Application of the S-matrix formalism to
ete” — ete” and photon propagator

Omar Benhar & Valerio Casconi

Contents

1 e'e” scattering 1
A Time-orderd product 6
B Contribution to scattering and annihilation channel 7
C Yukawa integral and Green function of V2 8

1 efe™ scattering

Expansion of the S-matrix element between the initial state |¢) and the final
state |f). From the Dyson equation we get

(FISTiy = (£ 8™ i)
n=0

= <f|§: %/d%l coodba, T{H (1) ... Hi(z,)} |i)
" = i + (FISY i) + (k[ SP )iy +... (1)
where, #; is the QED Hamiltonian density
Hi(w) = —Lr(x) = —e N{¥(2)y"¥(x)Au(2)} (2)

-,

where N is the normal ordering of the operators and A, (z) = (®, A) is the
gauge potential.
We define the Coulomb gauge (transverse gauge) defined by:

—

V-A=0 (3)

From the Gauss’ law we have V - E = p and E=-Vo-— %—f. Thus, E must
satisfy Poisson’s equation:

V2p = —p (4)

eq. (4) can be solved using the Green function of V2, leading to
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In the process that we are considering the charge density generating the
potential felt by the electron is:

e U0 =0T (6)
hence, we obtain for A°(%,t) = ®(Z,1)
U(, )y (@, 1)
(&t d*a’
@) = & [T @

The first contribution to the S matrix expansion are S and S

S = je / d*zN [U(x)A(z)¥(z)) (8)

62 _ _
-5 [ el T (@A) ¥ (@) D) A U] (9)

(2) =
S 2

We want to evaluate the matrix element between the initial state |i) and the
final state |f), where

[i) = cfd} [0) = [e” (p)e* (k) (10)
1f) = chdf, [0) = e~ (p)et (k) (11)
Consider first the matrix element of S™). The only non-vanishing contribu-
tions come from terms containing: C;r)/, cp or dz,, dg.-
We are interested in the scattering terms.

The only part of S() yielding a non-vanishing contribution to the matrix
element is the time component of A*!

ie / A eN{U(z)A(z)¥(z)} =
e? / d*zN {qﬁ(f, t) ( / d%’W) (z, t)]
=ie2/d4xN [zﬂ(x)vo </ 4ch3$' |1Z( ')y Ow(w’>> w(@] (12)

Note that this contribution to SM) is order €2.
The field v is written as

va)=) J\lfp (cpur(p)e™™" + dfvr (p)e™) (13)

INote that since A? is quantized, (0] A*|0) = 0 indeed, A’ can either annihilate or create
a photon leading to an initial and final state with a different number of photons.



where the N, factors denote the normalization of the spinors. N, = (QVEP)%.
The matrix element (f| S™) |i) reads

S 1) /d4 /
<f‘ Z (CLI upl + dpl vpl lplx) 70 (02;2114726 2% + dp217p2e_ip2w ) ,YO

P1,P2,P3,P4
—11)390 i 11)31'/ —ipax T ipaT |;
(CPS U’PB + d U;Ds ) (Cp4 up4e + dp4vp4€ ) |Z> (14)

We are considering the scattering channel, which means that there is an
electron e~ in position x and an positron e™ in position z’, hence we have to
consider for ¢(x) the operator ¢f, for ¢)(x) the operator ¢, for ¢(z') the operator
d and for ¢(z'), df

Hence,

(15D i) =

ie2 /d4d3 | el Pz ik k) (11%0) (Er00e) (15)
AT A A x Up Y U v, (%
Npr/Nka/ 47T|33‘—33 | 7 Up kY Uk

The time integration in eq. (15) can be carried out right away, since

/d:co By —BvtBu=Bx) — or §(E,, — E, + Ejy — Ey) (16)
The integration over d3z, d3z’ can be carried out using the new variables
& A
F_ it - _ X
(=5 T=Etg (17)
A=2-7 X=E— %

the Jacobian of the transformation in eq. (17) is equal to 1 thus, we find

1

/d3xd3 el =p)-E—i(F=F) /d‘"’ge" S —R-E). 5/d3/\ o~ (P —P+E-F')-
4dr|Z — 7| 4r|X|
) . _ —ig-X
= (21)% 8 (;5’ Ny Y . k:) /d?’)\e — (18)
4|\
where, §= 5 —p =Kk — k.
Using, (the proof of eq. (19) is given in the appendix C)
Ar N @
we can write,
1
(1) 7\ — 2 464 /o klfk M(l) 2
(1S 1) = (2m)* 5 0 =0k = ) e (20)



where we have defined the element M l.(; ),

1
Mi(;) = ieQ? (ﬂp/'youp) (ﬁkf'yovk) (21)

Now consider the second term S®). There are two different contributions to
the matrix element between the states |i) and |f). We call these two contribu-

tions 51(42)7 51(32) (in appendix B we write more explicitly how to write Sff), Sg)).

(1S iy = (715 1y + (£155 1 @2
<f| 5(2) |z> _ _é /d4md4x/T [A“(x)A”(ac’)] ;
A 2 Npr’Nk‘Nk’
{—ei(p/_p)’”ei(kl_k)wl (Upr Yuup) (Vk Y00k
— el =)’ ik =k)x (Up Youp) (VkVuorr) (23)
and,
131 = [ttt T At 046
B D) Npr'Nka’

{ei(p#k/)meii(wk)m/ (pyuvrr) (VkYwip) +
PRI T (), 0y ) (Bayatp)} (24)
The matrix element (f| Sff) |i) describes electron-positron scattering, while (f| S’g) |4)
is associated with the process in which the initial state eTe™ annihilates at 2’
and the final state ete™ pair is created in z.

We will discuss eTe™ scattering only.
Using,

and defining,
iD (w — a') = (0] T [A() B(a')] |0) (26)

we can rewrite (f] Sf) i) as,

. 1 o
1591 = [atata' iR =)
el 0’ —p)z (K =k)z! (Up Vi) (Vk Y0k ) (27)

integration over £ = (z + 2’)/2 leads to

(2) 1\ _ dg( 1 ;o 1 2A
U180 1) = )8! —p+ K — k) gy M (28)

Withq:p—p’:k’—kandef‘,



Mi2fA = ie’ / d4)\D5gj (A) e (tprYpuup) (Vk VR (29)

The photon propagator D%’ (z—z') can be obtained using the field expansion
for A¥(x).

2
Z St ®) (ar@e ™ + al(B)e*))  (30)

2Vw
=1
leading to
Dy (z—a') = (0] A"(z)A"(2)[0) 6t — ')
+ (0] A% (')A () [0) O(t' —t) 1)
_ e(t_t/)Zﬁ —ik(z— x)zeu E)

1 -
+ G(t’ —1) Z 2vwk e~ ik(z'—) Z 6“ e’ (k) (32)

r=1

The polarization vectors in the transverse gauge have no time component.
They can be written as

(k) = (0,¢,(k)), r=1,2 (33)

wit the unit vector éT(E) satisfying,

ér(E) . ér’( ) = 6r,r’ (34)
&(k)- k=0 (35)
> ei(k)el (k) = 67 — k'R (36)
r=1

Introducing time-like unit vector n* = (1,0,0,0) (in the frame in which

the electromagnetic field has been quantized) we can construct a set of four
independent orthogonal vectors, e (k), €5 (k), n*
where,

(k) = (0,6.(k), r=1,2 (37)

weoN kH — (’WI)U”

S T e .
= (1,0,0,0) (39)

This set of vectors satisfy,

2
W = e R)el (k) — e5(k)es (k) = g (40)



To write the photon propagator in a more compact function we use

e—ik(z—z") Bl e—ik(z—a’)
ot -1 Z Wur ot =) / (2m)3 2wy
E

A3k efiwk(tft’) T
= G(t—t’)/ LR (@) (41)
whe ¢t > t' we have
—iwg (t—t") —iko(t—t")
e [ Ree T (42)
2w 2 k2 + e

with € = 0%, while at ¢/ > ¢,

21 k2 +ie

) / dko e~ tko(t'—1)
— =3 —_—
Collecting all things together we obtain,

2wk

DHY Y B i R BV (K + ntn”
¢ F(x_ff)—l/wm[—g — & )63()+7777}
d'k e~ tkl@=a) ki kY ko k3
_ A 71 oV vopy ™Y p v M0
—Z/(%)4 e [g 7 + (k" +k77)l-€»2 7777(]-6»2 1)}
(44)

/

Subsituting the expression of (D} (x — )2 into eq. (29) we find (an integra-

2
tion over A gives a 6*(k — ¢)) and Z—g -1=15,

0 2

-2 W v
€ a7q q q _ _
MZA: [ _opr w, v vopNd o op,vd -~ ,
g\ Y o +(¢"n" + 4" )qg " (tpryptip) (Vkr vk
(45)

Note first that the last contribution in the € — 0 limit is

a1 _
*lqu; (@ Youp) (OxY0Vk") (46)

and cancels exactly MZ.(;) defined in eq. (21). Moreover, the contributions

containing ¢* vanish since,

q" iy Yy = (P/ — )l yuty = Uy (]Z’ - P')Up = (m —m)uyu(p) =0 (47)

In conclusion we can write,

M = ie DY (p = p') (T yutip) (Bry001) (48)
where the photon propagator iD%’(g) in the momentum space is,
. —ight”
iDE (q) = 49
r(9) q? + ie (49)



A Time-orderd product

Show that

T [A(z)B(2")] = N [A(x) B(z)] + (0| T [A(x) B(2")] |0) (50)

Using the definition of normal product and time order product we obtain

T [A(z)B(z')] = 0(t)A(z) B(z') + 6(—t) B(z) A(z) (51)

where the 4+/— sign corresponds to boson/fermions and using

N(AB)=AB - (0] AB|0) (52)
and N(AB)=+N(B A) we find,

T[AB] =0(t)[N(AB)+ (0] AB|0)] + 6(—t) [N(B A) + (0| BA|0)]  (53)
= [0(t) + 0(—t)|N(AB) + (0|0(t)AB + 0(—t)BA|0)  (54)
— N(AB) + (0| T(AB) |0)

B Contribution to scattering and annihilation chan-
nel

We show which contributions correspond to eTe™ scattering and eTe™ annihi-

lation.

50 = -5 [ eV [Har AR A ] 66

Taking,

P Z (cpue™ ™" + d:)veipw)
P

P Z (c;, we'r 4 dy @e_ipx)

p/

The terms contribuiting to eTe™ channel are

Z |:CL/CP ﬂp/’}//‘l’up ei(p’,p)a: _ d;dp/l_}p/’}/'u‘vp e*i(plfp)z} )

p.p' kK

chk Ty g, € R dl dy Ty v efi(k’fk)m’} (57)

In eq. (57) we can either take the combination cL, cpd,t,dk or d;f,dp/ c,ick/.
The terms contribuiting to eTe™ annihilation are



Z {CL/dLapfyy’rUp ei(p/+17)it + dp/dp@p/fy“up e*i(p+p’)m '
p,p’,k,k’

[CLdiﬂkW”Uk€“y+khr+—dwdkﬁw7”uk€_“k+k”m (58)

In eq. (58) we can take either c;,d};cz,d,t or dp/dpc;g,d;i.
Note that scattering channel and annihilitation channel have different sign,
since the scattering channel has an overall minus sign.

C Yukawa integral and Green function of V2

Let us consider this Yukawa integral and Green function of V?

—pTo
/ dBrS— eiTE (59)

T

Let g = ‘ﬂ’ Tr = |f|

. —px o) ™ —px
/d‘3x6 et = 27r/ dx xz/ de Sin(Q)L eta@ cos(0)
x 0 0 €T
A [ e H* 47
=— d

o 5 47_[_ (9]
x sin(qz) = —2/ dy e ™" sin(y) = —2/ dyI(f)
q Jo q Jo q Jo

where, i = % and y = qz.

1
I(0) =
(= 52 (60)
and finally,
—pr 4
/dS:ce et = — T 5 (61)
T q°+ u
taking the limit 4 — 0, we find
T A
et == 62
[ =2 (62

The latter integral can be also evaluated by the Green function of the Lapla-
cian operator.

Vzﬁ = —63(3_7'— f’) (63)



Let G(Z — ') be the Green function of V2.

3 A e
67 -7) = [ s Gl e™

acting with V2 on G(Z — &),

3 R .
V2G(E - &) = / (%3 Glg)(—1g?) €7

Taking eq. (63) and eq.(65) together, we find

1 _/ d3q el
drlz— 2| ) (27)3 |q)2

which leads to,

iq-T 3 i(p+q)-T
/dsx — = :/de dp3€ 2 72
Ar| T — 1| (2m)> Pl lq]

1

(64)



