0
and
v L (= gele)
= — k°dk 7
B =g [ Pl et o

Collecting together the results of eqgs.(31), (33) and (37) we can rewrite the equations of motion (7)-(9) in the form:

(9 2 v kp 9 (m_gd<¢>)
gg<¢>—(mg) 53 / Y P R >

9. \> K
— w F
9.(Vo) = (mw) Vo3 (39)
mi(V;)=0, i=1,2,3. (40)

Note that, while the egs.(39) and (40) are trivial, eq.(38) implies a self-consistency requirement on the mean value of
the scalar field, whose value has to satisfy a transcendental equation.

4.2 The nuclear matter equation of state within the o-w model

To obtain the equation of state, i.e. the relation between pressure and density (or energy density) of matter, in
quantum field theory we start from the energy-momentum tensor, that for a generic Lagrangian £ = L(¢,0,¢) can
be written



oL
T = ———0"¢ — (41)
9(8,9)
g"¥ being the metric tensor.
In a uniform system the expectation value of T#", is directly related to the energy density, €, and pressure, P,
through

(Tyw) = upuy (e+ P) — g P, (42)

where u denotes the four velocity of the system, satisfying u,u* = 1. It follows that in the reference frame in which
matter is at rest (T),,) is diagonal and

e = (Too) = —(L) + (Yyokoth) (43)
1 1 —
P = g(Tm =(L) + g(d’%’kﬂﬁ)- (44)

Within the mean field approximation discussed in the previous section, the lagrangian of the o-w model reduces to

Lasr = B[ = 4" (V) = (m = g0 ()] ¥ = 5 e)? + 3m (Vo) (15)
implying
Tiip = ipy" 0"y — g —%m§<¢)2 - %mgmf : (46)

As a consequence, egs.(43) and (44) become

e =—(L) + (Prokot)) (47)

P = (L) + 3 ik (48)

where (use eqgs.(28), (34) and (39))

Frokos) = g [ WPkl [VIP+ G = 5 @) + 0. )

kr
= g (Vo)ns + 5oz [ Pl VIR = g ()P

= bt 5 / k[*djk] /TP + (m = 9, (6))7 , (49)
and (use eq.(33))
v kr 4
(ki) = @lr-109) = 51 [ di v 'fn' — (50)

Substitution of the above equations into eqs.(47)-(48) finally yields (use eq.(45) and the equation of motion for the

nucleon field)
1m?2 , lg2 o, v [Fr
- __9 —_m* k k 2 *2
€ ng(m m)+2 B+22/ [k|?d|k| \/|k|> +m (51)

1m2 1 g2 v ke [k|*
p=_-"To o2 2w 2 _/ dk| — X 9
29§(m m*) —I—2 3nB+2772 | k| T (52)



The first two contributions to the right hand side of the above equations arise from the mass terms associated with
the vector and scalar fields, while the remaining term gives the energy density and pressure of a relativistic Fermi gas
of nucleons of mass m* given by (see eq.(38)

*

2 kr
* 9, Vv 2 m

=m- 2L k|“dk] ———

m m m2 271_2/0 |k|*d[k| ,7|k|2+m*2

2 *2 *

g, M * *2 kF+€F
=m—22"_ |kpet — In{ ——£ 53
m m?, s [FeF m n( e )] , (53)

with e% = 1/k% + m*2. Eqs.(51)-(53) yield energy density and pressure of nuclear matter as a function of the baryon
F F

number density np (recall: kp = (67%np/v)(1/?). The values of the unknown coefficients (m2/g2) and (m?2/g2) can
be determined by a fit to the empirical saturation properties of nuclear matter, i.e. requiring

B e(no)

D _ —m=— 4
1= s~ =16 MeV (54)

with ng = .16 fm—3. THis procedure leads to the result

2
m? =267.1 T‘ZL—“ m? = 1959 . (55)
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Fig.1 shows the binding energies of symmetric nuclear matter (solid line) and pure neutron matter (dashed line)
predicted by the 0 — w model, plotted against the Fermi momentum kr. Note that pure neutron matter is always
unbound.
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FIG. 1. Fermi momentum dependence of the binding energy per nucleon of symmetric nuclear matter (solid line) and pure
neutron matter (dashed line) evaluated using the o — w model and the mean field approximation.



