Application of the S-matrix formalism to $e^+e^- \rightarrow e^+e^-$ and photon propagator

Omar Benhar & Valerio Casconi

Contents

 $1 \ e^+e^-$ scattering $1 \ A$ Time-orderd product $6 \ B$ Contribution to scattering and annihilation channel $7 \ C$ Yukawa integral and Green function of ∇^2 $8 \ B$

1 e^+e^- scattering

Expansion of the S-matrix element between the initial state $|i\rangle$ and the final state $|f\rangle$. From the Dyson equation we get

$$\langle f|S|i\rangle = \langle f|\sum_{n=0}^{\infty} S^{(n)}|i\rangle$$

$$= \langle f|\sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int d^4x_1 \dots d^4x_n T\{\mathcal{H}_I(x_1) \dots \mathcal{H}_I(x_n)\}|i\rangle$$

$$= \delta_{i,f} + \langle f|S^{(1)}|i\rangle + \langle k|S^{(2)}|i\rangle + \dots (1)$$

where, \mathcal{H}_I is the QED Hamiltonian density

$$\mathcal{H}_I(x) = -\mathcal{L}_I(x) = -e N\{\bar{\Psi}(x)\gamma^{\mu}\Psi(x)A_{\mu}(x)\}$$
 (2)

where N is the normal ordering of the operators and $A_{\mu}(x) = (\Phi, \vec{A})$ is the gauge potential.

We define the Coulomb gauge (transverse gauge) defined by:

$$\vec{\nabla} \cdot \vec{A} = 0 \tag{3}$$

From the Gauss' law we have $\vec{\nabla} \cdot \vec{E} = \rho$ and $\vec{E} = -\vec{\nabla} \Phi - \frac{\partial \vec{A}}{\partial t}$. Thus, \vec{E} must satisfy Poisson's equation:

$$\nabla^2 \Phi = -\rho \tag{4}$$

eq. (4) can be solved using the Green function of ∇^2 , leading to

$$\Phi(\vec{x},t) = \int d^3x' \frac{\rho(\vec{x}',t)}{4\pi |\vec{x} - \vec{x}'|}$$
 (5)

In the process that we are considering the charge density generating the potential felt by the electron is:

$$e\,\bar{\Psi}\gamma^0\Psi = e\,\Psi^\dagger\Psi\tag{6}$$

hence, we obtain for $A^0(\vec{x},t) = \Phi(\vec{x},t)$

$$\Phi(\vec{x},t) = \frac{e}{4\pi} \int d^3x' \frac{\bar{\Psi}(\vec{x}',t)\gamma^0 \Psi(\vec{x}',t)}{|\vec{x} - \vec{x}'|}$$
(7)

The first contribution to the S matrix expansion are $S^{(1)}$ and $S^{(2)}$

$$S^{(1)} = ie \int d^4x N \left[\bar{\Psi}(x) A(x) \Psi(x) \right]$$
 (8)

$$S^{(2)} = -\frac{e^2}{2} \int d^4x d^4x' T \left[\bar{\Psi}(x) A(x) \Psi(x) \bar{\Psi}(x') A(x') \Psi(x') \right]$$
(9)

We want to evaluate the matrix element between the initial state $|i\rangle$ and the final state $|f\rangle$, where

$$|i\rangle = c_n^{\dagger} d_k^{\dagger} |0\rangle = |e^-(p)e^+(k)\rangle \tag{10}$$

$$|f\rangle = c_{p'}^{\dagger} d_{k'}^{\dagger} |0\rangle = |e^{-}(p')e^{+}(k')\rangle \tag{11}$$

Consider first the matrix element of $S^{(1)}$. The only non-vanishing contributions come from terms containing: $c_{p'}^{\dagger}$, c_p or $d_{k'}^{\dagger}$, d_k .

We are interested in the scattering terms.

The only part of $S^{(1)}$ yielding a non-vanishing contribution to the matrix element is the time component of $A^{\mu 1}$

$$ie \int d^4x N\{\bar{\Psi}(x)A(x)\Psi(x)\} =$$

$$ie^2 \int d^4x N\left[\Psi^{\dagger}(\vec{x},t) \left(\int d^3x' \frac{\Psi^{\dagger}(\vec{x}',t)\Psi(\vec{x},t)}{4\pi|\vec{x}-\vec{x}'|}\right) \Psi(\vec{x},t)\right]$$

$$= ie^2 \int d^4x N\left[\bar{\psi}(x)\gamma^0 \left(\int \frac{d^3x'}{4\pi|\vec{x}-\vec{x}'|} \bar{\psi}(x')\gamma^0 \psi(x')\right) \psi(x)\right] \quad (12)$$

Note that this contribution to $S^{(1)}$ is order e^2 .

The field ψ is written as

$$\psi(x) = \sum_{p,r} \frac{1}{N_p} \left(c_p u_r(p) e^{-ipx} + d_p^{\dagger} v_r(p) e^{ipx} \right)$$

$$\tag{13}$$

¹Note that since A^i is quantized, $\langle 0|A^i|0\rangle=0$ indeed, A^i can either annihilate or create a photon leading to an initial and final state with a different number of photons.

where the N_p factors denote the normalization of the spinors. $N_p = (2VE_p)^{\frac{1}{2}}$. The matrix element $\langle f | S^{(1)} | i \rangle$ reads

$$\langle f | S^{(1)} | i \rangle = \frac{ie^2}{N_{p_1} N_{p_2} N_{p_3} N_{p_4}} \int d^4 x \int \frac{d^3 x'}{4\pi |\vec{x} - \vec{x}'|}$$

$$\langle f | \sum_{p_1, p_2, p_3, p_4} \left(c^{\dagger}_{p_1} \bar{u}_{p_1} e^{ip_1 x} + d_{p_1} \bar{v}_{p_1} e^{-ip_1 x} \right) \gamma^0 \left(c^{\dagger}_{p_2} \bar{u}_{p_2} e^{ip_2 x'} + d_{p_2} \bar{v}_{p_2} e^{-ip_2 x'} \right) \gamma^0$$

$$\left(c_{p_3} u_{p_3} e^{-ip_3 x'} + d^{\dagger}_{p_3} v_{p_3} e^{ip_3 x'} \right) \left(c_{p_4} u_{p_4} e^{-ip_4 x} + d^{\dagger}_{p_4} v_{p_4} e^{ip_4 x} \right) |i\rangle$$
 (14)

We are considering the scattering channel, which means that there is an electron e^- in position x and an positron e^+ in position x', hence we have to consider for $\bar{\psi}(x)$ the operator c^{\dagger} , for $\psi(x)$ the operator c, for $\bar{\psi}(x')$ the operator d and for $\psi(x')$, d^{\dagger} .

Hence,

$$\langle f | S^{(1)} | i \rangle = \frac{ie^2}{N_p N_{p'} N_k N_{k'}} \int d^4 d^3 x' \, \frac{e^{i(p'-p)x} e^{i(k'-k)x'}}{4\pi |\vec{x} - \vec{x}'|} \left(\bar{u}_{p'} \gamma^0 u_p \right) \left(\bar{v}_k \gamma^0 v_{k'} \right) \quad (15)$$

The time integration in eq. (15) can be carried out right away, since

$$\int dx^0 e^{i(E_{p'}-E_p+E_{k'}-E_k)} = 2\pi \,\delta(E_{p'}-E_p+E_{k'}-E_k) \tag{16}$$

The integration over $d^3x,\,d^3x'$ can be carried out using the new variables ξ,λ

$$\begin{cases} \vec{\xi} = \frac{\vec{x} + \vec{x}'}{2} \\ \vec{\lambda} = \vec{x} - \vec{x}' \end{cases} \Rightarrow \begin{cases} \vec{x} = \vec{\xi} + \frac{\vec{\lambda}}{2} \\ \vec{\lambda} = \vec{\xi} - \frac{\vec{\lambda}}{2} \end{cases}$$
(17)

the Jacobian of the transformation in eq. (17) is equal to 1 thus, we find

$$\int d^3x d^3x' \, \frac{e^{-i(\vec{p'}-\vec{p})\cdot\vec{x}}e^{-i(\vec{k'}-\vec{k})\cdot\vec{x'}}}{4\pi|\vec{x}-\vec{x'}|} = \int d^3\xi e^{-i(\vec{p'}-\vec{p}+\vec{k'}-\vec{k})\cdot\vec{\xi}} \int d^3\lambda \, \frac{e^{-i(\vec{p'}-\vec{p}+\vec{k}-\vec{k'})\cdot\frac{\vec{\lambda}}{2}}}{4\pi|\vec{\lambda}|}$$

$$= (2\pi)^3 \, \delta^3 \left(\vec{p'}+\vec{k'}-\vec{p}-\vec{k}\right) \int d^3\lambda \, \frac{e^{-i\vec{q}\cdot\vec{\lambda}}}{4\pi|\vec{\lambda}|} \quad (18)$$

where, $\vec{q} = \vec{p}' - \vec{p} = \vec{k}' - \vec{k}$.

Using, (the proof of eq. (19) is given in the appendix C)

$$\int \frac{d^3\lambda}{4\pi} \frac{e^{-i\vec{q}\cdot\lambda}}{|\vec{\lambda}|} = \frac{1}{\vec{q}^2} \tag{19}$$

we can write,

$$\langle f | S^{(1)} | i \rangle = (2\pi)^4 \, \delta^4 \, (p' - p + k' - k) \, \frac{1}{N_p N_{p'} N_k N_{k'}} M_{if}^{(1)}$$
 (20)

where we have defined the element $M_{if}^{(1)}$,

$$M_{if}^{(1)} = ie^2 \frac{1}{\vec{q}^2} \left(\bar{u}_{p'} \gamma^0 u_p \right) \left(\bar{v}_{k'} \gamma^0 v_k \right)$$
 (21)

Now consider the second term $S^{(2)}$. There are two different contributions to the matrix element between the states $|i\rangle$ and $|f\rangle$. We call these two contributions $S_A^{(2)},\,S_B^{(2)}$ (in appendix B we write more explicitly how to write $S_A^{(2)},\,S_B^{(2)}$).

$$\langle f | S^{(2)} | i \rangle = \langle f | S_A^{(2)} | i \rangle + \langle f | S_B^{(2)} | i \rangle$$
 (22)

$$\langle f | S_A^{(2)} | i \rangle = -\frac{e^2}{2} \int d^4x d^4x' T \left[A^{\mu}(x) A^{\nu}(x') \right] \frac{1}{N_p N_{p'} N_k N_{k'}}$$

$$\left\{ -e^{i(p'-p)x} e^{i(k'-k)x'} \left(\bar{u}_{p'} \gamma_{\mu} u_p \right) \left(\bar{v}_k \gamma_{\nu} v_{k'} \right) - e^{i(p'-p)x'} e^{i(k'-k)x} \left(\bar{u}_{p'} \gamma_{\nu} u_p \right) \left(\bar{v}_k \gamma_{\mu} v_{k'} \right) \right\}$$
(23)

and,

$$\langle f | S_B^2 | i \rangle = \frac{e^2}{2} \int d^4x d^4x' T \left[A^{\mu}(x) A^{\nu}(x') \right] \frac{1}{N_p N_{p'} N_k N_{k'}}$$

$$\left\{ e^{i(p'+k')x} e^{-i(p+k)x'} \left(\bar{u}_{p'} \gamma_{\mu} v_{k'} \right) \left(\bar{v}_k \gamma_{\nu} u_p \right) + \right.$$

$$\left. e^{i(p'+k')x'} e^{-i(p+k)x} \left(\bar{u}_{p'} \gamma_{\nu} v_{k'} \right) \left(\bar{v}_k \gamma_{\mu} u_p \right) \right\}$$
(24)

The matrix element $\langle f|\,S_A^{(2)}\,|i\rangle$ describes electron-positron scattering, while $\langle f|\,S_B^{(2)}\,|i\rangle$ is associated with the process in which the initial state e^+e^- annihilates at x'and the final state e^+e^- pair is created in x. We will discuss e^+e^- scattering only.

Using,

$$T[A(x)B(x')] = N[A(x)B(x')] + \langle 0|T[A(x)B(x')]|0\rangle$$
 (25)

and defining,

$$iD_F^{\mu\nu}(x - x') = \langle 0|T[A(x)B(x')]|0\rangle$$
 (26)

we can rewrite $\langle f | S_A^{(2)} | i \rangle$ as,

$$\langle f | S_A^{(2)} | i \rangle = e^2 \int d^4 d^4 x' \frac{1}{N_p N_{p'} N_k N_{k'}} i D_F^{\mu\nu} (x - x')$$

$$e^{i(p'-p)x} e^{(k'-k)x'} (\bar{u}_{p'} \gamma_\mu u_p) (\bar{v}_k \gamma_\nu v_{k'})$$
(27)

integration over $\xi = (x + x')/2$ leads to

$$\langle f | S_A^{(2)} | i \rangle = (2\pi)^4 \delta(p' - p + k' - k) \frac{1}{N_p N_{p'} N_k N_{k'}} M_{if}^{2A}$$
 (28)

with q = p - p' = k' - k and M_{if}^{2A} ,

$$M_{if}^{2A} = ie^2 \int d^4 \lambda \, D_F^{\mu\nu}(\lambda) \, e^{iq\lambda} \, \left(\bar{u}_{p'} \gamma_\mu u_p \right) \left(\bar{v}_k \gamma_\nu v_{k'} \right) \tag{29}$$

The photon propagator $D_F^{\mu\nu}(x-x')$ can be obtained using the field expansion for $A^{\mu}(x)$.

$$A^{\mu}(x) = \sum_{\vec{k}}^{2} \frac{1}{(2V\omega_{k})^{1/2}} \epsilon_{r}^{\mu}(\vec{k}) \left(a_{r}(\vec{k})e^{-ikx} + a_{r}^{\dagger}(\vec{k})e^{ikx} \right)$$
(30)

leading to

$$iD_{F}^{\mu\nu}(x-x') = \langle 0| A^{\mu}(x) A^{\nu}(x') | 0 \rangle \theta(t-t') + \langle 0| A^{\nu}(x') A^{\mu}(x) | 0 \rangle \theta(t'-t)$$
(31)
$$= \theta(t-t') \sum_{\vec{k}} \frac{1}{2V\omega_{k}} e^{-ik(x-x')} \sum_{r=1}^{2} \epsilon_{r}^{\mu}(\vec{k}) \epsilon_{r}^{\nu}(\vec{k})$$

$$+ \theta(t'-t) \sum_{\vec{k}} \frac{1}{2V\omega_{k}} e^{-ik(x'-x)} \sum_{r=1}^{2} \epsilon_{r}^{\mu}(\vec{k}) \epsilon_{r}^{\nu}(\vec{k})$$
(32)

The polarization vectors in the transverse gauge have no time component. They can be written as

$$\epsilon_r^{\mu}(\vec{k}) = (0, \hat{\epsilon}_r(\vec{k})), \qquad r = 1, 2$$
 (33)

wit the unit vector $\hat{\epsilon}_r(\vec{k})$ satisfying,

$$\hat{\epsilon}_r(\vec{k}) \cdot \hat{\epsilon}_{r'}(\vec{k}) = \delta_{r,r'} \tag{34}$$

$$\hat{\epsilon}_r(\vec{k}) \cdot \hat{k} = 0 \tag{35}$$

$$\sum_{r=1}^{2} \epsilon_{r}^{i}(\vec{k}) \epsilon_{r'}^{j}(\vec{k}) = \delta^{ij} - \hat{k}^{i} \hat{k}^{j}$$
(36)

Introducing time-like unit vector $\eta^{\mu}=(1,0,0,0)$ (in the frame in which the electromagnetic field has been quantized) we can construct a set of four independent orthogonal vectors, $\epsilon^{\mu}_{r}(\vec{k})$, $\epsilon^{\mu}_{3}(\vec{k})$, η^{μ}

where,

$$\epsilon_r^{\mu}(\vec{k}) = (0, \hat{\epsilon}_r(\vec{k})), \qquad r = 1, 2$$
 (37)

$$\epsilon_3^{\mu}(\vec{k}) = \frac{k^{\mu} - (k\eta)\eta^{\mu}}{[(k\eta)^2 - k^2]^{1/2}}$$
 (38)

$$\eta^{\mu} = (1, 0, 0, 0) \tag{39}$$

This set of vectors satisfy,

$$\eta^{\mu\nu} - \sum_{r=1}^{2} \epsilon_{r}^{\mu}(\vec{k})\epsilon_{r}^{\nu}(\vec{k}) - \epsilon_{3}^{\mu}(\vec{k})\epsilon_{3}^{\nu}(\vec{k}) = g^{\mu\nu}$$
 (40)

To write the photon propagator in a more compact function we use

$$\theta(t - t') \sum_{\vec{k}} \frac{e^{-ik(x - x')}}{2V\omega_k} = \theta(t - t') \int \frac{d^3k}{(2\pi)^3} \frac{e^{-ik(x - x')}}{2\omega_k}$$

$$= \theta(t - t') \int \frac{d^3k}{(2\pi)^3} \frac{e^{-i\omega_k(t - t')}}{2\omega_k} e^{i\vec{k} \cdot (\vec{x} - \vec{x})}$$
(41)

whe t > t' we have

$$\frac{e^{-i\omega_k(t-t')}}{2\omega_k} = i \int \frac{dk_0}{2\pi} \frac{e^{-ik_0(t-t')}}{k^2 + i\epsilon}$$
(42)

with $\epsilon = 0^+$, while at t' > t

$$\frac{e^{-i\omega_k(t'-t)}}{2\omega_k} = i \int \frac{dk_0}{2\pi} \frac{e^{-ik_0(t'-t)}}{k^2 + i\epsilon}$$
(43)

Collecting all things together we obtain.

$$iD_F^{\mu\nu}(x-x') = i \int \frac{d^4k}{(2\pi)^4} \frac{e^{-ik(x-x')}}{k^2 + i\epsilon} \left[-g^{\mu\nu} - \epsilon_3^{\mu}(\vec{k})\epsilon_3^{\nu}(\vec{k}) + \eta^{\mu}\eta^{\nu} \right]$$

$$= i \int \frac{d^4k}{(2\pi)^4} \frac{e^{-ik(x-x')}}{k^2 + i\epsilon} \left[-g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{\vec{k}^2} + (k^{\mu}\eta^{\nu} + k^{\nu}\eta^{\mu}) \frac{k_0}{\vec{k}^2} - \eta^{\mu}\eta^{\nu} (\frac{k_0^2}{\vec{k}^2} - 1) \right]$$
(44)

Substituting the expression of $iD_F^{\mu\nu}(x-x')$ into eq. (29) we find (an integration over λ gives a $\delta^4(k-q)$) and $\frac{k_0^2}{\vec{k}^2}-1=\frac{q^2}{\vec{q}^2}$,

$$M_{if}^{2A} = \frac{ie^2}{q^2 + i\epsilon} \left(-g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{\vec{q}^2} + (q^{\mu}\eta^{\nu} + q^{\nu}\eta^{\mu}) \frac{q^0}{\vec{q}^2} - \eta^{\mu}\eta^{\nu} \frac{q^2}{\vec{q}^2} \right) (\bar{u}_{p'}\gamma_{\mu}u_p) \left(\bar{v}_{k'}\gamma_{\nu}v_k \right)$$
(45)

Note first that the last contribution in the $\epsilon \to 0$ limit is

$$-ie^2 \frac{1}{\vec{q}^2} \left(\bar{u}_{p'} \gamma_0 u_p \right) \left(\bar{v}_k \gamma_0 v_{k'} \right) \tag{46}$$

and cancels exactly $M_{if}^{(1)}$ defined in eq. (21). Moreover, the contributions containing q^{μ} vanish since,

$$q^{\mu}\bar{u}_{\nu'}\gamma_{\mu}u_{\nu} = (p'-p)^{\mu}\bar{u}_{\nu'}\gamma_{\mu}u_{\nu} = \bar{u}_{\nu'}(\not p - \not p')u_{\nu} = (m-m)\bar{u}_{\nu'}u(p) = 0 \quad (47)$$

In conclusion we can write,

$$M_{if}^{2A} = ie^2 D_F^{\mu\nu} (p - p') \left(\bar{u}_{p'} \gamma_{\mu} u_p \right) \left(\bar{v}_{k'} \gamma_{\nu} v_k \right)$$
 (48)

where the photon propagator $iD_F^{\mu\nu}(q)$ in the momentum space is,

$$iD_F^{\mu\nu}(q) = \frac{-ig^{\mu\nu}}{q^2 + i\epsilon} \tag{49}$$

A Time-orderd product

Show that

$$T[A(x)B(x')] = N[A(x)B(x')] + \langle 0|T[A(x)B(x')]|0\rangle$$
 (50)

Using the definition of normal product and time order product we obtain

$$T[A(x)B(x')] = \theta(t)A(x)B(x') \pm \theta(-t)B(x')A(x)$$
(51)

where the +/- sign corresponds to boson/fermions and using

$$N(AB) = AB - \langle 0|AB|0\rangle \tag{52}$$

and $N(AB) = \pm N(BA)$ we find,

$$T[AB] = \theta(t) \left[N(AB) + \langle 0|AB|0 \rangle \right] \pm \theta(-t) \left[N(BA) + \langle 0|BA|0 \rangle \right]$$
 (53)

$$= \left[\theta(t) + \theta(-t)\right]N(AB) + \langle 0|\theta(t)AB + \theta(-t)BA|0\rangle \tag{54}$$

$$= N(AB) + \langle 0|T(AB)|0\rangle \tag{55}$$

B Contribution to scattering and annihilation channel

We show which contributions correspond to e^+e^- scattering and e^+e^- annihilation.

$$S^{(2)} = -\frac{e^2}{2} \int d^4x d^4x' N \left[\bar{\psi}(x) \gamma^{\mu} A_{\mu}(x) \psi(x) \bar{\psi}(x') \gamma^{\mu} A_{\mu}(x') \psi(x') \right]$$
 (56)

Taking,

$$\psi \backsim \sum_{p} \left(c_p u e^{-ipx} + d_p^{\dagger} v e^{ipx} \right)$$
$$\bar{\psi} \backsim \sum_{p'} \left(c_{p'}^{\dagger} \bar{u} e^{ip'x} + d_{p'} \bar{v} e^{-ipx} \right)$$

The terms contribuiting to e^+e^- channel are

$$\sum_{p,p',k,k'} \left[c_{p'}^{\dagger} c_{p} \, \bar{u}_{p'} \gamma^{\mu} u_{p} \, e^{i(p'-p)x} \, - \, d_{p}^{\dagger} d_{p'} \bar{v}_{p'} \gamma^{\mu} v_{p} \, e^{-i(p'-p)x} \right] \cdot \\ \left[c_{k'}^{\dagger} c_{k} \, \bar{u}_{k'} \gamma^{\nu} u_{k} \, e^{i(k'-k)x'} \, - \, d_{k}^{\dagger} d_{k'} \bar{v}_{k'} \gamma^{\nu} v_{k} \, e^{-i(k'-k)x'} \right] \quad (57)$$

In eq. (57) we can either take the combination $c_{p'}^{\dagger}c_p d_{k'}^{\dagger}d_k$ or $d_p^{\dagger}d_{p'}c_k^{\dagger}c_{k'}$. The terms contribuiting to e^+e^- annihilation are

$$\sum_{p,p',k,k'} \left[c_{p'}^{\dagger} d_{p}^{\dagger} \bar{u}_{p} \gamma^{\mu} v_{p} e^{i(p'+p)x} + d_{p'} d_{p} \bar{v}_{p'} \gamma^{\mu} u_{p} e^{-i(p+p')x} \right] \cdot \left[c_{k'}^{\dagger} d_{k}^{\dagger} \bar{u}_{k} \gamma^{\mu} v_{k} e^{i(k'+k)x} + d_{k'} d_{k} \bar{v}_{k'} \gamma^{\mu} u_{k} e^{-i(k+k')x} \right]$$
(58)

In eq. (58) we can take either $c_{p'}^{\dagger} d_p^{\dagger} c_{k'}^{\dagger} d_k^{\dagger}$ or $d_{p'} d_p c_{k'}^{\dagger} d_k^{\dagger}$.

Note that scattering channel and annihilitation channel have different sign, since the scattering channel has an overall minus sign.

C Yukawa integral and Green function of ∇^2

Let us consider this Yukawa integral and Green function of ∇^2

$$\int d^3x \frac{e^{-\mu x}}{x} e^{i\vec{q}\cdot\vec{x}} \tag{59}$$

Let $q = |\vec{q}|, x = |\vec{x}|$

$$\int d^3x \frac{e^{-\mu x}}{x} e^{i\vec{q}\cdot\vec{x}} = 2\pi \int_0^\infty dx \, x^2 \int_0^\pi d\theta \sin(\theta) \frac{e^{-\mu x}}{x} e^{iqx \cos(\theta)}$$

$$= \frac{4\pi}{q} \int_0^\infty dx \, \frac{e^{-\mu x}}{x} \sin(qx) = \frac{4\pi}{q^2} \int_0^\infty dy \, e^{-\tilde{\mu}y} \sin(y) = \frac{4\pi}{q^2} \int_0^\infty dy \, I(\tilde{\mu})$$

where, $\tilde{\mu} = \frac{\mu}{q}$ and y = qx.

$$\begin{split} I(\tilde{\mu}) &= \int_0^\infty dy \, e^{-\tilde{\mu}y} \, \sin(y) = -\frac{1}{\tilde{\mu}} \left(e^{-\tilde{\mu}y} \, \sin(y) \mid_0^\infty - \int_0^\infty dy \, e^{-\tilde{\mu}y \cos(y)} \right) \\ &= -\frac{1}{\tilde{\mu}} \left(e^{-\tilde{\mu}y} \, \cos(y) + \int_0^\infty dy \, e^{-\tilde{\mu}y} \, \sin(y) \right) = -\frac{1}{\tilde{\mu}} \left[-1 \, + \, I(\tilde{\mu}) \right] \end{split}$$

Which implies that,

$$I(\tilde{\mu}) = \frac{1}{1 + \tilde{\mu}^2} \tag{60}$$

and finally,

$$\int d^3x \frac{e^{-\mu x}}{x} e^{i\vec{q}\cdot\vec{x}} = \frac{4\pi}{q^2 + \mu^2}$$
 (61)

taking the limit $\mu \to 0$, we find

$$\int d^3x \, \frac{e^{i\vec{q}\cdot\vec{x}}}{x} = \frac{4\pi}{q^2} \tag{62}$$

The latter integral can be also evaluated by the Green function of the Laplacian operator.

$$\nabla_x^2 \frac{1}{4\pi |\vec{x} - \vec{x}'|} = -\delta^3 (\vec{x} - \vec{x}') \tag{63}$$

Let $G(\vec{x} - \vec{x}')$ be the Green function of ∇^2 .

$$G(\vec{x} - \vec{x}') = \int \frac{d^3q}{(2\pi)^3} \,\hat{G}(q) \,e^{i\vec{q}\cdot\vec{x}}$$
 (64)

acting with ∇_x^2 on $G(\vec{x} - \vec{x}')$,

$$\nabla_x^2 G(\vec{x} - \vec{x}') = \int \frac{d^3 q}{(2\pi)^3} \, \hat{G}(q)(-|\vec{q}|^2) \, e^{i\vec{q} \cdot \vec{x}}$$
 (65)

Taking eq. (63) and eq.(65) together, we find

$$\frac{1}{4\pi|\vec{x} - \vec{x}'|} = \int \frac{d^3q}{(2\pi)^3} \frac{e^{i\vec{q}\cdot\vec{x}}}{|\vec{q}|^2}$$
 (66)

which leads to,

$$\int d^3x \frac{e^{i\vec{q}\cdot\vec{x}}}{4\pi|\vec{x}-\vec{x}'|} = \int d^3x \, \frac{d^3p}{(2\pi)^3} \frac{e^{i(\vec{p}+\vec{q})\cdot\vec{x}}}{|\vec{p}|^2} = \frac{1}{|\vec{q}|^2}$$
(67)