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Introduction

The typical density of terrestrial macroscopic objects, i.e. the ratio of
their mass to volume, does not exceed p ~ 20 g/cm3. As a consequence,
their structure is mainly dictated by electromagnetic interactions.

At much higher density, in the region p > 10* g/cm?, the picture changes
dramatically: the role of electromagnetic interactions becomes negligible and
the structure of matter is mainly determined by quantum effects and nuclear
interactions.

In the 1920s a star called Sirius B, a binary companion to the star Sirius,
was found to be a highly compact object, of mass ~ 0.75 — 0.95 My (Mg =
1.989 x 10%® g denotes the mass of the sun) and size comparable to that of
a planet!. Its density was estimated to reach millions of g/cm3. Sirius B is
now known to belong to a class of stellar objects called white dwarfs.

The effort to understand the structure of the white dwarfs triggered the
first studies of physics of dense matter. More recently, these investigations
have been considerably extended, to describe the physical properties of dif-
ferent types of dense matter of astrophysical and cosmological relevance.

Of particular relevance is the understanding of the structure of matter in
the interior of neutron stars, whose existence was predicted right after the
discovery of the neutron. Due to the large densities involved, up to ~ 10
g/cm3, the theoretical description of neutron star matter must take into ac-
count the full complexity of the dynamcs of strong interactions, including the
forces acting at nuclear and hadronic level, as well as the possible occurrence
of a core of deconfined quark matter.

In this notes, we will discuss the properties of matter at densities 10* < p <
10% g/cm3, typical of white dwarfs and neutron stars. We will mostly focus
on the region of p > py, where py = 2.67 x 10* g/cm? is the the central
density of atomic nuclei, i.e. the largest density observed on earth under
ordinary conditions.

In his book The Internal Constitution of the Stars, published in 1926, Sir Arthur
Eddington wrote: “we have a star of mass about equal to the sun and radius much less
than Uranus".
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Chapter 1

Equilibrium of white dwarfs

1.1 Stellar structure and evolution

The formation of a star is believed to be set off by the contraction of a
self-gravitating hydrogen cloud. As the density increases, the temperature
also increases, and eventually becomes high enough to ignite the chain of
nuclear fusion reactions turning hydrogen into helium:

p+p — *H+e +v+04 MeV,
ef+e” — ~v+1.0MeV,
H+p — *He+y+55MeV,
SHe+*He — *He +2p+ 26.7 MeV .

Note that the above reactions are all exothermic, and energy is released in
form of kinetic energy of the produced particles (1 MeV = 1.6021917 x 1076
erg). Equilibrium is reached as soon as gravitational attraction is balanced
by matter pressure.

When the nuclear fuel is exhausted® the core stops producing heat, the
internal pressure cannot be sustained and the contraction produced by grav-
itational attraction resumes. If the mass of the helium core is large enough
its contraction, associated with a further increase of the temperature, can
then lead to the ignition of new fusion reactions, resulting in the appear-
ance of heavier nuclei (carbon, oxygen ...). Depending on its intial mass,
the sequence of epochs of gravitational contraction and nucleosynthesis can
take place several times during the lifetime of the star. The endpoint of this
process is the formation of a core made of iron as, 6Fe being the most stable
nuclear species, further exothermic fusion reactions are no longer possible.

IFor example, in our sun, which has been already burnig for 5 x 10° years, hydrogen
will been exhausted in 5 x 10° more years.
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The outcome of the star evolution process depends primarily on the initial
mass My. A white dwarf is formed when My < 4 M, while for My > 4 M
the star evolves into either a neutron star or a black hole.

For My < 4 M, the star does not reach the temperature required to
ignite the fusion reactions turning carbon and oxygen into heavier elements
(the ignition temperatures of the reactions taking place in a massive star are
listed in Table 1.1). Nucleosynthesis stops at this stage and the pressure
needed to balace gravitational attraction can no longer be produced burning
nuclear fuel.

Nuclear fuel Main products Temperature Density Duration

[°K] lg/cm?®]  [yrs]
H He 6x107 5 7x108
He C, 0 2x108 700 5x10°
C O, Ne, Mg 9x108 2x 10° 600
Ne O, Mg, Si 1.7x10° 4% 10° 1
0) Si, S 2.3x10° 107 0.5
Si Fe 4%10° 3x 107 0.0025

Table 1.1: Stages of nucleosynthesis for a star of mass ~ 25 Mg

Equilibrium of white dwarfs is due to the pressure generated by the elec-
trons. Being spin 1/2 particles, electrons obey Pauli’s exclusion principle. As
a consequence, even at zero temperature they carry nonvanishing momentum
and produce a pressure, called degeneracy pressure, balancing gravitational
attraction. Stability of the white dwarfs is the macroscopic manifestation of
a purely quantum mechanical effect.

Typical values of mass and radius of a white dwarf are M ~ 1 M and
R ~ 5 x 10® km (to be compared to the solar radius Rs = 6.960 x 10°> km),
corresponding to an average density ~ 10% g/cm?. In 1931, Chandrasekhar
was able to demonstrate the existence of a limiting white dwarf mass M, =
1.44 Mg. As we will see in Section 1.4, beyond this value white dwarfs
become unstable against gravitational collapse.

Let us now consider the case of more massive stars, having My > 4 M,
where nuclear fusion reactions continue and heavier elements are produced.
With the appearance of the iron core neutrinos begin to appear through the
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process
Ni —%¢ Fe + 2et + 2u . (1.1)

The produced neutrinos do not interact appreciably with the surrounding
matter, and leave the core of the star carrying away energy. Hence, during
this stage both gravity and neutrino emission contribute to the collapse of the
system, which becomes very fast due to the action of different mechanisms.
The most efficient are:

e neutronization, i.e. electron capture by protons through the weak in-
teraction process
e +p—=+n+v,, (1.2)

whose main effect is the disappearance of electrons, leading in turn to
a decrease of the pressure;

e iron photodisintegration
v +%Fe — 13 *He + 4n (1.3)

which, being an endothermal reaction, decreases the energy of the sys-
tem, thus enhancing its contraction.

Due to the combined action of gravity and the above mechanisms, as soon
as the mass exceeeds the Chandrasekhar limit the core collapses, within a
time of the order of a fraction of a second, until it reaches the typical density
of atomic nuclei, ~ 10" g/cm?® or ~ 100 million tons per cubic centimeter.

At this stage, the core of the star behaves as an atomic nucleus of macro-
scopic size, and becomes almost incompressible. The gravitational collapse
stops and the core undergoes a bounce, producing a blast that ejects the star
envelope into interstellar space. Most of the elements heavier than iron are
created in this process.

The final outcome of this sequence of events, leading to the appearance
of a supernova may be, in some cases, the birth of a rapidly rotating neutron
star that can be observed many years later as a radio pulsar.

Neutron stars are the most interesting compact stars. Their structure
and stability critically depend on the composition and the equation of state
of the form of matter prevailing in the interior. Moreover, as the densities
reached in neutron stars is much larger than the typical density of white
dwarfs, the effects of general relativity cannot be neglected.

Before discussing some of the complex issues involved in the theoretical
description of neutron star matter, in the rest of this Chapter we will focus
on the simpler but instructive case of white dwarfs.
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1.2 The degenerate electron gas

Let us consider a system of noninteracting electrons uniformly distributed
in a cubic box of volume V' = L3. If the temperature is sufficiently low, so that
thermal energies can be neglected, the lowest quantum levels are occupied by
two electrons, one for each spin state. Both electrons have the same energy,
i.e. they are degenerate. This configuration corresponds to the ground state
of the system. A gas of noninteracting electrons in its ground state is said
to be fully degenerate. At higher temperature, the thermal energy can excite
electrons to higher energy states, leaving some of the lower lying levels not
fully degenerate.

As the electrons are uniformly distributed, their wave functions must
exhibit translational invariance. They are eigenfunctions of the generator of
space translation, i.e. the momentum operator, and can be written in the
form

wpa(r) = ¢p(r)XU ) (14)
where Y, is a two-component Pauli spinor and
Go(r) = /7 P (1.5)
p - 1% ’ .

satisfies periodic boundary conditions (x, y and z denote the components of
the vector r, specifying the electron position)

bp(2,y,2) = ¢pp(x +ny L,y +ny L,z +n,L) , (1.6)

with ng,ny,n, =0, £1, £2, .... The above equation obviously implies the
relations (p = (pz, Py, P2) )

21, _2mny _ 2mn,
pm - L ) py - L I pz - L )

(1.7)

which in turn determine the momentum eigenvalues.

Each quantum state is associated with an eigenvalue of the momentum p,
i.e. with a specific triplet of integers (ny, n,,n,). The corresponding energy
eigenvalue is (p* = |p|* = p} + p} + p?)

p? or\? 1
_ _ 2 2 2
o=t = (X)) e, (18)
m. being the electron mass (m, = 9.11 x 1072 g, or 0.51 MeV). The highest
energy reached, called the Fermi Energy of the system, is denoted by €z, and
the associated momentum, the Fermi momentum, is pp = /2m.e€p.
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The number of quantum states with energy less or equal to €& can be
easily calculated. Since each triplet (n,,n,,n,) corresponds to a point in
a cubic lattice with unit lattice spacing, the number of momentum eigen-
states is equal to the number of lattice points within a sphere of radius
R = prL/(2m). The number of electrons in the system can then be obtained
from (note: the factor 2 takes into account spin degeneracy, i.e. the fact
that there are two electrons with opposite spin projections sitting in each
momentum eigenstate)

4 3
N:2§R3:V%, (1.9)

and the electron number density, i.e. the number of electrons per unit volume,
is given by

N _ p}
= — = — . 1.10
" V. 3n? (1.10)
The total ground state energy can be easily evaluated from
P
E=2 1.11
> o (L11)
p<pr

replacing (use (1.7) again and take the limit of large L, corresponding to
vanishingly small level spacing)

Z - (2‘;3) /MF d®p (1.12)

P<pF

to obtain
E=2

PF 9 p2
4 d . 1.13
W/O pdp 5 (1.13)

V
(2m)3
The resulting energy density is

E_ 1 P

GZV: (2m)3 7r5me'

(1.14)

From Eq. (1.10) it follows that the Fermi energy can be written in terms
of the number density according to

2 2, \2/3
Ve (3m%ny)
= = . 1.1
°r 2m, 2m, (1.15)

The above equation can be used to define a density ng such that for n, > ng
the electron gas at given temperature 7 is fully degenerate. Full degeneracy
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is realized when the thermal energy KT (Kp is the Boltzman constant: Kp
= 1.38 x 1071% erg/°K, or 0.826 x 107* €V /°K) is much smaller than the
Fermi energy €p, i.e. when

1
ne> o =55 (2m. KgT)** . (1.16)

For an ordinary star at the stage of hydrogen burning, like the Sun,
the interior temperature is ~ 107 °K (yielding KT ~ 10® €V), and the
corresponding value of ng is ~ 10% ¢cm™3. If we assume that the electrons
come from a fully ionized hydrogen gas, the matter density of the proton-
electron plasma is

p = (my +me) ng ~ 200 g/cm® (1.17)

m, being the proton mass (m, = 1.67 x 1072* g). This density is high for
most stars in the early stage of hydrogen burning, while for ageing stars
that have developed a substantial helium core the density (m, denotes the
neutron mass: my, & my).

p = (m, +m, +m) ng ~ 400 g/cm® (1.18)

can be largely exceeded within the core. For example, white dwarfs have core
densities of the order of 107 g/cm?. As a consequence, in the study of their
structure thermal energies can be safely neglected, the primary role being
played by the degeneracy energy p?/2me..

The pressure P of the electron gas, i.e. the force per unit area on the walls
of the box, is defined in kinetic theory as the rate of momentum transferred
by the electrons colliding on a surface of unit area. The pressure generated on
the wall of the box lying on the yz plane by electrons moving with momentum
p, and velocity v, parallel to the x axis is

1 dp, 1 N

= — (2p,) <1nevxL2) = —pyUy . (1.19)

Pp) =15 4 =12 2 %

In the above equation, the first terms in round brackets is the momentum
transfer associated with the reflection of one electron off the box wall, while
the second term is the electron flux, i.e. the number of electrons hitting the
wall over the time dt (the factor 1/2 accounts for the fact that half of the
electrons go the wrong way). The total pressure can therefore be obtained
from

P= 2% > P(p,) =2 / % Pz Vs - (1.20)

Pa<DF p<pFr
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Since the system is isotropic

1 1 1
Py = g (psz +pyvy +pz’Uz) = g (p ’ V) = g (pU) ’ (121)
and Eq. (1.20) can be rewritten (use v = (J¢,/0p) = p/m.)
2 1 Pr 1 W
P=>_——14 2d = dr =L 1.22
3 (2n)3p /0 pidp () = 53 47 5, (1:22)

Note that the above result can also be obtained from the standard thermo-
dynamical definition of pressure

P=— (2—5>N : (1.23)

using F given by eq.(1.13) and (Opr/0V)y = —pr/(3V).

Equation (1.22) shows that the pressure of a degenerate Fermi gas de-
creases linearly as the mass of the constituent particle increases. For exam-
ple, the pressure of an electron gas at number density n, is ~ 2000 times
larger than the pressure of a gas of protons or neutrons at the same number
density.

So far, we have been assuming that the electrons in the degenerate gas be
nonrelativistic. However, the properties of the system depend primarily on
the distribution of quantum states, which is dictated by translation invariance
only, and is not affected by this assumption. Releasing the nonrelativivstic
approximation simply amounts to replace the nonrelativistic energy with its
relativistic counterpart:

p2

2m,

= VPP +mZ—m, . (1.24)

The transition from the nonrelativistic regime to the relativistic regime occurs
when the electron energy becomes comparable to the electron rest mass, m..
It is therefore possible to define a density n. such that at n, < n. the system
is nonrelativistic, while n, > n. corresponds to the relativistic regime. The
value of n. can be found requiring that the Fermi energy at n. = n. be equal
to me. The resulting expression is

23/2

ne =455 ma ~ 10%* ecm ™2 . (1.25)

The energy density of a fully degenerate gas of relativistic electrons can
be obtained from (compare to Egs. (1.13) and (1.14))

1 PF
€=2 @) 47 /0 p2dp [\/p2+mg—me] , (1.26)
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while the equation for the pressure reads (compare to Eq. (1.22) and use
again v = Je,/0p with relativistic €,)

2 1 Pr Oe
P="= 4 2 TN 1.2
3 @) v | v (pap> (1.27)

Carrying out the integrations involved in eqgs.(1.26) and (1.27) we find:

€= ”:Ze {t (22 +1) VP +1 ~log (t+ VP +1) = gt?’] , (1.28)

where the last term in square brakets is the contribution resulting from the
subtraction of the electron rest mass in Eq. (1.26), and

A2 13

e |1
p="" {— E(2A2 = 3) VI + 1+ log (1 + VP + 1)} . (1.29)
In the above equations, A\e = 27/m, is the electron Compton wavelength and
(see Eq. (1.15))

3 2 . 1/3
YL ey (1.30)

Me Me

t

Equations (1.28) and (1.29) give the energy density and pressure of a fully
degenerate electron gas as a function of the dimensionless variable ¢, which
can in turn be written in terms of the number density n. according to Eq.
(1.30).

1.3 Equation of state of the degenerate Fermi
gas

The equation of state describes the relationship between the pressure of
the system (P) and its matter density (p), related to the electron number
density n. by the equation

p= % Ne (1.31)
where Y, is the number of electrons per nucleon in the system. For a pure
metarial Y, = Z/A, Z and A being the atomic number and the nuclear
mass number, respectively. For example, for a fully ionized helium plasma
Y. = 0.5, whereas for a plasma of iron nuclei Y, = 26/56 = 0.464.

The equation of state of a fully degenerate electron gas (see Eq. (1.29))
takes a particularly simple form in the nonrelativistic limit (corresponding to
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t < 1), as well as in the extreme relativistic limit (coresponding to ¢ > 1).
Using Eq. (1.27) we find (compare to Eq. (1.22))

8 « <37r2Y6>5/3 5
P=_— p°? (1.32)
15 X3mi \ m,
for er < m, and )
2 7 (37r2Y;>4 ’
P==z p3 (1.33)
3NmE\ m,

for ep > me.
An equation of state of the form

P ph, (1.34)

is said to be polytropic. The exponent I' is called adiabatic index, whereas
the quantity n, defined through

F=1+- 1.35
+ (1.35)

goes under the name of polytropic index.
The adiabatic index, whose definition for a generic equation of state reads

d (log P)

r=——=—-~. 1.36
d (log p) (136)
is related to the compressibility x, characterizing the change of pressure with
volume according to
1 oP oP
X ov )y op )
through
1
r=—. 1.38
v (139)
The compressibility is in turn related to the speed of sound in matter, c,,
defined as 12
opP ) 1
Cs ey e — = — . 1.39
<ap XP (1.39)

The magnitude of the adiabatic index reflects the so called stiffnes of
the equation of state. Larger stiffness corresponds to more incompressible
matter. As we will see in the following Sections, stiffness turns out to be
critical in determining a number of stellar properties.
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Figure 1.1: Equation of state of a fully ionized helium plasma at zero temper-
ature (diamonds). The solid and dashed line correspond to the nonrelativistic
and extreme relativistic limits, respectively. Note that the value of matter density
corresponding to n. defined in Eq. (1.25) corresponds to logigp ~ 6.3 g/cm?.

1.4 Hydrostatic equilibrium of white dwarfs

Let us assume that white dwarfs consist of a plasma of fully ionized
helium at zero temperature. The pressure of the system, P, is provided by
the electrons, the contribution of the helium nuclei being negligible due to
their large mass. For any given value of the matter density p, P can be
computed from Egs. (1.29) and (1.30) (in this case Y, = 0.5, implying n, =
p/2m,). The results of this calculation are shown by the diamonds in Fig.
1.1. For comparison, the nonrelativistic (Eq. (1.32)) and extreme relativistic
(Eq. (1.33)) limits are also shown by the solid and dashed line, respectively.

In order to show the sensitivity of the equation of state to the value of Y,
in Fig. 1.2 the equation of state of the fully ionized helium plasma (Y, = 0.5)
is compared to that of a hydrogen plasma (Y, = 1).

The surface gravity of white dwarfs, GM/R (G is the gravitational con-
stant), is small, of order ~ 107*. Hence, their structure can be studied
neglecting the effects of general relativity and assuming that they consist of
a spherically symmetric fluid in hydrostatic equilibrium.

Equilibrium requires that the gravitational force acting on an volume
element at distance 7 from the center of the star, Fiz(r), be balanced by the
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Figure 1.2: Comparison between the equations of state of a fully ionized plasma
of helium (solid line) and hydrogen (dashed line) at zero temperature.

force produced by the spacial variation of the pressure. From

GM(r)

Fo(r) == plr) =52 (1.40)
with ,
M(r) =4n / dr' " p(r') (1.41)
0
it then follows the equilibrium equation
dP GM(r)
—_— = 1.42
o= n(r) = (1.42)

Given an equation of state, Eq. (1.42) can be integrated numerically for any
value of the central density p. to obtain the radius of the star, defined as the
value 7 = R corresponding to vanishing pressure, i.e. such that P(R) = 0.
The mass can then be obtained from (see Eq. (1.41))

M =4r /OR dr r*p(r) . (1.43)

The dependence of the mass of the star upon its central density, obtained
from integration of Eq. (1.42) using the equation of state of a fully ionized
helium plasma, is illustrated in Fig. 1.3. The figure shows that the mass
increases as the central density increases, until a limiting value M ~ 1.44
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Figure 1.3: Dependence of the mass of a white dwarf upon its central density,
obtained from the integration of Eq. (1.42) using the equation of state of a fully
ionized helium plasma.

Mg, is reached at py ~ 10 g/cm3. The existence of this limiting mass was
first pointed out by Chandrasekhar. However, as we will see in the following
Sections, at p ~ 10® g/cm?® the neutronization process sets in, and the
validity of the description in terms of a helium plasma breaks down. At p >
10% g/cm?, matter does not support pressure as effectively as predicted by the
equation of state of the helium plasma. As a consequence, a more realistic
estimate of the limiting mass, generally referred to as the Chandrasekhar
mass, is given by the mass corresponding to a central density of 108 g/cm3,
ie. ~ 1.2 Mg.



Chapter 2

The equation of state

The equation of state (EOS) is a nontrivial relation linking the thermo-
dynamic variables specifying the state of a macroscopic physical system. The
most popular example is Boyle’s ideal gas law, stating that the pressure of
a collection of N noninteracting, pointlike classical particles, enclosed in a
volume V', grows linearly with the temperature 7" and the average particle
density n = N/V.

The ideal gas law provides a good description of very dilute systems,
in which interaction effects can be neglected. In general, the EOS can be
written expanding the pressure, P, in powers of the density (from now on,
we will use units such that Kz = 1) according to

P=nT [14nB(T)+n’C(T)+..] . (2.1)

The coeflicients appearing in the above series, called virial expansion, depend
on temperature only and describe the departure from the ideal gas law arising
from interactions.

The EOS carries a great deal of dynamical information and provides a
link between measurable macroscopic quantities, such as pressure and tem-
perature, and the forces acting between the constituents of the system at
microscopic level.

2.1 The van der Waals fluid

This dynamical content of the EOS can be best illustrated using the van
der Waals fluid as an example. This system consists of a collection of particles
interacting through a potential featuring a strong repulsive core followed by
a weaker attactive tail, as schematically illustrated in Fig.2.1.

19
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Figure 2.1: Behavior of the potential describing the interactions between con-
stituents of a van der Waals fluid (both the interparticle distance r and v(r) are
given in arbitrary units).

The EOS of a van der Waals fluid is usually written in the form

—an”, (2.2)

where the two quantities ¢ and b account for interaction effects. We will now
show that a and b can be simply related to the potential v(r).

The total energy of a system consisting of N nonrelativistic particles of
mass m, enclosed in the volume V' and interacting through the potential v,
is

E=K+U (2.3)
with
N 2
K= ! 2.4
; e (2.4)
and

N
U= > o(ri—r). (2.5)
j>i=1
where r; and p; denote position and momentum of the i-th particle, respec-
tively.
The free energy at temperature 7" can be obtained from

F= —Tlog/e¥ dr (2.6)
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where dI' is the phase space volume element

dr = Hd3 Hdp’. (2.7)

Substitution of Eq. (2.3) in the right hand side of Eq. (2.6) leads to
the factorization of the integral. For an ideal gas (IG), i.e. when U = 0,
integration over the particle coordinates simply yields the result V" and one
finds

d*p;
Fr = —TlogVN/H Pi ot (2.8)

implying in turn
1 N
U
F = FIG_TIOgW/HdE;TieT

/Hd?’n(e ¥—1>+1

We will now make the assumption that the system be so dilute that the
probability of symultaneous collisions involving more than two particles be
negligible. As the particles are identical, we can then rewrite the integral
appearing in the second line of Eq. (2.9) as

/Hd%,( o ) , (2.10)

where v;; = v(|r; — rj|). The integrand only depends on the positions of
particles 1 and 2, so that the remaining integrations, yielding a factor V~ 2,
can be carried out right away. Moreover, as N is a large number N(N —1) ~
N2, and Eq. (2.9) becomes

1 /N\? .
3 (V> / Prid'ry (7 F ~1) +1

In the low density limit, which is appropriate as we are dealing with a dilute
system, the integral in the above equation, being proportional to (N/V')?
small. We can therefore use the result log(z + 1) ~ x at z < 1 to obtain

T (N\’ o2
F=Fg-3 <V> /d3r1d3r2 (e—? - 1) . (2.12)

= FIG — TlOg (29)
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The interaction potential depends on the relative coordinate only. Hence,
defining

Riz=;(Ti+12) , Tiz=11 -1 (2.13)

1
2
we can replace

/d3r1d3r2 (eJsz — 1) -V /d3r12 <e’U1T2 — 1) (2.14)

N2TB(T)
Vv )

to obtain

with

B(T) = % /d3r12 (1 - e—”%) . (2.16)

Finally, from

p=- (a_F) (2.17)
oV NT
and N

it follows that the EOS of a dilute gas can be written as a virial expansion, in-
cluding terms of first and second order in the particle density N/V (compare
to Eq. (2.1))
N N
P=_-T|1+=B(T)| . 2.19
0T 1+ 35) (2.19)
Let us now go back to the van der Waals fluid, and consider the expansion
of the quantity B(T) of Eq. (2.16) in powers of the ratio Uy /T, Uy > 0 being
the depth of the attractive part of the interparticle potential (see Fig. 2.1).
First, we split the integral in two parts according to (see Fig. 2.1)

2ro » [e’s) N
B(T) = 27r/0 (1 - e*%) riydrs + 27r/2 (1 - e*%) r2,dry . (2.20)

T0

At 0 < r1p < 2rg the potential energy is positive and very large, implying that
the exponential exp —v19 /7T is small and can be neglected. As a consequence,
we can define the quantity b as

27'0 v1o 16
b= 27r/ (1 — e_T) ~ ?ﬁré’; : (2.21)
0

Note that, if we interpret ry as the particle radius, b equals four times its
volume.
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Condider now the second integral in the right hand side of Eq. (2.20).
For Uy/T < 1 the inequality |via|/T < Up/T implies

vz /T <1, (2.22)

and the integrand can be expanded in series of powers of v15/7T. Keeping the
first nonvanishing term we obtain the result (recall that for 2ry < rjp < o0
v1o is always negative)

*° a

|v12|ripdris = ~T (2.23)

2T
T

2ro

that defines the positive constant a. Collecting the two pieces together we
can write

a
B(T)=b—- T (2.24)
yielding (see Eq. (2.15))
N2
F = Fiqg+ 7 (bT — a) . (2.25)

To write the EOS in the form P = P(N/V) we make use of the general
expression of the free energy of the ideal gas

v

Fig = —NTlog GW +NAT) , (2.26)

where f(T) is a function of temperature only. Substitution into Eq. (2.25)

leads to

e Nb N2a

F=Nf(T)— NTlog— — NT (1 - . 2.27

$1) - NTlog 1~ NT (togv - ) = (227

According with the hypotesis that the system be diluted, we now make the
assumption that

NV, (2.28)
implying
Nb Nb
log (V — Nb) =logV + log (1— 7) ~ logV — 2 (2.29)
and
N2a

F = Nf(I)=NTlog— (V = Nb) - —

-
Nb\ N?
- FIG—NT10g<1——b> _ae

> = (2.30)
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Note that the above equation yields the correct result, F' = Fj¢, in the limit
of infinite dilution, corresponding to V' — oo. On the other hand, it also
implies that the system cannot be compressed indefinitely, as for Nb/V > 1
the argument of the logarithm becomes negative.

Knowing the free energy, we can finally obtain the pressure from Eq.
(2.17), leading to

N Nb N\? NT N\?
P="ront— 0 (2 4= B 2.31
v T Y ) (v) TV N <V> a, (231)

ie. to Eq. (2.2) with n = N/V.
Equation (2.31) can also be rewritten in the form

2
P+ <g) a
showing that (compare to the ideal gas EOS, PV = NT) the occurrence
of interactions betwen the particles results in an increase of the pressure,
driven by the constant a, and a decrease of the available volume, driven by
the constant b (recall that b oc 73 can be related to the particle volume).

In spite of its simplicity, the van der Waals EOS provides a fairly accurate
description of systems exhibiting a liquid-gas phase transition, like water (in
this case the values of the parameters entering Eq. (2.31) are a = 2 X
107% Jm? and b =6 x 1072 m?).

Defining the quantities

(V — Nb) = NT (2.32)

a 8a

P, = ) c=3N , T = ) 2.
27b2 Ve = 3Nb 27b (2:33)
and introducing the new adimensional variables
~ P ~ 'V ~ T
P=_— = — T=— 2.34
A A 239

the van der Waals EOS can be rewritten in the form

(15 + %) <17 - %) = gf : (2.35)

Note that the above relation is universal, as it does not explicitely depend
on the constants a and b.

Figure 2.2 shows the relation between pressure in units of the critical
pressure, P, and density in units of the critical density, n = V,./V/, for different
values of T. Tt appears that at T < T, i.e. T < 1, the curves exhibit both
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0.0 0.5 1.0 1.5 2.0
H=V./V

Figure 2.2: Behavior of the pressure (in units of the critical pressure) as a function
of density (in units of the critical density) for a van der Waals fluid. The different
curves are labelled according to the value of the ratio T = T/Tc, T, being the
critical temperature. The diamond corresponds to the critical point P =V = 1.

a maximum and a minimum, whereas at 7" > T, i.e. T > 1, P becomes
a monotonically increasing function of n. The curve corresponding to the
critical temperature T' = T, features a point of abscissa n. such that

P 8P
- = | — =0. 2.
(8ﬁ>~;~ <6ﬁ2>~_~ 0 (2.36)

This point is called critical point. From Eqs. (2.35) and (2.36) it follows that
fle =1 and P(7.) = 1.

As already pointed out, the van der Waals EOS describes a system ex-
hibiting a liquid-gas phase transition. For 7" > T, the system is in the liquid
phase at density n > n. (n. = N/V,) and in the gas phase at n < n.. For
T < T, there is a density region n; < n < ng, with n; < n, and ny > n,, in
which the two phases cohexist. The values of n; and n, are determined by
the requirements

Pmnﬁl_i>=_4mpmﬂ@. (2.38)

and
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These features are best illustrated by the phase diagram of Fig. 2.3,
showing the boundary of the regions corresponding to the different phases in
the (n,T) plane.

12 L — T T T LI — LI — L —
1.0 -
i LIQUID i
£ o8F N
= i |
L COEXISTENCE REGION ]
r LIQUID + GAS 1
0.6 ]
04 | T ‘ I T ‘ I T | ‘ Y N | ‘ I T
0.0 0.5 1.0 1.5 2.0 2.5
n/n,

Figure 2.3: Phase diagram of a van der Waals fluid.

The example of the van der Waals fluid shows that the EOS contains in-
formation on the dynamics driving the interactions between the constituents
of the system at microscopic level. The rather simple structure of the phase
diagram of Fig. 2.3 reflects the simplicity of the potential represented in Fig.
2.1.

In the case of strongly interacting matter, the complexity of the under-
lying dynamics leads to a much richer structure, schematically illustrated in
Fig. 2.4.

Under standard terrestrial conditions the elementary degrees of freedom of
the fundamental theory of strong interactions (Quantum Chromo-Dynamics,
or QCD) are confined within hadrons, and protons and neutrons cluster to
form nuclei. At much larger density and/or temperature, however, the situa-
tion dramatically changes, and many different forms of matter are expected
to become energrtically favoured. In the following sections we will discuss
the structure of matter at large density and low temperature, relevant to the
understanding of neutron star properties.
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Figure 2.4: Temperature vs baryon density phase diagram of charge neutral
strongly interacting matter in S-equilibrium. Hatched areas correspond to mixed
phases of hadronic matter (HM) and quark matter (QM/QGP), as well as the nu-
clear liquid-gas (LG). The density is given in units of the central density of atomic
nuclei.
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Chapter 3

Matter at subnuclear densities

3.1 Overview of neutron star structure

The existence of compact astrophysical objects made of neutrons was pre-
dicted by Landau right after the discovery of the neutron, back in 1932. In
1934, Baade and Zwicky first suggested that a neutron star may be formed
in the aftermath of a supernova explosion. Finally, in 1968 the newly ob-
served pulsars, radio sources blinking on and off at a constant frequency,
were identified with rotating neutron stars.

The results of a pioneering study, carried out in 1939 by Oppenheimer and
Volkoff within the framework of general relativity, show that the mass of a
star consisting of noninteracting neutrons cannot exceed ~ 0.8 M. The fact
that this maximum mass, the analogue of the Chandrasekhar mass of white
dwarfs, turns out to be much smaller that the observed neutron star masses
(typically ~ 1.4 M) clearly shows that neutron star equilibrium requires a
pressure other than the degeneracy pressure, whose origin has to be traced
back to the nature of hadronic interactions.

Unfortunately, the need of including dynamical effects in the EOS is con-
fronted with the complexity of the fundamental theory of strong interactions.
As a consequence, all available description of the EOS of neutron star mat-
ter are obtained within models, based on the theoretical knowledge of the
underlying dynamics and constrained, as much as possible, by empirical data.

The internal structure of a neutron star, schematically illustrated in
Fig. 3.1, is believed to feature a sequence of layers of different composition.

The properties of matter in the outer crust, corresponding to densities
ranging from ~ 107 g/cm? to the neutron drip density pg = 4 x 10'! g/cm?,
can be obtained directly from nuclear data. On the other hand, models of the
EOS at 4 x 10™ < p < 2x 10 g/cm?® are somewhat based on extrapolations

29
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inner crust (~ 0.5 Km) outer crust (~ 0.3 Km)
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Figure 3.1: Schematic illustration of a neutron star cross section. Note that the
equilibrium density of uniform nuclear matter corresponds to ~ 2.7 X 1014g/ cm?.

of the available empirical information, as the extremely neutron rich nuclei
appearing in this density regime are not observed on earth.

The density of the neutron star core ranges between ~ p, (= 2.67 x10*
g/cm?®) at the boundary with the inner crust, and a central value that can be
as large as 1 +4 x 10% g/cm3. All models of EOS based on hadronic degrees
of freedom predict that in the density range py < p < 2py neutron star matter
consists mainly of neutrons, with the admixture of a small number of protons,
electrons and muons. At any given density the fraction of protons and leptons
is determined by the requirements of equilibrium with respsect to [-decay
and charge neutrality.

This picture may change significantly at larger density with the appear-
ance of heavy strange baryons produced in weak interaction processes. For
example, although the mass of the X~ exceeds the neutron mass by more
than 250 MeV, the reaction n+e~ — X~ 41, is energetically allowed as soon
as the sum of the neutron and electron chemical potentials becomes equal to
the X~ chemical potential.

Finally, as nucleons are known to be composite objects of size ~ 0.5 —1.0
fm, corresponding to a density ~ 10'° g/cm?, it is expected that if the density
in the neutron star core reaches this value matter undergoes a transition to a
new phase, in which quarks are no longer clustered into nucleons or hadrons.

The theoretical description of matter in the outer and inner neutron star
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crust will be outlined in the following Sections, whereas the region corre-
sponding to supranuclear density will be discussed in Chapter 4.

3.2 OQuter crust

A solid is expected to form when the ratio of Coulomb energy to thermal
energy becomes large, i.e. when

Z2e?
= 1 3.1
TT‘L > ’ ( )
with 77, defined through
4 3
n 7;“ =1, (3.2)

nr being the number density of ions. If the condition (3.1) is fulfilled Coulomb
forces are weakly screened and become dominant, while the fluctuation of the
ions is small compared to average ion spacing 7. From (3.1) it follows that
a solid is expected to form at temperature

2,2

T<T,= x ZQeQn}/3 . (3.3)

rL

For example, in the case of Fe at densities ~ 107 g/cm? solidification occurs
at temperatures below 10® °’K and Coulomb energy is minimized by a Body
Centered Cubic (BCC) lattice. As the density further increases, r7, decreases,
so that the condition for solidification continues to be fulfilled. However, as
matter density advances into the density domain, 107 - 10! g/cm3, the large
kinetic energy of the relativistic electrons shifts the energy balance, favouring
inverse (-decay (i.e. electron capture) that leads to the appearance of new
nuclear species through sequences like

Fe — Ni — Se — Ge . (3.4)

This process is called neutronization, because the resulting nuclide is always
richer in neutron content than that initial one.

Before going on with the analysis of the neutronization process in the
neutron star crust, we will duscuss a simple but instructive example, that
will allows us to introduce some concepts and procedures to be used in the
following Sections.
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3.2.1 Inverse (-decay

Consider a gas of noninteracting protons and electrons at 7" = 0. The
neutronization process is due to the occurrence of weak interactions turning
protons into neutrons through

pte —n+r.. (3.5)

Assuming neutrinos to be massless and non interacting, the above process is
energetically favorable as soon as the electron energy becomes equal to the
neutron-proton mass difference

Am =m, —m, = 939.565 — 938.272 = 1.293 MeV . (3.6)

As a consequence, the value of n. at which inverse -decay sets in can be

estimated from
\/PE, +mZ=Am, (3.7)

Pr, = (37r2ne)1/3 , (3.8)

where (see Section 1.2)

leading to
1

e =35 (Am* — m§)3/2 ~ 7 x10%%m? . (3.9)
The corresponding mass density for a system having Y, ~ 0.5, is p =~
2.4 x 107 g/cm?.

Now we want to address the problem of determining the ground state of
the system consisting of protons, electrons and neutrons, once equilibrium
with respect to the inverse S-decay of Eq. (3.5) has been reached. All
interactions, except the weak interaction, will be neglected. Note that process
(3.5) conserves baryon number Ng (i.e. the baryon number density ng) and
electric charge.

For any given value of ng, the ground state is found by minimization of
the total energy density of the systems, €(n,,n,,n.), n, and n, being the
proton and neutron density, respectively, with the constraints ng = n, + n,
(conservation of baryon number) and n, = n. (charge neutrality).

Let us define the function

F(ny, ny, ne) = €(ny, nn, ne) + Ap (np —np — nyp) + Ag (np — ne) ,  (3.10)

where € is the energy density, while Ap and )\ are Lagrange multipliers.
The minimum of F' corrisponds to the values of n,, n, and n, satisfying

the conditions
oF . oF . oF .
on, On, ' On.

0 (3.11)
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as well as the aditional costraints
oF . oF B

or _oF _ 12
Dy g " (312)

From the definition of chemical potential of the particles of species i (i =

pi”? e)
oF Oe

it follows that Eqgs. (3.11) imply

,U,p—)\B—{—)\Q:O, ,U/n_)\BZOa ,U,e—/\Q:O, (314)
leading to the condition of chemical equilibrium

Hn — Up = He (315)

where, in the case of noninteracting particles at T' = 0,

Oe 2 8pF 0 Pr; 9
i = _— = ’ 4 d 2 2
H on;  (2m)3 < on; ) Opr, 7T/0 p-opyp o

st Oni - 2 2 2 2 2
_(%P<@m) mVW%+mrqﬁﬂ+m. (3.16)

Defining now the proton and neutron fraction of the system as

T T ,  Tp = fn Ty (3.17)

Tp=—=
np np—l—nn nge

we can rewrite
PE, = Dr, = (37r2xpn3)1/3 , DE, = [3%2 (1—z,) nB} 13 (3.18)

For fixed baryon density, use of the above definitions in Eq. (3.16) and
substitution of the resulting chemical potentials into Eq. (3.15) leads to an
equation in the single variable z,. Hence, for any given np the requirements
of chemical equilibrium and charge neutrality uniquely determine the fraction
of protons in the system.

Once the value of z, is known, the neutron, proton and electron number
densities can be evaluated and the pressure

P=P,+P,+P, (3.19)

can be obtained using Eq. (1.27).
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Figure 3.2: Number density of noninteracting protons and neutrons in [-
equilibrium as a function of matter density.

Figure 3.2.1 shows the proton and neutron number densities, n, and n,
(recall that n. = n,) as a function of matter density p. It can be seen
that in the range 10° < p < 107 g/cm? there are protons only and logn,
grows linearly with logp. At p ~ 107 g/cm?® neutronization sets in and the
neutron number density begins to steeply increase. At p > 107 n, stays
nearly constant, while neutrons dominate.

The equation of state of the S-stable mixture is shown in the upper panel
of Fig. 3.2.1. Its main feature is that pressure remains nearly constant
as matter density increases by almost two orders of magnitude, in the range
107 < p < 10° g/cm?. The electron and neutron contributions to the pressure
are shown in the lower panel of Fig. 3.2.1. Note that, since charge neutrality
requires n,=n,, the proton pressure is smaller than the electron pressure by
a factor (m,/m.) ~ 2000.

3.2.2 Neutronization

The description of -stable matter in terms of a mixture of degenerate
Fermi gases of neutrons, protons and electrons is strongly oversimplified. In
reality, electron capture changes a nucleus with given charge Z and mass
number A into a different nucleus with the same A and charge (Z—1). More-
over, the new nucleus may be metastable, so that two-step processes of the
type

SoFe — 5eMn — 55Cr (3.20)
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Figure 3.3: (A) Equation of state of a mixture of noninteracting neutrons, electrons
and protons in S-equilibrium. (B) Density dependence of the neutron (solid line)
and electron (dashed line) contributions to the pressure of S-stable matter.
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can take place. In this case, chemical equilibrium is driven by the mass dif-
ference between neighboring nuclei rather than the neutron-proton chemical
potential difference.

The measured nuclear charge distributions and masses, p (1) and M (Z, A),
exhibit two very important features

e The charge density is nearly constant within the nuclear volume, its
value being roughly the same for all stable nuclei, and drops from ~
90 % to ~ 10 % of the maximum over a distance Ry ~ 2.5 fm (1 fm
= 10x107! c¢m), independent of A, called surface thickness (see Fig.
3.4). It can be parametrized in the form

1

per(T) = po T ot R)/D (3.21)

where R = roA'/3, with 7, = 1.07 fm, and D = 0.54 fm. Note that the
nuclear charge radius is proportional to A'/3, implying that the nuclear
volume increases linearly with the mass number A.
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Figure 3.4: Nuclear charge distribution of 28 Pb, normalized to Z/p(0) (Z = 82).
The solid line has been obtained using the parametrization of Eq. (3.21), while
the diamonds represent the results of a model independent analysis of electron
scattering data.

e The (positive) binding energy per nucleon, defined as

B(Z,A 1
% =3 [Zmy, + (A — Z)m,, + Zm, — M(Z,A)] , (3.22)
where M(Z,A) is the measured nuclear mass, is almost constant for

A> 12, its value being ~ 8.5 MeV (see Fig. 3.5).

The A and Z dependence of B(Z, A) can be parametrized according to
the semiempirical-mass formula

B(Z,A) 1 vy 22
=4 = glevA — @A~
(A — 27)? 1
— CLAT + A apw ] . (323)

The first term in square brackets, proportional to A, is called the volume
term and describes the bulk energy of nuclear matter. The second term,
proportional to the nuclear radius squared, is associated with the surface
energy, while the third one accounts for the Coulomb repulsion between Z
protons uniformly distributed within a sphere of radius R. The fourth term,
that goes under the name of symmetry energy is required to describe the
experimental observation that stable nuclei tend to have the same number
of neutrons and protons. Moreover, even-even nuclei (i.e. nuclei having even
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Figure 3.5: Upper panel: A-dependence of the binding energy per nucleon of stable
nuclei, evaluated according to Eq. (3.23) with ay = 15.67 MeV, ag = 17.23 MeV,
ac = .714 MeV, ap = 93.15 MeV and a, = 11.2 MeV. Lower panel: the solid line
shows the magnitude of the volume contribution to the binding energy per nucleon,
whereas the A-dependence of the surface, coulomb and symmetry contributions are
represented by diamonds, squares and crosses, respectively.

Z and even A — Z) tend to be more stable than even-odd or odd-odd nuclei.
This property is accounted for by the last term in the above equation, where
A —1, 0 and +1 for even-even, even-odd and odd-odd nuclei, respectively.
Fig. 3.5 shows the different contributions to B(Z,A)/A, evaluated using
Eq. (3.23).

The semi-empirical nuclear mass fomula of Eq. (3.23) can be used to
obtain a qualitative description of the neutronization process. The total
energy density of the system consisting of nuclei of mass number A and
charge 7Z arranged in a lattice and surrounded by a degenerate electron gas
is

er(ng, A, Z) = e, + (%B) [M(Z,A) +er] (3.24)
where ¢, is the energy density of the electron gas, Eq. (1.26), ng and (ng/A)
denote the number densities of nucleons and nuclei, respectively, and €y, is
the electrostatic lattice energy per site. As a first approximation, the contri-
bution of ¢, will be neglected.
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At any given nucleon density np the equilibrium configuration corre-
sponds to the values of A and Z that minimize ep(ng, A,Z), i.e. to A and Z

such that 5 5
ér _ ger _
(22) 0. (%) o o

Combining the above relationships and using Eq. (3.23) one finds
7 ~ 3.54 AY2, (3.26)

Once Z is known as a function of A, any of the two relationships (3.25) can
be used to obtain A as a function of ng. The mass number A turns out to
be an increasing function of ng, implying that Z also increases with ng, but
at a slower rate. Hence, nuclei become more massive and more and more
neutron rich as the nucleon density increases.

The above discussion is obvioulsy still oversimplified. In reality, A and Z
are not continuous variables and the total energy has to be minimized using
the measured nuclear masses, rather than the parametrization of Eq. (3.23),
and including the lattice energy, that can be written as

(Ze)?

Ts

GLI—K

(3.27)

where 7 is related to the number density of nuclei through (47/3)r? =
(ng/A)~! and K = 0.89593 for a BCC lattice, yielding the lowest energy. At
fixed nucleon number density ng the total energy density can be written in
the form

np

er(np, A, Z) = €, + (%B) [M(Z,A) — 1.4442(Ze)? (X)w} . (3.28)

where, for matter density exceeding ~ 10° g/cm?, the extreme relativistic
limit of the energy density of an electron gas at number density n.=Zng/A

(see Section 1.2)
3 np 4/3
€ =2 (ZX) , (3.29)
has to be used.

Collecting together the results of Eqs. (3.27)-(3.29) and expressing ng
in units of ng, = 107° fm~3 (the number density corresponding to a matter
density ~ 10° g/cm?), the total energy per nucleon, ez /np, can be rewritten
in units of MeV as

v M(Z,A) 1 s 22 ng\'"*
o 0.4578 743 — : 3.30
ng INERE 480.74| \ ng, (3:30)
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Figure 3.6: Total energy per nucleon of a BCC lattice of 62Ni (dashed line) and
64Ni (solid line) nuclei surrounded by an electron gas, evaluated using eq.(3.30)
and plotted versus the inverse nucleon number density.

The average energy per nucleon in a nucleus is about 930 MeV. It can
be conveniently written in units of MeV in the form M(Z,A)/A = 930 +
A. As long as we are dealing with nuclides that are not very different from
the stable nuclides, the values of A are available in form of tables based on
actual measurements or extrapolations of the experimental data.

In practice, er/np of Eq. (3.30) is computed for a given nucleus (i.e.
for given A and Z) as a function of ng, and plotted versus 1/ng (see Fig.
3.6). The curves corresponding to different nuclei are then compared and
the nucleus corresponding to the minimum energy at given ng can be easily
identified. For example, the curves of Fig. 3.6 show the behavior of the
energy per particle corresponding to %2Ni and %*Ni, having A—Z — 34 and 36,
respectively. It is apparent that a first order phase transition is taking place
around the point where the two curves cross one another. The exact densities
at which the phase transition occurs and terminates can be obtained using
Maxwell’s double tangent construction. This method essentially amounts to
drawing a straight line tangent to the convex curves corresponding to the two
nuclides. In a first order phase transition the pressure remains constant as the
density increases. Hence, as all points belonging to the tangent of Maxwell’s
construction correspond to the same pressure, the onset and termination of
the phase transition are simply given by the points of tangency. As expected,
at higher density the nucleus with the largest number of neutrons yields a
lower energy.
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Figure 3.7: Chart of the nuclides. The black squares represent the stable nuclei
as a function of Z and N=A—Z. The solid lines correspond to the estimated proton
and neutron drip lines.

It has to be pointed out that there are limitations to the approach de-
scribed in this section. Some of the nuclides entering the minimization pro-
cedure have ratios Z/A so different from those corresponding to stable nuclei
(whose typical value of Z/A is ~ 0.5, as shown in Fig. 3.7) that the accuracy
of the extrapolated masses may be questionable. Obviously, this problem be-
comes more and more important as the density increases. The study of nuclei
far from stability, carried out with radioactive nuclear beams, is regarded as
one of the highest priorities in nuclear physics research, and new dedicated
experimental facilities are currently being planned both in the U.S. and in
Europe.

Table 3.1 reports the sequence of nuclides corresponding to the ground
state of matter at subnuclear density, as a function of matter density.

3.3 Inner crust

Table 3.1 shows that as the density increases the nuclides corresponding
to the ground state of matter become more and more neutron rich. At
p~ 4.3 x 10" g/cm® the ground state corresponds to a Coulomb lattice of
18K nuclei, having proton to neutron ratio ~ 0.31 and a slighltly negative
neutron chemical potential (i.e. neutron Fermi energy), surrounded by a
degenerate electron gas with chemical potential p, ~ 26 MeV. At larger
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Nuclide Z N=A-7 Z/A A Prmaz
[MeV] [g/cm?]

56Fe 26 30 4643 .1616 8.1 x 10°
62N 28 34 4516 1738 2.7 x 108
64N 28 36 4375 .2091 1.2 x 10°
84Ge 34 50 4048 .3494 8.2 x 10?
82Ge 32 50 .3902 4515 2.1 x 101
847n 30 54 3750 .6232 4.8 x 1010
8Nj 28 50 .3590 .8011 1.6 x 10
6Fe 26 50 .3421 1.1135 1.8 x 10
124Mo 42 82 3387 1.2569 1.9 x 10™
1227y 40 82 .3279 1.4581 2.7 x 101
120Gy 38 82 .3166 1.6909 3.7 x 101
8Ky 36 82 .3051 1.9579 4.3 x 10"

Table 3.1: Sequence of nuclei corresponding to the ground state of matter and
maximum density at which they occur. Nuclear masses are given by M(Z,A)/A =
(930 + A) MeV.

densities a new regime sets in, since the neutrons created by electron capture
occupy positive energy states and begin to drip out of the nuclei, filling the
space between them.

At these densities the ground state corresponds to a mixture of two
phases: matter consisting of neutron rich nuclei (phase I), with density puyc,
and a neutron gas of density png (phase II).

The equilibrium conditions are

()1 = (bn)rr = pin (3.31)

and
Hp = Hn — He (332)

where (p,,)r and (p,,) 17 denote the neutron chemical potential in the neutron
gas and in the matter of nuclei, respectively.

The details of the ground state of matter in the neutron drip regime are
specified by the densities p, ppuc and png, the proton to neutron ratio of the
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matter in phase I and its surface, whose shape is dictated by the interplay
between surface and Coulomb energies.

Recent studies suggest that at densities 4.3x10'% < p < .75x10"* g/cm?
the matter in phase I is arranged in spheres immersed in electron and neu-
tron gas, whereas at .75x10* < p < 1.2x10" g/cm® the energetically
favoured configurations exhibit more complicated structures, featuring rods
of matter in phase I or alternating layers of matter in phase I and phase
I1. At p 2 1.2x10™ g/cm?® there is no separation between the phases, and
the ground state of matter corresponds to a homogeneous fluid of neutrons,
protons and electrons.



Chapter 4

The nuclear many-body problem

Understandig the properties of matter at densities comaparable to the
central density of atomic nuclei (py ~ = 2.7 x 10" g/cm?) is made difficult by
both the complexity of the interactions and the approximations implied in the
theoretical description of quantum mechanical many particle systems. The
situation becomes even more problematic as we enter the region of supranu-
clear density, corresponding to p > p,, as the available empirical information
is scarce, and one has to unavoidably resort to a mixture of extrapolation
and speculation.

The approach based on nonrelativistic quantum mechanics and pheno-
menological nuclear hamiltonians, while allowing for a rather satisfactory
description of nuclear bound states and nucleon-nucleon scattering data, fails
to fulfill the constraint of causality, as it leads to predict a speed of sound in
matter that exceeds the speed of light at large density. On the other hand,
the approach based on relativistic quantum field theory, while fulfilling the
requirement of causality by construction, assumes a somewhat oversimplified
dynamics, not constrained by nucleon-nucleon data. In addition, it is plagued
by the uncertainty associated with the use of the mean field approximation,
which is long known to fail in strongly correlated systems.

In this Chapter, after reviewing the phenomenological constraints on the
EOS of cold nuclear matter, we will outline the current understanding of
the nucleon-nucleon interaction and the nonrelativistic and relativistic ap-
proaches employed to study the structure of neutron star matter at nuclear
and supernuclear density. As anticipated in Section 3.1, in this region a neu-
tron star is believed to consist of a uniform fluid of neutrons, protons and
electrons in B-equilibrium.

43
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4.1 Constraints on the nuclear matter EOS

The body of data on nuclear masses can be used to constrain the density
depencence predicted by theoretical models of uniform nuclear matter at zero
temperature.

As we have seen in Section 3.2.2, the A-dependence of the nuclear binding
energy is well described by the semiempirical formula (3.23). In the large A
limit and neglecting the effect of Coulomb repulsion between protons, the
only term surviving in the case Z = A/2 is the term linear in A. Hence, the
coefficient ay can be identified with the binding energy per particle of sym-
metric nuclear matter, an ideal uniform system consisting of equal number of
protons and neutrons coupled by strong interactions only. The equilibrium
density of such a system, ng, can be inferred exploiting saturation of nuclear
densities, i.e. the fact that the central density of atomic nuclei, measured by
elastic electron-nucleus scattering, does not depend upon A for large A (see
Fig. 4.1).

~ 0.05

)
\\T\

0.00
10

o

r (fm)

Figure 4.1: Saturation of central nuclear densities measured by elastic electron-
nucleus scattering.

The empirical equilibrium properties of symmetric nuclear matter are

E
(Z) =16 MeV , ng~ .16 fm* . (4.1)
n=ng

In the vicinity of the equilibrium density e = E/A can be expanded according
to
K (n—mng)?

1
Y + —_— — 4-2
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0%e oP

is the (in)compressibility module, that can be extracted from the measured
excitation energies of nuclear vibrational states. Due to the difficulties im-
plied in the analysis of these experiments, however, empirical estimates of
K have a rather large uncertainty, and range from ~ 200 MeV (correspond-
ing to more compressible nuclear matter, i.e. to a soft EOS) to ~ 300 MeV
(corresponding to a stiff EOS).

Unfortunately, the quadratic extrapolation of Eq. (4.2) cannot be ex-
pected to work far from equilibrium density. In fact, assuming a parabolic
behavior of e(n) at large n (>> ng) leads to predict a speed of sound in
matter, cg, larger than the speed of light, i.e. (compare to Eq. (1.39))

S
CS_n(@e >1, (4.4)

regardless of the value of K.
Equation (4.4) shows that causality requires

(%—f) <1, (4.5)

€ being the energy-density. For a noniteracting Fermi gas ¢ o< n*/3, implying
(the equal sign corresponds to massless fermions)

where

IN

Pg% s (4.6)

1
3
In presence of interactions the above limits can be easily exceeded. For
example, modeling the repulsion between nucleons in terms of a rigid core
leads to predict infinite pressure at finite density.

The relation between microscopic dynamics and speed of sound in mat-
ter has been studied by Zel’dovich in th early 60s within the framework of
relativistic quantum field theory.

Assuming that the energy density be related to number density through
the power law

E
€e=— =an", 4.7
v (4.7)
energy per particle and pressure can be written
E
e=—=a"", (4.8)
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P=n’ (g—;) =(n—-1)an” = (n—1e. (4.9)
From the above relations we easily see that that v = 4/3 corresponds to
P = ¢/3 and that the limiting case ¢; = 1, i.e. (OP)/(0¢) = 1 is reached
when v = 2. Powers higher than v = 2 are forbidden by causality.

In the model proposed by Zel’dovich matter consists of baryons interact-
ing through exchange of a massive vector meson described by the lagrangian

density
1

1
Ly == FuF" - §u2AMA“ (4.10)
where A* = (¢, A) and p is the meson mass. The corresponding field equa-
tion is

(070, + .UQ)AM =9Ju (4.11)
g being the coupling constant. In the simple case of a point source located
at x=0

J, = (Jo,J) = (6(x),0) (4.12)

and the solution of (4.11) is

o hlx x|

d(x') =g , A=0. (4.13)

% — x|

Two charges at rest separated by a distance r repel each other with a force
of magnitude

F=—-¢g"— 4.14

I dr r ( )
and the corresponding interaction energy is
g 1"

9¢=9— (4.15)

In the case of N particles of mass M, as the equation of motion (4.11) is
linear, we can use the superposition principle and write the total energy as
(rij = |ri —15))

e_urij

N
E=NM+g* Y

j>i=1

(4.16)

Tij

Let us now make the further assumption that the average particle density be

such that s
1 1
(—) < —. (4.17)
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The above equation implies that the meson field changes slowly over distances
comparable to the average particle separation. If this is the case we can use
the mean field approximation and rewrite Eq. (4.16) in the form

E g* e K n
=—=M+Z [d&r—= 2mg*— . 4.18
€= + 5 / r— m+ 2mg . (4.18)
The corresponding expression of the energy density and pressure read

n2

¢ =ne=nM + 2mg*— (4.19)
1
and 5 )
e n

P=n?222) =271a%>— . 4.20

o (52) =2ret (1.20)

From the above equations it follows that, in the large n limit P — ¢, inplying
in turn ¢, — 1.

In conclusion, Zel’dovich model shows that the causality limit, corre-
sponding to € ox n?, is indeed attained in a simple semirealistic theory, in
which nucleons are assumed to interact through exchange of a vector meson.

4.2 The nucleon-nucleon interaction

The main features of the nucleon-nucleon (NN) interaction, inferred from
the analysis of nuclear systematics, may be summarized as follows.

e The saturation of nuclear density (see Fig. 4.1), i.e. the fact that
density in the interior of atomic nuclei is nearly constant and indepen-
dent of the mass number A, tells us that nucleons cannot be packed
together too tightly. Hence, at short distance the NN force must be
repulsive. Assuming that the interaction can be described by a nonrel-
ativistic potential v depending on the interparticle distance, r, we can
then write:

v(ir) >0 , |r| <7, (4.21)

r. being the radius of the repulsive core.

e The fact that the nuclear binding energy per nucleon is roughly the
same for all nuclei with A> 20, its value being

B(Z,A)
A
suggests that the NN interaction has a finite range rg, i.e. that

v(ir)=0 , |r|>ro. (4.23)

~ 8.5 MeV | (4.22)



48 CHAPTER 4. THE NUCLEAR MANY-BODY PROBLEM

e The spectra of the so called mirror nucles, i.e. pairs of nuclei having the
same A and charges differing by one unit (implying that the number
of protons in a nucleus is the same as the number of neutrons in its
mirror companion), e.g. >N (A =15,Z = 7) and 30 (A = 15, Z = 8),
exhibit striking similarities. The energies of the levels with the same
parity and angular momentum are the same up to small electromagnetic
corrections, showing that protons and neutrons have similar nuclear
interactions, i.e. that nuclear forces are charge symmetric.

Charge symmetry is a manifestation of a more general property of the NN
interaction, called isotopic invariance. Neglecting the small mass difference,
proton and neutron can be viewed as two states of the same particle, the
nucleon (N), described by the Dirac equation obtained from the lagrangiam
density

L =1y (iv"0, — m) by (4.24)
where
Uy = ( ’ ) , (4.25)

p and n being the four-spinors associated with the proton and the neutron,
respectively. The lagrangian density (4.24) is invariant under the SU(2)
global phase transformation

U = e | (4.26)

where acis a constant (i.e. independent of z) vector and the 7; (j = 1,2, 3) are
Pauli matrices. The above equations show that the nucleon can be described
as a doublet in isospin space. Proton and neutron correspond to isospin pro-
jections +1/2 and —1/2, respectively. Proton-proton and neutron-neutron
pairs always have total isospin T=1 whereas a proton-neutron pair may have
either T'= 0 or T = 1. The two-nucleon isospin states |T,73) can be sum-
marized as follows

L) = o)
1,0) = %(Ipn)ﬂnp»
1,-1) = |nn)

) 1

= 7 (Ipn) = |np)) -

Isospin invariance implies that the interaction between two nucleons sepa-
rated by a distance r = |r; — ry| and having total spin S depends on their
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total isospin 7" but not on T3. For example, the potential v(r) acting between
two protons with spins coupled to S = 0 is the same as the potential acting
between a proton and a neutron with spins and isospins coupled to S = 0
and T = 1.

4.3 The two-nucleon system

The details of the NN interaction can be best studied in the two-nucleon
system. There is only one NN bound state, the nucleus of deuterium, or
deuteron (?H), consisting of a proton and a neutron coupled to total spin
and isospin S = 1 and T = 0, respectively. This is clear manifestation of the
fact that nuclear forces are spin dependent.

Another important piece of information can be inferred from the observa-
tion that the deuteron exhibits a nonvanishing electric quadrupole moment,
implying that its charge distribution is not spherically symmetryc. Hence,
the NN interaction is noncentral.

Besides the properties of the two-nucleon bound state, the large data base
of phase shifts measured in NN scattering experiments (~ 4000 data points
corresponding to energies up to 350 MeV in the lab frame) provides valuable
additional information on the nature of NN forces.

The theoretical description of the NN interaction was first attempted by
Yukawa in 1935. He made the hypotesis that nucleons interact through the
exchange of a particle, whose mass p can be related to the interaction range

ro according to
1

~— . 4.2
To 1 ( 7)
Using ro ~ 1 fm, the above relation yields u ~ 200 MeV (1 fm = 197.3 MeV).
Yukawa’s idea has been successfully implemented identifying the exchanged
particle with the 7 meson (or pion), discovered in 1947, whose mass is m, ~
140 MeV. Experiments show that the pion is a spin zero pseudoscalar parti-
cle ! (i.e. it has spin-parity 0~) that comes in three charge states, denoted
7T, 7~ and 7°. Hence, it can be regarded as an isospin T=1 triplet, the
charge states being associated with isospin projections Ts=+ 1, 0 and —1,
respectively.
The simplest m-nucleon coupling compatible with the observation that
nuclear interactions conserve parity has the pseudoscalar form igy°T, where
g is a coupling constant and 7 describes the isospin of the nucleon. With this

!The pion spin has been deduced from the balance of the reaction 7+ +2 H < p + p,
while its intrinsic parity was determined observing the 7~ capture from the K shell of the
deuterium atom, leading to the appearance of two neutrons: 7~ +d — n + n.
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N(p,) N(py)

N(p,) N(p,)

Figure 4.2: Feynman diagram describing the one-pion-exchange process between
two nucleons. The corresponding amplitude is given by Eq. (4.28).

choice for the interaction vertex, the amplitude of the process depicted in Fig.
4.2 can readily be written, using standard Feynman’s diagram techniques, as

. o U(ph, 85)vsu(pe, s2)u(p,, 85 )vsu(p:, s
(M Ji) = —ig? "o 22 5P SR SR 51) () (0

where k = pi —p1 = p2 — P, k* = k,k* = k3 — k|2, u(p, s) is the Dirac spinor
associated with a nucleon of four momentum p = (g, E) (E=+/p? + m?) and
spin projection s and

(T1:72) = 77;7'772 771'7'771 ) (4.29)

7; being the two-component Pauli spinor describing the isospin state of par-
ticle 1.

The calculation of the amplitude of Eq.(4.28) is described in Appendix B.
In the nonrelativisti limit, Yukawa’s theory leads to define a NN interaction
potential that can be written in coordinate space as

92 e—m,rr
vy = ypecs (11-712)(01 - V)(02- V) .
¢ ma 1. . 3.3\
(471')2 4m2 3(7'1 T2){|:(0'1 0'2)+512 <1+£E+$2):| T
4
_ _7;(,,1.02)5@(1.)} , (4.30)
1

where x = m,|r| and

512:%(0'1'1')(0'2'1')—(0'1'0'2) y (431)
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is reminiscent of the operator describing the noncentral interaction between
two magnetic dipoles.

For g?/(4m) = 14, the above potential provides an accurate description of
the long range part (Jr| > 1.5 fm) of the NN interaction, as shown by the very
good fit of the NN scattering phase shifts in states of high angular momentum.
In these states, due to the strong centrifugal barrier, the probability of finding
the two nucleons at small relative distances becomes in fact negligibly small.

At medium- and short-range other more complicated processes, involving
the exchange of two or more pions (possibly interacting among themselves)
or heavier particles (like the p and the w mesons, whose masses are m, =
770 MeV and m,, = 782 MeV, respectively), have to be taken into account.
Moreover, when their relative distance becomes very small (Jr| $ 0.5 fm)
nucleons, being composite and finite in size, are expected to overlap. In
this regime, NN interactions should in principle be described in terms of
interactions between nucleon constituents, i.e. quarks and gluons, as dictated
by quantum chromodynamics (QCD), which is believed to be the fundamental
theory of strong interactions.

Phenomenological potentials describing the full NN interaction are gen-
erally written as

R (4.32)

where v, is the one pion exchange potential, defined by Egs. (4.30) and
(4.31), stripped of the d-function contribution, whereas vg describes the in-
teraction at medium and short range. The spin-isospin dependence and the
noncentral nature of the NN interactions can be properly described rewriting
Eq. (4.32) in the form

Vij = Z [vrs(rij) + 0s1Ver(7ij) S12] Psllr | (4.33)
ST

S and T being the total spin and isospin of the interacting pair, respectively.
In the above equation Ps (S =0, 1) are the spin projection operators

1

P, =
0 4

(].—0'1'0'2) s P1 (3+0’1'0’2), (434)

e

satisfying
PO + Pl =1 , PS|S,) - 5551|Sl> , P5P5/ = PS(SSS’ ; (435)

and Il are the isospin projection operators that can be written as in Eq.
(4.34) replacing o — 7 . The functions vrg(ri;) and vy(r;;) describe the
radial dependence of the interaction in the different spin-isospin channels and
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reduce to the corresponding components of the one pion exchange potential
at large r;;. Their shapes are chosen in such a way as to reproduce the
available NN data (deuteron binding energy, charge radius and quadrupole
moment and the NN scattering phase shifts).

Substitution of Eq. (4.34) and the corresponding expressions for the
isospin projection operators allows one to rewrite Eq. (4.33) in the form

Vij = Z v™ (rij)OE;” ; (4.36)

n=1

where

OZ(;L) = 1, (Tz' - Tj), (0', - O'j), (Uz . G'j)(Ti . Tj), Sij; Sz’j(Ti . Tj) (437)
and the v(™(r;;) are linear combination of the vrg(ry;) and vir(r;;). Note
that the operatos defined in Eq. (4.37) form an algebra, as they satisfy the
relation

n m 14
Oz(g)oz(] ) = Z Knmﬁogj) ) (438)
l

where the coefficients K, can be easily obtained from the properties of
Pauli matrices. Equations (4.38) can be exploited to greatly simplify the
calculation of nuclear observables based on the representation (4.36)-(4.37)
of the NN potential.

The typical shape of the NN potential in the state of relative angular
momentum ¢ = 0 and total spin and isospin S = 0 and 7" = 1 is shown
in Fig. 4.3. The short range repulsive core, to be ascribed to heavy meson
exchange or to more complicated mechanisms involving nucleon constituents,
is followed by an intermediate range attractive region, largely due to two-pion
exchange processes. Finally, at large interparticle distance the one-pion-
exchange mechanism dominates. Note the similarity with the van der Waals
potential of Fig. 2.1.

4.4 Nonrelativistic many-body theory

Within nonrelativistic many-body theory (NMBT), nuclear systems are
described as a collection of pointlike nucleons interacting through the hamil-
tonian

A
H:Z;)—ZZ—FZUU—F..., (4.39)
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Figure 4.3: Radial dependence of the NN potential describing the interaction
between two nucleons in the state of relative angular momentum ¢ = 0, and total
spin and isospin S =0 and T = 1.

where p; denotes the momentum carried by the i-th nucleon, v;; is the two-

body potential describing NN interactions the and the ellipsis refers to the

possible existence of interactions involving more than two nucleons.
Unfortunately, solving the Schrodinger equation

H[W¥o) = Ey|¥o) (4.40)

for the ground state of a nucleus, using the hamiltonian (4.39) and the NN
potential of Eqs.(4.36) and (4.37), is only possible for not too large A. The
numerical solution is trivial for A=2 only. For A=3 Eq. (4.40) can still be
solved using deterministic approaches, while for A>3 sthocastic methods,
such as the Green Function Monte Carlo method, have to be employed. The
results of these calculations will be briefly reviewed in the next Section.

4.4.1 The few-nucleon systems

The NN potential determined from the properties of the two-nucleon sys-
tem can be used to solve Eq. (4.40) for A > 2. In the case A = 3 the problem
can be still solved exactly, but the resulting ground state energy, Ey, turns
out to be slightly different from the experimental value. For example, for
®He one typically finds Ey = 7.6 MeV, to be compared to F,, = 8.48 MéV.
In order to exactly reproduce E.,, one has to add to the nuclear hamiltonian
a term containing three-nucleon interactions described by a potential Vjjp.
The most important process leading to three nucleon interactions is the two-
pion exchange associated with the excitation of a nucleon resonance in the
intermediate state, depicted in Fig. 4.4.
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Figure 4.4: Diagrammatic representation of the process providing the main con-
tribution to the three-nucleon interaction. The thick solid line corresponds to an
excited state of the nucleon.

The three-nucleon potential is usually written in the form

V;'jk = V;?Z + V;;\;c ) (441)
where the first contribution takes into account the process of Fig. 4.4 while
Vzﬁc is purely phenomenological. The two parameters entering the definition
of the three-body potential are adjusted in such a way as to reproduce the
properties of *H and 3He. Note that the inclusion of Vj;;, leads to a very
small change of the total potential energy, the ratio (v;;)/(Vijx) being ~ 2 %.

For A > 3 the Scrédinger equation is no longer exactly solvable. The
ground state energy of nuclei having A > 4 can be estimated from Ritz
principle, stating that the expectation value of the hamiltonian in the trial
state |Uy) satisfies
(Uy|H[Ty)

(Uy[Ty)

E, being the ground state energy. Obviously, the larger the overlap (¥y|Uy/)
the closer Fy is to Ej.

In the variational approach based on Eq. (4.42) E, is estimated carrying
out a functional minimization of Ey. The trial ground state is written in
such a way as to reflect the structure of the nuclear interaction hamiltonian.
For few nucleon systems it takes the form

EV - 2 E() ; (442)

Uy)=(1+U)|¥p), (4.43)

where
|Wp) = F|PA(JJ3TTs)) . (4.44)
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In the above equations |®4(JJ3TT3)) is a shell model state, describing A
independent particles coupled to total angular momentum J and total isospin
T, with third components J3 and 75, while the operators U and F' take
into acount the correlation structure induced by the two- and three-nucleon
potentials, respectively. The dominant correlation effects, associated with the
NN potential v;;, are described by the operator F', which is usually written

A
F=581]] fi, (4.45)

j>i=1
where § is the symmetrization operator and (compare to Eq. (4.36))

6

n=1

The shape of the radial correlation functions f(™ are determined by minimiz-
ing the expectation value Ey. In few nucleon systems this procedure is im-
plemented choosing suitable analytical expressions involving few adjustable
parameters.

The main features of the f(® are dictated by the behaviour of the corre-
sponding component of the potential v;;. For example, due to the presence
of the strong repulsive core f(™(r) < 1 at r <1 fm. A typical set of radial
correlation functions is shown in Fig. 4.5.

The main difficulty of the variational approach is the calculation of the
expectation value Ey, involving an integration over 3A space coordinate as
well as a sum over the spin-isospin degrees of freedom, which makes the
dimensionality of the problem very difficult to handle for A > 8.

To understand this problem, let us write the variational state in the form

wy) = S U (R)n) | (4.47)

where the sum includes all possible spin-isospin states, labelled by the index
n, and R = {ry,...,rs} specifies the space configuration of the system. For
example, in the case of *He (J =T = 1/2) one finds

1) = [tp tn in)
2) = [4p tn in)
3) = [4n tp in)

= (4.48)
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Figure 4.5: Correlation functions in few nucleon systems: the central and tensor-
isospin components f1) and f®* are denoted by f, and us, respectively. The
dashed lines show f2(3H) and f3(*He) to illustrate the large r behavior. The dot-
dashed line marked ¢, shows the independent particle model wave function for
6Li.

The possible spin states of A spin-1/2 particles are 24 and, since Z of the A
nucleons can be protons, there are A!/Z!(A — Z)! isospin states. Hence, the
sum over n in Eq. (4.47) involves

(4.49)

contributions.

In the representation of Eq. (4.47) the nuclear hamiltonian H is a M x M
matrix whose elements depend upon R. To obtain Ey one has to evaluate
the M x M integrals

/ dRY! (R)H ¥ (R) | (4.50)

whose calculation is carried out using the Monte Carlo (MC) method.

The expectation value of any operator O in the state ¥y can be written
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in the form

t

= 3 [ AR Gu(RIPu(R) (451)

m,n

with
t 5 _ \IIIn(R)Omn(R)\I]n(R)

the probability distribution P,,,(R) being given by

(4.52)

P (R) = [Re(¥}, (R) ¥ (R))| - (4.53)

Let {R,} = {Ri,...,Rn,} be a set of N, configurations drawn from the
probability distribution of Eq. (4.51), i.e. such that the probability that a
configuration R belongs to the set {R,} is proportional to P,,,(R). It then
follows that

/ dR Oy (R)Pyn(R) = lim Ni > Oun(R,) - (4.54)

The above procedure, called Variational Monte Carlo (VMC) method,
allows one to obtain estimates of the ground state energy E, whose accuracy
is limited by the statistical error associated with the use of a finite config-
uration set and by the uncertainty in the choice of the trial wave function.
The second source of error can be removed using the Green Function Monte
Carlo (GFMC) approach.

Let {|¥,,)} be the complete set of eigenstates of the nuclear hamiltonian,
satisfying

The trial variational wave function can obviously be expanded according to
|\I]V) = Zﬂn |‘I’m> , (456)
implying

T—0Q

lim e 77| Wy) = lim Y ™7 [Wn) = o €77 |Wo) . (4.57)
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Hence, evolution of the variational ground state to infinite imaginary time
projects out the true ground state of the nuclear hamiltonian and allows one
to extract the corresponding eigenvalue.

The calculation is carried out dividing the imaginary time interval 7 in
N steps of length A7 = 7/N to rewrite

e HT = (e7HAT)Y (4.58)

The state at imaginary time (¢ + 1)A7 is can be obtained from the one
corresponding to 7 = ¢A7 through the relation

(Wi = e HAT|T) (4.59)

that can be rewritten (|RST) specifies the configuration of the system in
coordinate, spin and isospin space)

(RSTWN) =) / dR (R'S'T'|e A7 RST)(RST| i) (4.60)
ST

or

xpivf,;,T,(R) = Z / dR Gsr (R, R)V}, ¢ (R) , (4.61)
ST

The Green’s function appearing in the above equation, yielding the amplitude
for the system to evolve from |RST) to |R'S'T’') during the imaginary time
interval A7, is defined as

Gs sr(R', R) = (R'S'T'|e” #AT|RST) . (4.62)

The GFMC approach has been succesfully employed to describe the ground
state and the low lying excited states of nuclei having A up to 8. The re-
sults of these calculations, summarized in Table 4.1 and Fig. 4.6, show that
the nonrelativistic approach, based on a dynamics modeled to reproduce the
properties of two- and three-nucleon systems, has a remarkable predictive
power.

4.4.2 Nuclear matter

In the case of neutron stars, correponding to A ~ 1057, the computational
techniques described in Section 4.4.1 cannot be applied and approximations
need to be made.

In the simplest scheme the complicated NN potential is replaced by a
mean field. This amount to substituting

A

A
Z Vij — Z U; s (463)
=1

j>i=1
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Figure 4.6: VMC and GFMC energies of nuclei with A < 8 compared to experi-
ment.

in Eq. (4.39), witht the potential U chosen in such a way that the single
particle hamiltonian
2
p
hy=—+U 4.64
0= 5 + (4.64)
be diagonalizable. Within this framework the nuclear ground state wave
function reduces to a Slater determinant, constructed using the A lowest
energy eigenstates of hg:
1
Vo) = —=det{¢;} , 4.65

the ¢;'s (i = 1, 2,..., A) being solutions of the Schrédinger equation

hold:) = €|di) (4.66)
and the corresponding ground state energy is given by

A

i=1

This procedure is the basis of the nuclear shell model, that has been succes-
fully applied to explain many nuclear properties.

Matter in the neutron star interior, however, is a uniform, dense nuclear
fluid, whose single particle wave functions are known to be plane waves, as
dictated by translational invariace. Shell effects are not expected to play a
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AZ(J"T) VMC (¥7)  VMC (¥y) GFMC  Expt
2H(1F;0) -2.2248(5) —2.2246
SH((1/2)+;1/2) -8.15(1) -8.32(1)  —847(1) 848
“He(0; 0) —26.97(3)  —27.78(3) -28.34(4) -28.30
6He(0*; 1) —23.64(7)  —24.87(7) -28.11(9) -29.27
SLi(1%;0) —27.10(7)  -27.83(5) -31.15(11) -31.99
THe((3/2)7;3/2)  -18.05(11) -19.75(12) -25.79(16) —28.82
Li((3/2)7:1/2) -31.92(11)  -33.04(7) -37.78(14) -39.24
8He(0*;2) ~17.98(8)  -19.31(12) -27.16(16) -31.41
8Li(2+:1) -28.00(14)  —29.76(13) -38.01(19) -41.28
8Be(0T;0) ~45.47(16)  —46.79(19) —54.44(19)  —56.50

Table 4.1: Experimental and quantum Monte Carlo ground state energies of nuclei
with A=2-8 in MeV. The columns marked VMC(¥y ) and GFMC show the VMC
and GFMC results, respectively.

major role in such a system. On the other hand, strong correlations between
nucleons induced by the NN potential, not taken into account within the
mean field approximation, become more and more important as the density
increases, and can not be disregarded.

Let us first consider symmetric nuclear matter, defined as a uniform ex-
tended system containing equal numbers of proton and neutrons which inter-
act through strong interactions only. Neglecting, for the sake of simplicity,
three-nucleon forces, the nuclear matter hamiltonian can be written as in
Eq.(A.1) with v;; denoting the NN potential. In absence of interactions, the
wave function is a Slater determinant of single particle states

(r) = Lek'r (4.68)
Pkor \/V XoTlr » .

where x and n are the Pauli spinors describing spin and isospin, respectively,
and |k| < kp = (372n/2)Y/3, n being the matter density.

The main problem associated with the application of many-body pertur-
bation theory to nuclear matter is the presence of the strongly repulsive core
in the NN potential (see Section 4.2 and Fig. 4.3), that makes the matrix
elements

<90k1101/ 711 PR 091 Ty |1)12 |90k10171 Pkaoar > (469)
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very large or even divergent. As we will see, this difficulty can be circum-
vented either through a proper redefintion of the interaction potential or
changing the basis of states describing the “unperturbed” system.

A. G-matrix perturbation theory

Within the first approach the hamiltonian is first split in two pieces as in
Eq. (A.2) with

N
Hy=) (Ki+U), (4.70)
i=1
where K = —V? /2m is the kinetic energy operator, and
N N
H1 = Z Vij — ZUZ s (471)
j>i=1 i=1

with the single particle potential generally chosen in such a way as to make
the perturbative expansion rapidly convergent. The interaction hamiltonian
H, is then treated perturbatively, summing up infinite set of diagrams to
overcome the problems assciated with the calculation of the matrix elements
(4.69). This procedure leads to the integral equation defining the G-matrix

Q
GW)=v—v W G . (4.72)
The G-matrix, as diagrammatically illustrated in Fig. 4.7, is the operator
describing NN scattering in the nuclear medium. The quantity W appearing
in Eq. (4.72) is the energy denominator associated with the propagator of
the intermediate state, while the operator () prevents scattering to states in
the Fermi sea, forbidden by Pauli exclusion principle.
The state describing two interacting nucleons 1);; can be expressed in
terms of G through the Bethe-Golstone equation

Q

Vij = ¢ij — WG Vij (4.73)

where ¢;; = ip;, with ©; = Yk,0,7, given by Eq. (4.68), is the corresponding
unperturbed state. From Eq. (4.73) it follows that the matrix elements of G
between unperturbed states

(00|Gdij) = (Pujr|v|1hij) (4.74)

are well behaved.
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Figure 4.7: Diagrammatic representation of Eq. (4.72).

Although the expansion in powers of ( is still not convergent, the terms in
the perturbative series can be grouped in such a way as to obtain a convergent
expansion in powers of the quantity

K:nZ/d3r\¢ij(T)—¢ij(T)|2a (4.75)

where the sum is extended to all states belonging to the Fermi sea. The
definition shows that x measures the average distortion of the two-nucleon
wave function produced by NN forces.

Nuclear matter calculations carried out within G-matrix perturbation
theory include contributions of order x* to the energy per nucleon. The
results show that the convergence strongly depends on the choice of the
single particle potential U.

B. CBF perturbation theory

In the alternative approach, called Correlated Basis Functions (CBF) per-
turbation theory, the nonperturbative effects arising from the short range
repulsive core of the interaction potential are incorporated in the basis func-
tions. The unperturbed Fermi gas states |ng) are replaced by the set of

correlated states
Fng)

ny = ,
) (ng|FTF|ng)1/?
where F'is the correlation operator, whose structure reflects the complexity

of the NN potential. In most nuclaer matter applications F' is written in the
form

(4.76)

A
F=8 1] fi (4.77)

j>i=1



4.4. NONRELATIVISTIC MANY-BODY THEORY 63

where
fig = 1" ()05 (4.78)
n
S is the operator that symmetrizes the product on its right hand side and
the operators O™ are defined in Eq. (4.38).

The correlated states (4.76) form a complete set but are not orthogonal to
one another. However, they can be orthogonalized using standard techniques
of many-body perturbation theory.

The radial shapes of the f™(r) are determined minimizing the expecta-
tion value Ey = (0|H|). In nuclear matter, this procedure leads to a set of
Euler-Lagrange equations, whose solutions satisfy the conditions

lim £ (r) = {1 n=1- (4.79)

r—00 0 n>1

The short range behaviour of the two-nucleon correlation finctions is such
that the quantity

p;
2m

[iHiifi = £ < ) fijs (4.80)
which reduces to H;; at large interparticel distances, is well behaved as r — 0.

Once the correlated basis has been defined, the nuclear hamiltonian can
be split in two pieces according to Eq. (A.2), where Hy and H; are now
defined as the diagonal and off diagonal part of H in the correlated basis,
respectively. We can then write

(m|Hp|n) = dpn(m|H|n) (4.81)
(m|Hy|n) = (1 = bma) (Mm|H|n) . (4.82)

If the two-body correlation function has been properly chosen, i.e. if Ey is
close to the eigenvalue Ej, the correlated states have large overlaps with the
true eigenstates of the nuclear hamiltonian and the matrix elements of H;
are small. Hence, the perturbative expansion in powers of H; is expected to
be rapidly convergent.

The explicit calculation of matrix elements of H between correlated states
involves prohibitive difficulties, as it requires integrations over the coordinates
of a huge number of particles. It is usually performed expanding the matrix
element in a series whose terms represent the contributions of subsystems
(clusters) containing an increasing number (2, 3, ..., A) of nucleons. The
terms in the series can be classified according to their topological structure
and summed up to all orders solving a set of coupled integral equations,
called Fermi Hyper-Netted Chain (FHNC) equations.
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4.5 Relativistic mean field theory

The theoretical approach described in the previous section is based on the
assumption that the degrees of freedom associated with the carriers of the
NN interaction can be eliminated in favor of a static NN potential. While
this procedure appears to be most succesful at p ~ py, as matter density (and
therefore the nucleon Fermi momentum) increases the relativistic propagation
of the nucleons, as well as the retarded propagation of the virtual meson
fields giving rise to nuclear forces, are expected to become more and more
important.

In principle, relativistic quantum field theory provides a well defined the-
oretical framework in which relativistic effects can be taken into account in
a fully consistent fashion. Due to the complexity and nonperturbative na-
ture of the interaction, however, the ab initio approach to the nuclear many
problem, based on the QCD lagrangian, involves prohibitive difficulties. In
fact, even the structure of individual hadrons, like the proton or the 7 meson,
is not yet understood at a fully quantitative level in terms of QCD degrees
of freedom. Let alone the structure of highly condensed hadronic matter at
supernuclear densities.

It has to be pointed out, however, that when dealing with condensed
matter it is often convenient to replace the lagrangian describing the inter-
actions between elementary constituents, be it solvable or not, with properly
constructed effective interactions. For example, the properties of highly con-
densed systems bound by electromagnetic interactions are most successfully
explained using effective interatomic potentials. In spite of the fact that
the lagrangian of quantum electrodynamics is very well known and can be
treated in perturbation theory, nobody in his right mind would ever use it
to carry out explicit calculations in condensed matter physics.

The fact that most of the time nucleons in nuclear matter behave as indi-
vidual particles interacting through boson exchange (see Lecture 3), suggests
that the fundamental degrees of freedom of QCD, quarks and gluons, may
indeed be replaced by nucleons and mesons, to be regarded as the degrees of
freedom of an effective field theory.

In this section we will describe a simple model in which nulcear matter
is viewed as a static uniform system of nucleons, described by Dirac spinors,
interacting through exchange of a scalar and a vector meson, called ¢ and w,
respectively.

The basic ingredient of the o-w model is the lagrangian density

L=LNn+Ls+ Lint, (4.83)

where Ly, Lp and L;,; describe free nucleons and mesons and their interac-
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tions, respectively. The dynamics of the free nucleon field is dictated by the
Dirac lagrangian of Eq. (4.24)

Ly(@) =v(x) (@@ —m) (), (4.84)

where the nucleon field, denoted by 9 (z), combines the two four-component
Dirac spinors describing proton and neutron, as in Eq. (4.25). The meson
lagrangian reads

[,B(-T) = ‘Cw(x)'i_['ff(x)
= PR E )+ gmV () V()

£ 0u0()06(x) — Jm2é(o)’ (185)

where
Fu(z) =0,V,(z) — 0,V,u(z) , (4.86)

V,(z) and o(x) are the vector and scalar meson fields, respectively, and m,
and m, the corresponding masses.

In specifying the form of the interaction lagrangian we will require that,
besides being a Lorentz scalar, L;,;(z) give rise to a Yukawa-like meson ex-
change potential in the static limit. Hence, we write

Lint(x) = god(@)h(x)¢ () — guVu(@)h(x)y"1)(z) (4.87)

where g, and g, are coupling constants and the choice of signs reflect the fact
that the NN interaction contains both attractive and repulsive contributions.

The equations of motion for the fields follow from the Euler-Lagrange
equations associated with the lagrangian density of Eq. (4.83). The meson
fields satisfy

(@ +mg)d(z) = 9o Y(2)9(x) (4.88)
and B
(O +m2)Vu(x) = 0u(3"V,) = gu $(x)7(2) , (4.89)
while the evolution of the nucleon field is dictated by the equation
[(? — 9.7 VH(2)) = (m = god(2))] ¥(z) = 0. (4.90)

The above coupled equations are fully relativistic and Lorentz covariant.
However, their solution involves prohibitive difficulties. Here we will re-
strict ourselves to the discussion of an approximation scheme widely used to
solve Egs. (4.88)-(4.90), known as mean field approximation, that essentially
amounts to treat ¢(z) and V,(x) as classical fields.
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We replace the meson field with their mean values in the ground state of
static and uniform nuclear matter

¢(z) = {8(x)) , V(@) = (Vul2)) (4.91)

where (¢(z)) and (V,,(z)) must be computed from the equations of motion. In
static and uniform nuclear matter the baryon and scalar densities, ng = 1)
and n, = ¢, as well as the current Ju= E%w, are constants, independent of
x. As a consequence, the mean values of the meson fields are also constants
satisfying the relations

ma (6) = go (V1)) (4.92)
me, (Vo) = gu (') (4.93)
mZ (Vi) = gu(¥yp)y , i=1,2,3. (4.94)

The nucleon equation of motion, rewritten in terms of the mean values of the
meson fields, reads

[(? = 97 (V) = (m = go(@))] P(z) = 0 . (4.95)

In static and uniform matter, the nucleon states must be eigenstates of the
four-momentum operator, that can be written as

wkeikw — qﬁkeik,,,w” — wkez’(kot—k-r) , (496)
the 1 being solutions of

(¥ = 927u(V*)) = (m = 95(6))] ¥x
= [y (K* = 9, (V¥*)) = (m — go{)) | e = 0. (4.97)

The above equation can be recast in a form reminiscent of the Dirac equation.
Defining

K, =k, — g.,(V*) (4.98)

m* =m — g,(¢) , (4.99)
we obtain

(K —m") P = 0. (4.100)

The corresponding energy eigenvalues can be found from

(K+m") (K—m") = KK—m" = K, K"y —m"
AV |7
- KJ»W — 2
= K,K'—m", (4.101)
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implying
(K, K" —m™) i =0, (4.102)
leading to
(K K" —m*) =0 (4.103)
and

Ky = Ex=ky—g.,(Vo) = \V/ K2 4 m*?

= k= @l V)P + (m— g, (6))" (4.104)

It follows that the energy eigenvalues associated with nucleons and antinu-
cleons can be written

and
ex = Ex — 9.(Vo) . (4.106)

respectively. The above equations give the nucleon (and antinucleon) energies
in terms of the mean values of the meson fields, which are in turn defined
in terms of the ground state expectation values of the nucleon densities and
current, according to Eqgs. (4.92)-(4.94).

The ground state expectation value of an operator /I't) can be evaluated
exploiting the fact that each nucleon state is specified by its momentum,
k, and spin-isospin projections. Denoting the average of ¥y in a single
particle state by (EFw)ka, where the index « labels the spin-isospin state,
we can write the ground state expectation value as

@rg) =3 / % (BT} Bler — ) (4.107)

where the #-function restricts the momentum integration to the region cor-
responding to energies lower than the Fermi energy er. To obtain the single
particle average (¥7,1),,, we use Eq. (4.100), implying

The quantity defined by the above equation can be regarded as the single nu-
cleon hamiltonian, whose eigenvalues are given by (compare to Eq. (4.105))

(ko) o = <¢Tko1//>ka = Fx + 9.,(Vo) . (4.109)
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The ground state expectation value of the baryon density can be readily
evaluated from Eqs. (4.108) and (4.109) noting that

0 ot _ _9 _
= e = 0 e, (@110
implying
W'Pha =1 (4.111)
It follows that np can be obtained using Eq. (4.107), leading to
3
np = <¢T1/J> =Vv /%9(6}7 - €k) y (4112)

where v is the degeneracy of the momentum eigenstate (v = 2 and 4 for pure
neutron matter and symmetric nuclear matter, respectively).

The same procedure can be applied to calculate the ground state expec-
tation value (%)) (i = 1,2,3). Taking the derivative with respect to k; we
find

0 0 OF
3/@ <1/1Tk0w>ka = akz (Ek -+ gw<‘/b>) — ak:{
ok | -
= (V15 Ve = 7 Ve = (7" )ka 5 (4113)
leading to
T d®k (OFE
W) = V/ (2m)3 (61;) O(er — ex)
dk;dk
_ 1// Li /dEk Bler — ex) = 0 . (4.114)

The above result follows from the fact that, by definition, ex = er — g,(V0)
everywhere on the boundary of the integration region. The vanishing of the
baryon current, that could have been anticipated, as we are dealing with
uniform matter in its ground state, implies that the mean values of the
space components of the vector field also vanish, i.e. that (V;) = 0. As
a consequence, the energy eigenvalues depend upon the magnitude of the
nucleon momentum only, according to

€k = € = \/|k‘2 + (m - ga<¢>)2 + gw<%> ’ (4'115)
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and the occupied region of momentum space is sphere. Eq. (4.112) then
shows that in symmetric nuclear matter, with Z=(A—Z)=A/2, the baryon
density takes the familiar form np = 2k3 / (37?), kr being the Fermi momen-
tum.

Finally, the scalar density n, = (1/%) can be evaluated from the derivative
of (¥'kot))ke With respect to m:

O U ko = Ok = 1) = g = B (4116)
yielding : )
P a = i 4117
e = e = g (O ()
and
oy _L ki 2 (m_ga<¢>)
R R e =

Collecting together the results of Eqgs. (4.112), (4.114) and (4.118) we
can rewrite the equations of motion (4.88)-(4.90) in the form:

witr= (2) o [ g gD (1.119)

2m? VK2 + (m—g,(4))?
W) K
9.(Vo) = (i—) v 6—;’2 (4.120)
m2(Viy =0, i=1,2,3. (4.121)

Note that, while Eqs. (4.120) and (4.121) are trivial, Eq. (4.119) implies
a self-consistency requirement on the mean value of the scalar field, whose
value has to satisfy a transcendental equation.

To obtain the equation of state, i.e. the relation between pressure and
density (or energy density) of matter, in quantum field theory we start from
the energy-momentum tensor, that for a generic Lagrangian £ = L(¢,0,¢)
can be written

oL

T — b — g™ L 4.122
5(0,9) ¢—g" L, ( )

g"* being the metric tensor.
In a uniform system the expectation value of 7", is directly related to
the energy density, €, and pressure, P, through

(Tw) = wuty (€ + P) = g P (4.123)
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where u denotes the four velocity of the system, satisfying u,u” = 1. It
follows that in the reference frame in which matter is at rest (7),,) is diagonal
and

e = (Too) = —(L) + (Yyokot)) (4.124)
P = (L) = (£) + 3 (Brikit). (4.125)

Within the mean field approximation, the lagrangian density of the o-w
model reduces to

Lot = [i8 = 9.0 (V6) = (m = g {8))] 6 = gm () + 52 (Vi)? , (4.126)
implying
Tl = W) — g | L2 (8 — (V)2 (4.127)
As a consequence, Eqs. (4.124) and (4.125) become
€= —{Lar) + (Frokov) (4128)
P = (Lur)+ %@%kﬂ/}), (4.129)

where (use Eqgs. (4.109), (4.115) and (4.120))

— v

<¢’Yoko¢> 2—7r2 .

= st oy [ P R G (@)
= Guw{Vo/N'B 272 J, m — go(¢

" 2dlk| [T (= 0o (00 + 9, (V0)]

2 kr
9 v
= Loty s [ k] VK g, @) (4130
w 0

and (use eq.(4.114))
[K[*
k .
| VIKE + (m = g,(9))?

Substitution of the above equations into Eqs. (4.128)-(4.129) finally yields
(use Eq. (4.126) and the equation of motion for the nucleon field)

(4.131)

(Griki) = (By 1) = 5 [ d

1 92 v kr
= grozm—m")+ 3T+ o [ k] i me? (@132)
m 2% Jo
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a1, S
P——ig(m—m)—f—im—zjnlg—i‘gﬁ . ‘ ‘—W
The first two contributions to the right hand side of the above equations
arise from the mass terms associated with the vector and scalar fields, while
the remaining term gives the energy density and pressure of a relativistic
Fermi gas of nucleons of mass m* given by (see Eq. (4.119))

(4.133)

2 kp *
* 9o V 2 m
= m—2 [ kP
" m m2 272 /0 ke k|2 + m*2
2 * *
g, m . . krp +e

with e}, = \/k% + m*2. Equations (4.132)-(4.134) yield energy density and
pressure of nuclear matter as a function of the baryon number density ng (re-
call: kp = (6m2ng/v)(1/¥). The values of the unknown coefficients (m?2/g2)
and (m?/g>) can be determined by a fit to the empirical saturation properties
of nuclear matter, i.e. requiring

B 6(710)

= _ —m=—16 M 4.1
1 o m 6 MeV (4.135)

with ng = .16 fm=3. This procedure leads to the result

2 2

Jo m2—9671 , Jom?—1959. (4.136)
mO' mw

Fig. 4.8 shows the binding energies of symmetric nuclear matter (solid
line) and pure neutron matter (dashed line) predicted by the o — w model,
plotted against the Fermi momentum kr. Note that pure neutron matter is
always unbound.



72 CHAPTER 4. THE NUCLEAR MANY-BODY PROBLEM

20

10 —

1111}1111

T T T

€/ng — m [MeV]

\
—_
O
vvavvvv
1111}1111

PV S I I S I B

050 0.75 1.00 1.25 150 1.75 2.00
kp [fm™']

Figure 4.8: Fermi momentum dependence of the binding energy per nucleon of
symmetric nuclear matter (solid line) and pure neutron matter (dashed line) eval-
uated using the ¢ — w model and the mean field approximation.



Chapter 5

Matter at supranuclear densities

5.1 Strange hadronic matter

5.2 Quark matter

Elastic and deep inelastic electron scattering experiments have shown
that nucleons are extended systems whose constituents are spin 1/2 particles,
called quarks. ...

5.2.1 The MIT bag model

In the MIT bag model the main features of QCD are implemented through
the assumptions that: i) quarks occur in colour neutral clusters confined to
a finite region of space (the bag), whose volume is limited by the pressure of
the QCD vacuum (the bag constant B), and ii) residual interactions between
quarks are weak, and can be treated using low order perturbation theory.

Neglecting as a first approximation the gluon contribution, the bag model
lagrangian density can be written in the form

£(0) = {3940, — @F17"4] - B 0v(a) — JT@wAse) ()

where 1(z) is the Dirac field describing the quarks, assumed to be massless
(color and flavor indices are omitted to simplify the notation),

| 1 inside the bag
() = { 0 outside the bag ’ (5:2)
and Ag(z) is the surface delta function, satisfying
00y
@ = 'I’LNAS y (53)

73
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n, being the spacelike unit vector perpendicular to the bag surface. In the
simple case of a spherical cavity of radius R

by =0R—r) , Asg=06(R—r). (5.4)
The equations of motion

oL oL

0% " 0(0.)
can be obtained from the lagrangian of Eq. (5.1) through
oL i 1
_— = —yH - = A .
5% (27 6u¢> Ov — S¥As (5.6)
oL i i
= —=AH — —v*n,YAg . :
Substitution of Egs. (5.6) and (5.7) into Eq. (5.5) leads to
"0, =0 (5.8)
inside the cavity and
iy, = (5.9)

on its surface.
The physical interpretation of the constant B can be easily understood
considering the energy momentum tensor

oL — oL
T = —g"L+ ( O+ 0 )
0(0ut) 0(0u1))
i _
= —g"L+ ("0 = Yy )by (5.10)
satisfying the conservation law
8,T" =0 . (5.11)
From Eq. (5.11) it follows that
BAgn” + %(@7“8”1& — &Yy p)n,As =0 (5.12)

and B
Ou(VpAg) =0 (5.13)
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Substitution of the boundary condition (5.9) into Eq. (5.12) finally yields

10

B’ = 55 (). (5.14)

As the right hand side of the above equation is not vanishing, Eq. (5.14)
shows that the inclusion of the constant B in the lagrangian density is needed
to guarantee four momentum conservation. In fact, Eq. (5.14) is nothing but
the pressure balance equation. Using n”n, = —1 we find the relation

B =~ n,d (@) (5.15)

which, in the case of a static spherical cavity, corresponding to n” = (0,r/|r|),
reduces to

10 —
B = _55(@” : (5.16)

Hence, B is the inward pressure of the QCD vacuum, needed to balance the
outward pressure of the quarks.

5.2.2 The equation of state of quark matter

The thermodynamic functions describing a many-particle system at tem-
perature 7' = 1/ can be obtained from the grand partition function, defined

exp <—/B(H - ZMM))] ; (5.17)

where H is the hamiltonian operator and p; and N; are the chemical potential
and the number operator associated with particles of species 7, respectively.

For example, pressure (P) and energy density (¢) can be defined in terms
of the Gibbs free energy, {2, which is in turn related to Z through

Z ="Tr

1
Q=—-——In7, 5.18
5 (5.18)
according to
Q
P=—— 5.19
= (5.19)
and 50
e=Q— , 5.20
> (on)r, 520

where V' is the volume occupied by the system.
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In the case of quark matter, due to the properties of QCD described in
Section XXXX, 2 consists of two contributions. One of them, that will be
denoted €4, is tractable in perturbation theory, while the second one takes
into acount nonperturbative effects induced by the properties of the QCD
vacuum.

The relation (5.19) between pressure and Gibbs free energy and the inter-
pretation of the bag constant discussed in Section 5.2.1 suggest that within
the MIT bag model the difference between 2 and (2,,,; can be identified with
the bag constant, i.e. that

Q=+ VB . (5.21)

The perturbative contribution can be expanded according to
Qpert =V Z Z ngn) ) (5'22)
f n

where the index f specifies the quark flavor, while Qsc") is the n-th order term
of the perturbative expansion in powers of the strong coupling constant, a.

The EOS of quark matter can be obtained from the relations linking
pressure and energy density to {2:

Q n
P=—v=—B—Zf:zn:Q§J. (5.23)

Q o9

f

ny and py being the density and chemical potential of the quarks of flavor f.
The lowest order contribution at 7' = 0, reads (compare to Eqgs. (1.28)
and (1.29))

0 _ L1 2 of 2 9 o
Q" = - !Z“f\/ Ky —my (Nf - §mf)

2 2
3, HrtHp—my
-l—gmf log oy , (5.25)

where m; is the quark mass.
Substituting Eq. (5.25) into Egs. (5.23) and (5.24) and taking the limit
of massless quarks one finds the EOS
e —4B

P=—a. (5.26)
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The contribution of first order in «y, arising from the one-gluon exchange
processes discussed in Appendix C, reads

2 _ .2 o
. 20, | 3 RV
9 = [Z(uf\/u?—m?—mfflog

73 my

1
—5(/@ - m?)Ql . (5.27)
The chemical potentials appearing in Egs.(5.25) and (5.27) can be written

1°%i =€Ff+(5/1,f= ,/mfc-l—p%f —|—(5,uf, (528)

where the first term is the Fermi energy of a gas of noninteracting quarks of
mass my at density ny = p%f /72, whereas the second term is a perturbative
correction of order ay, whose explicit expression is

20, mi er; + Pr
Spy = 3.2 [pr - 3e—f log (g)] : (5.29)

Including both QSCO) and QS}) in Egs. (5.23) and (5.24) and taking again
the limit of vanishing quark masses one finds

1 20 4
P:W(1—7>;,uf—B (5.30)

3 20 4
e:4_7ﬂ<1—7)2f:uf+3. (5.31)

Comparison to Eq. (5.26) shows that the EOS of a system of massless quarks
in unaffected by one-gluon exchange interactions.

For any baryon density, quark densities are dictated by the requirements
of baryon number conservation, charge neutrality and weak equilibrium. In
the case of two flavors, in which only the light up and down quarks are

present, we have
1

npg = g(nu +ng) , (5.32)
2 — —0 (5.33)
3nu 3nd Ne = .

P = pu + fe 5 (5.34)
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where n, and u. denote the density and chemical potential of the electrons
produced through
d—=u+e +7,. (5.35)

Note that we have not taken into account the possible appearance of muons,
as in the density region relevant to neutron stars u. never exceeds the muon
mass.

As the baryon density increases, the d-quark chemical potential reaches
the value pugy = mg, my being the mass of the strange quark. The energy of
quark matter can then be lowered turning d-quarks into s-quarks through

d+u—u+s. (5.36)

In presence of three flavors, Egs. (5.32)-(5.34) become

1
ng = g(nu + ng +ns) , (5.37)
2 1 1
gnu — gnd — gns —n.=0 (5.38)
fa = s = fu + fle - (5.39)

Unfortunately, the parameters entering the bag model EOS are only
loosely constrained by phenomenology and their choice is somewhat arbi-
trary.

As quarks are confined and not observable as individual particles, their
masses are not directly measurable and must be inferred from hadron prop-
erties. The Particle Data Group reports masses of a few MeV for up and
down quarks and 60 to 170 MeV for the strange quark. At typical neutron
stars densities heavier quarks do not play a role.

The strong coupling constant s can be obtained from the renormalization

group equation
127

(33— 2N) In (7/A?)
where Ny = 3 is the number of active flavors, A is the QCD scale parameter
and 7 is an energy scale typical of the relevant density region (e.g. the
average quark chemical potential). Using A ~ 100 = 200 MeV and setting
= pg ~ Wy at a typical baryon density ng ~ 4ny one gets s ~ 0.4 + 0.6.

The values of the bag constant resulting from fits of the hadron spectrum
range between ~ 57 MeV /fm?, with A = 220 MeV, and ~ 350 MeV /fm? , with
A =172 MeV. However, the requirement that the deconfinement transition
does not occur at density ~ ng constrains B to be larger than ~ 120 — 150
MeV /fm3, and lattice results suggest a value of ~ 210 MeV /fm3.

(5.40)

Qg =
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Figure 5.1 shows the energy density of neutral quark matter in weak
equilibrium as a function of baryon density, for different values of B and «.
Comparison between the dotdash line and those corresponding to a; # 0
shows that perturbative gluon exchange, whose inclusion produces a sizable
change of slope, cannot be simulated by adjusting the value of the bag con-
stant and must be explicitly taken into account.

800_.|....|....|....|....
600

400

e—ngM [MeV]

200

0.50 0.75 1.00 1.25 1.50
Dp [fm_a]
Figure 5.1: Energy density of neutral quark matter in weak equilibrium as a
function of baryon number density. The solid and dashed lines have been obtained
setting cy = 0.5 and B = 200 and 120 MeV /fm3, respectively, while the dashdot line
corresponds to s = 0 and B = 200 MeV/ fm3. The quark masses are m,, = mgq = 0,
mg = 150 MeV.

The composition of charge neutral quark matter in weak equilibrium ob-
tained from the MIT bag model is shown in Fig. 5.2. Note that at large
densities quarks of the three different flavors are present in equal number,
and leptons are no longer needed to guarantee charge neutrality.

5.2.3 Color superconductivity
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Figure 5.2: Composition of charge neutral matter of u, d and s quarks and elec-
trons in weak equilibrium, obtained from the MIT bag model setting m,, = mg = 0,
ms = 150 MeV, B = 200 MeV /fm? and a, = 0.5.



Chapter 6

Phase transitions in neutron stars

At large baryon number density, the energy density of nucleon matter
predicted by theoretical calculations, carried out within either NMBT or
RMFT, grows according to exas o< n2. On the ohter hand, the energy density
of quark matter grows according to ey o n*3. Hence, at large enough
density quark matter is expected to become the ground state of matter. If
the density np corresponding to exa(7p) = €gum(p) is reached in the inner
core, the neutron star contains deconfined quark matter.

Early studies of the appearance of quark matter in neutron stars were
based on the familiar Maxwell double tangent construction, which amounts
to assuming that the transition occurs at constant pressure. Within this
picture, charge-neutral nuclear matter at energy density ey,s coexists with
charge-neutral quark matter at energy density egas, the two phases being
separated by a sharp interface.

In the early 90s Glendenning first pointed out that the requirement that
the two phases be individually charge-neutral is in fact too restrictive. In a
more general scenario charged nuclear and quark matter may share a common
lepton background, thus giving rise to a mixed phase extending in space over
a sizable fraction of the star.

The two different descriptions of the phase transitions and their implica-
tions for neutron star structure are discussed in the following Sections.

6.1 Coexisting phases vs mixed phase

Equilibrium between charged phases of nuclear matter and quark matter
at T' = 0 requires the fulfillment of Gibbs conditions

PNM(NﬁMa /‘L%M) = PQM(NgMa ,UgM) ) (6.1)

81
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P = Hom > M= B (6.2)
where P denotes the pressure, while 4 and p® are the chemical potentials
associated with the two conserved quantities, namely baryonic number B
and electric charge Q.

The above equations imply that, for any pressure P, the projection of
the surfaces Pyas(p?, u?) and Pgp(u?, u?) onto the P = P plane defines
two curves, whose intersection corresponds to the equilibrium values of the
chemical potentials. As the chemical potentials determine the charge densi-
ties of the two phases, the volume fraction occupied by quark matter, x, can
then be obtained exploiting the requirement of global neutrality

XQoum + (1 = X)Q@numr + ZQE =0, (6.3)
14

where Qonr, @nar and Q¢ denote the electric charge carried by nuclear mat-
ter, quark matter and leptons, respectively. From Eq.(6.3) it follows that

Y = Qnm + Ze Qe
Qnm — Qom

with 0 < x < 1. Finally, the total energy density e can be calculated using

(6.4)

€ = XeQM + (1 — X)GNM s (65)

and the EOS of state of the mixed phase can be cast in the standard form
P = P(e).

Requiring that the two phases be individually neutral, as in the pioneering
work of Baym & Chin, reduces the number of chemical potentials to one, thus
leading to the equilibrium conditions

Pryu(piny) = PQM(MgM) ’ (6.6)
Ny = MSM : (6.7)
Within this scenario, charge-neutral nuclear matter at baryon number density

n¥M coexists with charge-neutral quark matter at density n2", nN™ and

n(’B?M being determined by the requirements

_ aENM . aGQM
MB = ( 8713 )nB—ngM a ( anB )nB_ngM - (68)

At nM < ng < n%Y pressure and chemical potential remain constant, the

energy density is given by

€= pupng — P, (6.9)
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and the volume fraction occupied by quark matter grows linearly with density
according to
_ bng — P —exu(niu)
equ(n3") — ennr(niy™)
Note that the above equation obviously implies that 0 < x < 1, with
x(ni™) = 0 and x(ng") = 1.

(6.10)
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Figure 6.1: Isobars P(un,up) = 200 MeV/fm? (left panel) and 350 MeV/fm?
(right panel) obtained using NMBT (solid lines) and the MIT bag model of quark
matter, with oy = 0.5 and B = 200 MeV /fm?® (dashed lines). The intersections
determine the values of the chemical potentials corresponding to equilibrium of the
two phases according to Gibbs rules.

The intersection between the surfaces describing the pressure of nuclear
and quark matter is determined numerically, choosing as independent vari-
ables, instead of u? and @, the proton and neutron chemical potentials y,
and p,. In nuclear matter they are simply related to the lepton chemical
potential through the S-stability condition 1, — p, = p. In quark matter
the chemical potentials of up and down quarks can be obtained from p, and
[, inverting the relations

tp = 2ty + fha (6.11)
Pn = 2[bq + [ (6.12)

while the strange quark and lepton chemical potentials are dictated by the
conditions of weak equilibrium

s = Hd (6.13)

Md — My = Mg - (614)
Figure 6.1 illustrates the construction employed to determine the values
of u, and p,, corresponding to equilibrium between nuclear matter, described
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by NMBT, and quark matter, described by by the MIT bag model EOS with
as, = 0.5 and B = 200 MeV /fm?. The region P < P < Py in which the
isobars of nuclear and quark matter intersect defines the range of densities
Nmin < NB < Nmer N Which the mixed phase is energetically favored. At
ng < Npmin and Np > Ny, the ground state consists of pure nuclear and
quark matter, respectively.

The phase transition between nuclear and quark matter, obtained with B
= 200 MeV /fm? and a, = 0.5, is illustrated in Fig. 6.2. Dashed and dotdash
lines show the dependence on ng of the energy density of charge neutral
nuclear and quark matter in weak equilibrium, respectively, while the solid
line corresponds to the mixed phase. The latter turns out to be the ground
state of neutron star matter at densities .7 < ng < 1.7 fm—3.
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Figure 6.2: Dashed and dotdash lines show the energy density of charge neutral
nuclear and quark matter in weak equilibrium, respectively. The bag model param-
eters have been set to B = 200 MeV /fm? and a5 = 0.5. The solid line corresponds
to the mixed phase, obtained from Gibbs equilibrium conditions.

The dependence of the results on the MIT bag model parameters can
be gauged from the left panel of Fig. 6.3. A lower value of the bag con-
stant, corresponding to a softer quark matter EOS, leads to the appearance
of the mixed phase at lower density. Keeping a; = 0.5 and setting B = 120
MeV /fm? one finds that the mixed phase is energetically favored in the range
.6 Snp S 1.4 fm 3. An even larger effect, illustrated by the right panel of
Fig. 6.3 is obtained with B = 120 MeV /fm? and «, = 0, i.e. neglecting per-
turbative gluon exchange altogether. For this case the figure also shows the
results obtained from the Maxwell construction, leading to the coexistence
of charge-neutral nuclear matter at ng = .42 fm~3 and charge-neutral quark
matter at ng = .57 fm~3. This cohexistence region is to be compared to the
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region of stability of the mixed phase, corresponding to 0.22 < ng < 0.75
fm 3.
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Figure 6.3: As in Fig. 6.2, but with the EOS of quark matter obtained using
different values of the MIT bag model parameters. Left panel: B = 120 MeV /fm?
and as = 0.5; right panel B = 120 MeV /fm?® and as = 0. The straight line in the
lower panel is the double tangent resulting from the Maxwell construction, while
the open circles show the extrema of the coexistence region.

6.2 Stability of the mixed phase

The discussion of the previous Section suggests that, irrespective of the
details of the EOS, the transition from nuclear to quark matter proceed
through the formation of a mixed phase. However, two issues relevant to
both the appearance and the stability of the mixed phase, not taken yet into
account, need to be further analyzed.

Consider a mixed phase consisting of droplets of quark matter immersed
in [-stable nuclear matter, global charge neutrality being guaranteed by a
lepton background. This picture is obvioulsy based on the assumption that
the appearance of the charged droplets do not significantly affect the space
distribution of the leptons, i.e. that the Debye screening length Ap is large
compared to both the typical size of the droplets and their separation dis-
tance. If this condition is not satisfied the lepton background is distorted in
such a way as to screen electrostastic interactions.

Estimates of \p reported by in the literature suggest that screening effects
can be disregarded if the structures appearing in the mixed phase of quark
and nuclear matters have typical size and separation distance of ~ 10 fm. The
results of calculations, that will be discussed discussed later in this Section,
show that this appears indeed to be the case.
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The second issue deserving consideration is the stability of the mixed
phase, i.e. the question of whether or not its energy is lower than the energy
of the coexisting phases of nuclear and quark matter.

Formation of a spherical droplet of quark matter requires the energy

Ep=&c+E&s. (615)

where the surface contribution &g is parametrized in terms of the surface
tension o according to

Es =0 4TR? (6.16)
R being the droplet radius. The electrostatic energy £¢ can be cast in the
form 0
3 3 1
SC 5 R < 2U + 2’LL> s (6 7)

with v = (R/R.)?, R, being the radius of the Wigner-Seitz cell. Note that
the first term on the right hand side of the above equation is the self energy
of a droplet of radius R and charge @) obtained from Gauss law. The electric
charge () is given by

AT R3

@=—3

(Pore — prur) (6.18)

pom and py s being the charge densities of quark matter and nuclear matter,
respectively. Minimization of the energy density € = 3€p/4m R? with respect
to the droplet radius yields

Es = 26¢ (6.19)
and i3
R [mlean Z ol g ) (6.20)
where .
fa(u) = 2 (2 - 3u? +u) . (6.21)

As the density increases, the droplets begin to merge and give rise to
structures of variable dimensionality, changing firts from spheres into rods
and eventually into slabs '. At larger densities the volume fraction occupied
by quark matter exceeds 1/2, and the role of the two phases is reversed.
Nuclear matter, initially arranged in slabs, turns into rods and spheres that
finally dissolve in uniform charge-neutral quark matter.

In the literature, the rods and slabs that form in the mixed phase are often referred
to as spaghetti and lasagna, respectively, or as nuclear pasta.
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The energy density needed for the formation of the structures appearing
in the mixed phase has been obtained by Ravenhall et al. in the context of
a study of matter in the neutron star inner crust. It can be written in the
concise form

2
€c + €5 = 67U [ga2d2 (ngM - ngM) fd(u)] , (6.22)
4m

where « is the fine structure constant, u is the volume fraction occupied by
the less abundant phase (i.e. u = x for x < 1/2, u =1— x for x > 1/2) and

1 1
= —— | ——= (2 — du'~¢ : 6.23
i) = 75 |y (2= du )+ (6.29
For d = 1,2 and 3 Eqgs.(6.22) and (6.23) provide the correct energy density
for the case of slabs, rods and spheres, respectively.

For 0 = 0 both surface and Coulomb energies vanish, and the energy
density of the mixed phase is given by Eq.(6.5), while for o # 0

€(c)=€(lc=0)+ec+es . (6.24)

The mixed phase is energetically favorable if ¢(o) is less than the energy
density obtained from the Maxwell construction, given by Eq.(6.9).

The value of the surface tension at the interface between nuclear and
quark matter is not known. It has been estimated using the MIT bag model
and ignoring gluon exchange. Assuming that a strange quark has mass of
~ 150 MeV, Berger & Jaffe predict o ~ 10 MeV/fm?. To quantitatively
investigate the stability of the mixed phase, A, = ¢(0) — €(0) has been
calculated for different values of o, ranging from 2 MeV /fm? to 10 MeV /fm?.

For any given value of the baryon number density ng, the energy density
of Eqs.(6.22)-(6.23) has been calculated using the nuclear and quark matter
densities determined according to the procedure described in the previous
Section and carrying out a numerical minimization with respect to the value
of the dimensionality parameter d. As np increases, the resulting values of d
change initially from ~ 3 to ~ 2 and ~ 1 and then again to ~ 2 and finally
to ~ 3. For example, in the case illustrated by Fig. 6.4, and corresponding
to o = 10 MeV /fm?, spherical droplets of quark matter (d ~ 3) appear at
ng ~ .75 fm 3 and turn into rods (d ~ 2) and slabs (d ~ 1) at ng ~ .95
and ~ 1.2 fm 3, respectively. For larger densities, quark matter becomes the
dominant phase (i.e. x > 1/2): at ng ~ 1.5 and ~ 1.7 fm™® the mixed phase
features rods (d ~ 2) and droplets (d ~ 3) of nuclear matter that eventually
dissolve in the quark matter background.
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Figure 6.4: The solid lines correspond to the difference A, = €(o) — €(0) (see
Eq.(6.24)), evaluated for o = 10, 5 and 2 MeV/fm3. The dashed line shows the
difference A between the energy density resulting from the Maxwell construction
and €(0). The arrows mark the limits of the cohexistence region. Nuclear and quark
matter are described by the NMBT and the MIT bag model EOS, with oy = 0.5
and B = 200 MeV /fm3, respectively.

These results are summarized in Figs. 6.4 and 6.5, that correspond to
different choices of the MIT bag model parameters. The solid lines show the
np dependence of the calculated A, for different values of the surface tension
0. The dashed line represents the difference A, = €37 — €(0), where €, is the
energy density obtained from Maxwell construction. For any given value of
the surface tension, the mixed phase is favorable if the corresponding solid
line lies below the dashed line.

The results of Fig. 6.4, corresponding to B = 200 MeV /fm? and o, = 0.5,
show that the mixed phase, while being always the lowest energy phase for
o = 2 MeV /fm?, becomes energetically unfavorable at some densities for
o 2 5 MeV/fm?. For o = 10 MeV /fm? coexistence of charge neutral phases
of nuclear and quark matter turns out to be favorable over the whole density
range.

To gauge the dependence upon the MIT bag model parameters we have
repeated the calculations setting B = 120 MeV /fm? and a, = 0. The results
of Fig. 6.5 show that for o in the range 2 — 5 MeV /fm? the mixed phase
is energetically favorable over a density region larger than the coexistence
region predicted by the Maxwell construction.

Finally, we return to the problem of the comparison between the Debye
screening length and the typical size of the structures appearing in the mixed
phase. The results of theoretical calculations suggest that the conditions
outlined in the work of Heiselberg et al. are indeed fulfilled. For example,
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Figure 6.5: Same as in Fig. 6.4, but with oy = 0 and B = 120 MeV /fm3. The
solid lines show to the difference A, = e(o) — €(0) (see Eq.(6.24)), evaluated for
o =5 and 2 MeV/fm3, respectively.

in the case B = 200 MeV/fm® and o, = 0.5, in the region of x < 1,
corresponding to formation of droplets of quark matter, the droplets radius
given by Eq. (6.20) is ~ 2 — 3 fm.

6.3 Implications for neutron star structure

Plugging the EOS P = P(€) into the Tolman Oppenheimer Volkoff (TOV)

equations
dP(r) _ ¢ [e(r) + P(r)] [M(r) + 47r?P(r)]

6.25
dr r2[1 —2GM(r)/r] ’ (6.25)
where G denotes the gravitational constant, and
M(r) = 47r/ rdr'e(r') (6.26)
0

one can obtain the properties of the stable configurations of a nonrotating
neutron star. Eqs.(6.25) and (6.26) are solved by integrating outwards with
the initial condition €(r = 0) = ¢.. For any given value of the central density,
€., the star radius R is determined by the condition P(R) = 0 and its mass
M = M(R) is given by Eq.(6.26).

The occurrence of the transition to quark matter makes the EOS softer,
thus leading to a lower value of the maximum mass. In Fig. 6.6 the mass-
central energy density relations obtained using the NMBT nuclear matter
EOS only is compared to that obtained allowing for a transition to quark
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matter with ag; = 0.5 and B = 120 and 200 MeV/fm®. The transition is
described according to Gibbs conditions, neglecting surface and Coulomb
effects. Calculations yield M,,,, = 2.20 My for the star made of nuclear
matter only and M,,,,, = 1.89 and 2.03 M, for the hybrid stars corresponding
to B = 120 and 200 MeV /fm?, respectively.

In Fig. 6.6 the M(e.) curves obtained setting B = 120 MeV /fm? and
as = 0 and adopting either the Gibbs or Maxwell picture are also compared.
Whether the phase transition proceeds through the appearance of a mixed
phase or through coexistence of charge-neutral phases does not appear to
significantly affect the mass-central energy density relation. On the other
hand, neglecting perturbative gluon exchange results in a rather low maxi-
mum mass, M. ~ 1.4 Mg, barely compatible with the measured neutron
star masses.
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Figure 6.6: Relation between neutron star mass and central energy density for dif-
ferent EOS. Dotdash line: pure nuclear matter (NMBT); dotted lines: nuclear mat-
ter (NMBT) and quark matter (MIT bag model with B = 120 and 200 MeV /fm3
and as; = 0.5). The phase transition is described according to Gibbs rules; solid
line: same as the dotted line, but with B = 120 MeV /fm3 and a, = 0.5; dashed
line: same as the solid line, but with the phase transition described using Maxwell
construction.

The neutron star mass-radius relations associated with the M (e.) curves
of Fig. 6.6, displayed in Fig. 6.7, show that in this case using the Maxwell
construction instead of Gibbs rules produces a visible effect. However, all
EOS predict the existence of stable star configurations with masses in the
range allowed by observation, as well as a M(R) relation compatible with
that resulting from the gravitational red shift measurement of Cottam et al..

Fig 6.8 shows that different descriptions of the phase transition lead to
remarkably different star density profiles. While in the presence of the mixed
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Figure 6.7: Mass radius relation for different EOS. The meaning of the curves is
the same as in Fig. 6.6. The horizontal lines correspond to the observational limits
on neutron star mass, whereas the third straight line is the mass-radius relation
resulting from the gravitational redshift measurement of Cottam et al.

phase the density is a smooth function of the distance from the star center,
the Maxwell construction leads to the appearance of a disontinuity. For
comparison, the profile of a star of the same mass, ~ 1.4 M, made of pure
nuclear matter described by the NMBT EQOS is also shown.

The discontinuous behavior can be easily understood noting that TOV
equations (6.25) and (6.26) require that the pressure P(r) be a monotonically
decreasing function. It follows that if the pressure is the same for two different
values of density, as in the phase transition in the Maxwell construction, they
must necessarily correspond to the same value of r.

In the coexisting phases scenario, the transition only takes place in stars
whose central density exceeds the density of the quark matter phase. These
star configurations turn out to be marginally stable, their mass being close
to the maximum mass. For example, setting B = 200 MeV /fm® and o, = 0.5
the transition only occurs in stars having mass ~ 2.0M. The radius of the
quark matter core is small (~ 1 Km), while the density jump is large, going
from 1.8 x 10%° g/cm? to 3.9 x 10%® g/cm?®. These results are to be compared
with those obtained in the mixed phase scenario when Coulomb and surface
effects are neglected. In this case there is no jump and the density varies
smoothly. At the center of a star of mass ~ 2.0M,, corresponding to energy-
density ~ 2.4 x 10 g/cm? the volume fraction occupied by quark matter
reaches x ~ 30 %.
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Figure 6.8: Density profiles of a neutron star of mass ~ 1.4 M, resulting from
different models. Dashed line: APR EOS and MIT bag model EOS with a; =0
and B = 120 MeV /fm3. Phase transition described allowing for the presence of
the mixed phase. Solid line: same as the solid line, but with the phase transition

described according to Maxwell construction. Dotdash line: pure nuclear matter
with APR EOS.



Appendix A

Many-body perturbation theory

Let us consider N spin 1/2 particles whose dynamics is described by the

hamiltonian

N N

i=1 j>i=1
where K; and v;; are the kinetic energy operator and the interaction potential,
respectively.

The above equation can be rewritten introducing a single particle poten-

tial U providing a reasonable independent particle model description of the
system (for example the nuclear shell model). The new expression reads

with
N N
Hy = Z(KZ +U;) = th’ ; (A.3)
i=1 i=1
and
N N
j>i=1 i=1

Let us define the matrix elements

(r|U|m) = / dzy 6} (21)Us b (21) (A5)

(rs|lvlmn) = /d:rlde qﬁl(xl)qﬁl(xg)vlmm(xl)(/ﬁn(xg) , (A.6)

where z; = (r1, 0;), the integration includes the sum over the spins and the
¢;’s are solutions of the one-body Schrodinger equation

hlgi) = €| i) - (A.7)

93



94 APPENDIX A. MANY-BODY PERTURBATION THEORY

We can rewrite the hamiltonian of Eq. (A.1) as an operator acting in the
hilbert space whose state vectors are specified by the set of the occupation
number of the eigenstates of h. Denoting a! and a; the fermion operators
that create and annihilate a particle in the state ¢ we find

H, = Z {r|h|m) ala,, = Z €ma am (A.8)

and
H, = Z (rslv|mn) alala,a, — Z (r|U|m) alamy, . (A.9)

Note the first sum in Eq. (A.8) includes all distinct matrix elements *

Go = al¢ (A.10)

pdp

!The matrix element (rs|v|mn) is distinct from (rs|v|nm) but not from (sr|v|nm)



Appendix B

The one pion exchange potential

Let us consider the process depicted in Fig. 4.2. The corresponding
S-matrix element reads

m2

(E1EyEy Ey)

Sy = (—iQ)Q 1/2 (27)45(4) (p1 +p2 —pv — p)

_ . (4 _ .
X 7]1-/’7'7]1 U11275U1m77;7'7]2 U 17Y5U2 (Bl)

where m, is the pion mass, K = p; — p» and 7; denotes the two-component
Pauli spinor describing the isospin state of particle i. Equation (B.1) can be
rewritten in the form

m2

E1E2E11E2/)

Sy = ig’ ( 7 (2m)'6“ (p1 + p2 — pr — p2)

1
k2 —m2’

™

X (71 Ta) Uy YsUaly Vst (B.2)

with (71 - T9) = 77%,7'772 nI,Tm.
Substituting the nonrelativistic limit

(Ey + m)1/2 (B2 + m)1/2 o -D2 o - Dy
ot Xs — X
2m S FEo+m S Eor+m

] U(pQ - p2’) (O’ ) k) Ys (B3)

s' 2m s 2m

Uy Y5y = Xs

~
~ —

—

5’
and the similar expression for % ysu; in the definition of Sy; and replacing
(use E; ~ Ey =~ m, and k* = (E; — Ey)? — |k|* = —k[?)

1 N 1
k? — m2 - k|2 +m2

(B.4)
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we obtain
gz
Sfi ~ —Z—(27T)45 (p1 +p2 —prr — P2') <7'1 : 7'2>

4m?
(o1 -k)(o2 - k)
X XLX; \k|2+m2 X2X1 (B-5)

The corresponding potential in momentum space is

g* (o1 -k)(o2-k)

vr(k) = T 4Am? K2+ m?2 TLT
fr\’ (o1-k)(05 - k)
= (m—ﬂ k2 T m72r T1°T2 (B6)
with ¢?/4m = 14 and

2 2

2 2 M (140)
= ~ 4 4—"——m =4 0.08 ~1 B.7
Jo =9 e R AT X WS Tgagye A X (B7)

The configuration space v™(r) is obtained from the Fourier transform:

f2 / d3k 1 ik
s — v . .k B ik-r
v = T e TR e K g ©
f72 d3k 1 —ik-r
= W T1 T901-V o9V 3 (k]2 +m2)e
1 2 —MrT
= Ef—g‘rl T20'1'V0'2'Ve . (BS)

The Laplacian of the Yukawa function,

e MaT d*k 1 -
=——=4 e B.
pelr) = =t / ST (B.9)

involves a d-function singularity at the origin, as can be easily seen from
(=V? 4+ m2) yp(r) = 476(r) . (B.10)

Gradients in Eq. (B.8) have to be evaluated taking this singularity into
account. For this purpose it is convenient to rewrite

1
01-V oy -Vy(r) = (Ul'V 0'2'V—§0'1'0'2 V2> Ya(r)

1
+ 50'1 coy V2 ye(r) (B.11)
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as the d-function contribution to V2y,(r) does not appear in the first term,
yielding

1
(0’1'VO’2'V—§ 0'1'0'2V2> y,r(r) (B12)

. .1 2_i_3m7r+3 ()
=|o1Toy T— -0 -0 m — | Yx(T),
1 2 39102 ™ ” 2 Y

where ¥ = r/|r|. The laplacian V?y,(r) in the second term of Eq. (B.11) can
be replaced with m2y,(r) — 4x 6(r) using Eq. (B.10).

Carrying out the calculation of the derivatives in Eq. (B.8) in this way
we find

11
v(r) = 34n fﬁ My T1-To [TW(T)SQ
Y, s B.13
+ ”(T)_m_g(r) o102 (B.13)
with B
e~ MxT
= B.14
Yo (r) o ( )
and
7o) = (14 ——+—_)v.(r) (B.15)
A mer mZrz) "7 ’

i.e. Egs. (4.30) and (4.31).
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Appendix C

The one gluon exchange

Let us consider
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