& 4 SAPIENZA

UNIVERSITA DI ROMA

Dottorato di Ricerca in Fisica
XXXII Ciclo

The Structure of Compact Stars
Spring 2017

Omar Benhar



II




Contents

Introduction

1 The structure of white dwarfs

1.1 Energy-density and pressure of the degenerate Fermigas ... ..........
1.2 Dynamical content of the equationofstate . . . . . ... ... ...........
1.3 Equation of state of the degenerate Fermigas . .. .................
1.4 Hydrostatic equilibrium and structure of whitedwarfs . . . . ... .. ... ...

1.5 Equilibrium equation in general relativity. . . . . . ... ... .. .. .......

Introduction to neutron stars

2.1 OULEIrCruSt . . . . o o o e e e e e e e e e e e e e e e e e e e e e e e
2.1.1 Inverse B-decay . . . . . . . oot
2.1.2 Neutronization . . ... ... . ... i

2.2 INNEercCrust . . . . . e e e e e e e e e e

The neutron star interior

3.1 Constraints on the nuclear matter EOS . . .. ... .................
3.2 Thenucleon-nucleoninteraction . ..........................
3.3 Thetwo-nucleonsystem . . . ... ... ... .. ... ...,
3.4 nonrelativistic many-bodytheory . . ... ... ... ... .. o L.

3.4.1 Thefew-nucleonsystems . . ... ... ..... ... ... . ......

10
11

14

17
19
20
22

27

29



v

CONTENTS

3.4.2 Nuclear matter

3.5 Relativistic mean field theory: the o — w model

4 Exotic forms of matter
4.1 Stability of strange hadronic matter
4.1.1 Hyperon interactions

4.2 Deconfinement and quark matter
4.2.1 The bag model

4.2.2 The equation of state of quark matter

5 Cooling mechanisms
5.1 Direct Urca process
5.1.1 Threshold of the direct Urca process
5.2 Modified Urca processes
5.2.1 Neutron branch
5.2.2 Proton branch

5.3 Neutrino bremsstrahlung in nucleon-nucleon collisions

Appendixes

A Derivation of the one-pion-exchange potential

B Neutron §-decay

C Basics of QCD thermodinamics

D Phase-space decomposition
D.1 Calculation of A

D.2 Calculation of I

82

85

89

93

95



CONTENTS v

Bibliography 100



CONTENTS




Introduction

Compact stars, i.e. white dwarfs, neutron stars and black holes, are believed to be the final stage
of stellar evolution. They are different from normal stars, the stability of which against gravitational
collapse is due to thermal pressure. In compact stars, the nuclear fuel necessary to ignite fusion reac-
tions leading to heat production is no longer available, and the pressure needed for hydrostatic equi-
librium is produced by different mechanisms, driven by quantum effects and interactions between
the constituents of matter in the star interior.

Compacts stars provide a unique laboratory to study the structure of matter under extreme condi-
tions, in which all known forces - gravitation, electromagnetism, weak and strong interactions - play
arole. Hence, understanding their properties is of paramount importance for both astrophysics and
fundamental physics.

In 1844, the german astronomer Friedrich Bessel deduced that the star called Sirius had an unseen
companion, which was first observed two decades later by Alvan Graham Clark and named Sirius B.
The mass of Sirius B was determined by applying Kepler’s third law to the orbit of the binary system,
while its radius was obtained in the 1920s from the equation describing blackbody emission, using
the measured spectrum and luminosity. The resulting values, M ~ 0.75-0.95 My (M, = 1.989x 103 g
denotes the mass of the sun) and R ~ 18800 Km, comparable to the radius of a planet 1 revealed that
Sirius B was a very compact object, of density reaching millions of g/cm3. In his book The Internal
Constitution of the Stars, published in 1926, Sir Arthur Eddington wrote: “we have a star of mass about
equal to the sun and radius much less than Uranus”. Sirius B is now known to belong to the class of
stellar objects called white dwarfs.

The observation of the first white dwarf triggered the early efforts aimed at understanding the
properties of matter at densities exceeding by many orders of magnitude the typical density of terres-
trial macroscopic objects (p ~ 20 g/cm?), the structure of which is mainly determined by electromag-
netic interactions. In contrast, at very large density the role of electromagnetic interactions becomes
negligible and the structure of matter is determined by quantum statistics and nuclear interactions.

The discovery, made by Chandrasekhar in 1931, of an upper bound to the mass of white dwarfs,
started the speculations on the fate of stars of mass exceeding the limiting value. Neutron stars, whose
existence is said to have been first discussed by Bohr, Landau and Rosenfeld right after the discov-
ery of the neutron, were predicted to occur in the aftermath of a supernova explosion by Baade and
Zwicky in 1934 [1] . Due to the large densities involved, up to ~ 10'° g/cm?, the theoretical description
of neutron star matter must take into account the full complexity of the dynamcs of strong interac-
tions, including the forces acting at nuclear and hadronic level, as well as the possible occurrence of

Note that this is about four times bigger than the value resulting from more recent measurements



2 Introduction

a core of deconfined quark matter. In addition, the effects predicted by Einstein’s theory of general
relativity, that play a negligible role in white dwarfs, in neutron stars become large.

These notes provide an introduction to the structure of matter at densities 10* < p < 10'° g/cm?,
typical of white dwarfs and neutron stars. The focus will mainly be on the density region p > pg, where
po = 2.67 x 10'* g/cm? is the the central density of atomic nuclei, i.e. the largest density observed on
earth under ordinary conditions. Describing this region necessarily requires a significant amount
of extrapolation of the available empirical data on the properties of strongly interacting matter. In
addition, as the density exceeds ~ 2py, new form of matter, whose occurrence is predicted by the
fundamental theories of weak and strong interactions, may appear.

The classic references on the Physics of compact stars are the books of Shapiro and Teukolskii [2],
Glendenning [3] and Weber [4]. A number of aspects of the structure of matter at high density have
been also discussed in a somewhat more concise fashion by Leung [5].

These notes have been written using a system of units in which 7z = h/2n = ¢ = Kg = 1, where h, ¢
and Kp denote Plank’s constant, the speed of light and Boltzmann’s constant, respectively.



Chapter 1

The structure of white dwarfs

The formation of a star is believed to be triggered by the contraction of a self-gravitating hydrogen
cloud. As the density increases, the cloud becomes more and more opaque, and the energy released
cannot be efficiently radiated away. As a consequence, the temperature also increases, and eventually
becomes high enough (~ 6 x 107 K)to ignite the nuclear reactions turning hydrogen into helium:

p+p — Z*H+e +v+04MeV,
et+e” — y+1.0MeV,
2H+p - 3He+)f+5.5MeV,
SHe+3He — “He+2p+26.7MeV.

Note that the above reactions are all exothermic, and energy is released in form of kinetic energy of
the produced particles (1 MeV = 1.6021917 x 10~ erg). Equilibrium is reached as soon as gravitational
attraction is balanced by matter pressure.

When the nuclear fuel is exhausted the core stops producing heat, the internal pressure cannot be
sustained and the contraction produced by gravitational attraction resumes. If the mass of the helium
core is large enough, its contraction, associated with a further increase of the temperature, can then
lead to the ignition of new fusion reactions, resulting in the appearance of heavier nuclei: carbon and
oxygen. Depending on the mass of the star, this process can take place several times, the final result
being the formation of a core made of the most stable nuclear species, nickel and iron, at density ~
10'* g/cm3 (note that the central density of atomic nuclei, the highest density observable on earth,
is po = 2 x 10'* g/cm?). Even larger densities are believed to occur in the interior of neutron stars,
astrophisical objects resulting from the contraction of the iron core in very massive stars (M > 4 My).

If the star is sufficiently small, so that the gravitational contraction of the core does not produce
a temperature high enough to ignite the burning of heavy nucleij, it will eventually turn into a white
dwarf, i.e. a star consisting mainly of helium, carbon and oxygen.

The over 2000 observed white dwarfs have luminosity L ~ 1072 Lo, (Lo = 4 x 1033 erg s™! is the
luninosity of the sun) and surface temperature T ~ 10* K. The radius of many white dwarfs has been
determined from their measured flux, defined as

F(D) = (1.1)

AnD?’



The structure of white dwarfs

Nuclear fuel | Main products | Temperature | Density | Duration
(K] [g/cm3] | [yrs]

H He 6x107 5 7x10°

He GO0 2x108 700 5x10°

C 0, Ne, Mg 9x108 2x 10° | 600

Ne 0, Mg, Si 1.7x10° 4% 10° |1

0] Si, S 2.3x10% 107 0.5

Si Fe 4x10° 3x 107 | 0.0025

Table 1.1: Stages of nucleosynthesis for a star of mass ~ 25 M,

where D is the distance from the earth, obtained using the parallax method. Combining the above
equation to the equation describing black body emission

24
L=4noR°T;, (1.2)
one obtains
R= FD? (1.3)
- oT:" '

The measured values of mass and radius of three white dwarfs are given in Table 1.2. The cor-
responding average densities are ~ 107 g/cm?, to be compared to the typical density of terrestrial
macroscopic objects, not exceeding ~ 20 g/cm?3.

Mass Radius

(Mo] [Ro]
Sirius B 1.000+0.016 | 0.0084 +0.0002
Procyon B | 0.604 +0.018 | 0.0096 +0.0004
40 Eri B 0.501+0.011 | 0.0136+0.0002

Table 1.2: Measured mass and radius of three white dwarfs

The pressure required to ensure the stability of white dwarfs against gravitational collapse is pro-
vided by a gas of noninteracting electrons at very low temperature. The properties of this systems will
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be discussed in the following Sections,

1.1 Energy-density and pressure of the degenerate Fermi gas

Let us consider a system of noninteracting electrons uniformly distributed in a cubic box of vol-
ume V = 13. If the temperature is sufficiently low, so that thermal energies can be neglected, the
lowest quantum levels are occupied by two electrons, one for each spin state. Both electrons have
the same energy, i.e. they are degenerate. This configuration corresponds to the ground state of the
system. A gas of noninteracting electrons in its ground state is said to be fully degenerate. At higher
temperature, the thermal energy can excite electrons to higher energy states, leaving some of the
lower lying levels not fully degenerate.

As the electrons are uniformly distributed, their wave functions must exhibit translational invari-
ance. They can be written in the form

Wps(r) = Pp) s, (1.4)

where y is a Pauli spinor specifying the spin projection and

Pp(r) = \/g e'Pr, (1.5)

is an eigenfunctions of the the momentum, the generator of spacial translation, satisfying the peri-
odic boundary conditions (x, y and z denote the components of the vector r, specifying the electron
position)

Gp(x,y,2) =pp(x+nyL,y+nyL,z+n.L), (1.6)

where ny, ny,n; =0, £1, +2, .... The above equation obviously implies the relations (p = (px, py, pz) )
27Ny 2mny 27N,

Px=—L ,Py=—L y Pz = 7 1.7

which in turn determine the momentum eigenvalues.

Each quantum state is associated with an eigenvalue of the momentum p, i.e. with a specific
triplet of integers (., 1y, nz). The corresponding energy eigenvalue is (p* = p|* = p% + p3 + p3)
p? (2n)2 1

a 2M, \L 2Mme

€p (ns+ns+n), (1.8)
m, being the electron mass (12, =9.11 x 10728 g, or 0.511 MeV). The highest energy reached, called the
Fermi Energy of the system, is denoted by e, and the associated momentum, the Fermi momentum,
is pr = vV2meer.

The number of quantum states with energy less or equal to e can be easily calculated. Since each
triplet (ny, ny, n;) corresponds to a point in a cubic lattice with unit lattice spacing, the number of mo-
mentum eigenstates is equal to the number of lattice points within a sphere of radius R = prL/(27).
The number of electrons in the system can then be obtained from (note: the factor 2 takes into ac-
count spin degeneracy; i.e. the fact that there are two electrons with opposite spin projections sitting
in each momentum eigenstate) ,

N=2Z oy P (1.9)
3 3n?
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and the electron number density, i.e. the number of electrons per unit volume, is given by

3
N _pp
=—=—"L 1.10
e= 3.2 (1.10)
The total ground state energy can be easily evaluated from
2
E=2Y P (1.11)

P<Pr 2me

replacing (use (1.7) again and take the limit of large L, corresponding to vanishingly small level spac-
ing)
v 3

_ d3p 1.12)
p<ZpF (27-[)3 pP<pPr

to obtain , ,

V PF p 3 pF
E=2——14 2dp L— =N = —, 1.13
emd "y PP om, TN 5 om, (1.13)

The resulting energy density is
E 1 >

€= PE (1.14)

— = % 4 .
vV (©n)3 5m,

From Eq.(1.10) it follows that the Fermi energy can be written in terms of the number density

according to
2

1
er=TE = (3721, . (1.15)
2me  2me,

The above equation can be used to define a density ng such that for n, > ny the electron gas at given
temperature T is fully degenerate. Full degeneracy is realized when the thermal energy KgT (K3 is
the Boltzman constant: Kz = 1.38 x 10716 erg/K) is much smaller than the Fermi energy €r, i.e. when

_ 1 3/2
e >> g = — @2me Ky *'2 . (1.16)

For an ordinary star at the stage of hydrogen burning, like the Sun, the interior temperature is
~ 107 K, and the corresponding value of ng is ~ 1026 cm™3. If we assume that the electrons come from
a fully ionized hydrogen gas, the matter density of the proton-electron plasma is

p = (mp+me) ng ~ 200 g/cms, 1.17)

my, being the proton mass (m, = 1.67 x 1072 g). This density is high for most stars in the early stage
of hydrogen burning, while for ageing stars that have developed a substantial helium core the density
(m;, denotes the neutron mass: my =~ my).

p = (mp+ mp+ me) ng ~400 g/crn3 (1.18)

can be largely exceeded within the core. For example, white dwarfs have core densities of the order of
107 g/cm?. As a consequence, in the study of their structure thermal energies can be safely neglected,
the primary role being played by the degeneracy energy p?/2ms,.
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The pressure P of the electron gas, i.e. the force per unit area on the walls of the box, is defined
in kinetic theory as the rate of momentum transferred by the electrons colliding on a surface of unit
area. Consider first one dimensional motion along the x-axis. The momentum transfer associated
with the reflection of electrons carrying momentum p, off the box wall during a time d ¢ is

dp 1
dtx =35 @2p) x (evyL?) . (1.19)
In the above equation, the second factor is the momentum transfer associated with a single electron,
while the third factor is the electron flux, i.e. the number of electrons hitting the wall during the time
dt. The factor 1/2 accounts for the fact that half of the electrons go the wrong way and do not collide
with the box wall. The resulting pressure is

dpx Ne P;Zc

1
P(px) = ﬁ W =NePxVx = . . (1.20)

In the three dimensional case the electron carries momentum p = /p2 + pf, + p2 and we have to
repeat the calculation carried out for the x-projection of the momentum transfer. As the system is
isotropic

ps 1 1 1p
E:pxyng(vax"‘PyVy"‘szz):g(p'V)Zg—e, (1.21)
and Eq.(1.20) becomes
P =2 mepry == 1N P (1.22)
3 3V me

The pressure can therefore be obtained averaging over all momenta. We find (as usual, the factor
2 accounts for the two possible spin projections)

1 2 1 2%
P==2Y Pp==—=4 d =
N 2,2, PP =5 Gy v [ parew

Py

e 1.23
1572 m, (1-23)

Note that the above result can also be obtained from the standard thermodynamical definition of
pressure
P=- (G—E) (1.24)
— lav)y’ '
using E given by Eq.(1.13) and (0pgr/0V)y = —pr/(3V).

Eq.(1.23) shows that the pressure of a degenerate Fermi gas decreases linearly as the mass of the
constituent particle increases. For example, the pressure of an electron gas at number density 7, is
~ 2000 times larger than the pressure of a gas of nucleons, neutrons and protons, at the same number
density.

So far, we have been assuming the electrons in the degenerate gas to be nonrelativistic. However,
the properties of the system depend primarily on the distribution of quantum states, which is dictated
by translation invariance only, and is not affected by this assumption. Releasing the nonrelativivstic
approximation simply amounts to replace the nonrelativistic energy with its relativistic counterpart:

pz
—\/pE+mi-—m,. (1.25)
2me
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The transition from the nonrelativistic regime to the relativistic one occurs when the electron energy
becomes comparable to the energy assciated with the electron rest mass, mi,. It is therefore possible
to define a density n, such that at n, <« n. the system is nonrelativistic, while n, > n. corresponds
to the relativistic regime. The value of n, can be found requiring that the Fermi energy at n, = n. be
equal to m,. The resulting expression is

23/2

_ 3 30. -3
nc—ﬁ m,~1.6x10"cm . (1.26)

The energy density of a fully degenerate gas of relativistic electrons can be obtained from (com-

pare to Egs.(1.13) and (1.14))
\/p2+m§—me] ) (1.27)

while the equation for the pressure reads (compare to Eq.(1.23) and use again v = d¢,,/dp with rela-
tivistic € p)

2 14 szd
Crem )y PP

2 1 pr aep)
== 4 dp [p=2] . 1.28
3 )y P p(p ap (1.28)

Carrying out the integrations involved in Eqgs.(1.27) and (1.28) we find:

3
6=%[t(2t2+1)\/t2+1—ln(t+\/t2+l)—8?t , (1.29)
e

and
1
P:”;’e [§t(2t2—3)\/t2+1+1n(t+\/t2+1) : (1.30)
e
where A, =27/ mec is the electron Compton wavelength and (see Eq.(1.15))
1
r=PE =~ (3n%n,)". (1.31)
me Me

Egs.(1.29) and (1.30) give the energy density and pressure of a fully degenerate electron gas as a func-
tion of the variable ¢, which can in turn be written in terms of the number density n, according to
Eq.(1.31).

As a final remark, we briefly discuss the possible relevance of electrostatic interactions. In a fully
ionized plasma their effect can be estimated noting that the corresponding energy is

2

e
Ec=2mcx Ze*nl3, (1.32)

where Ze is the electric charge of the ions and (r) < n}/? is the typical electron-ion separation dis-

tance. It follows that the ratio between E, and the Fermi energy is given by

E 1
= x — - (1.33)
€F N,

The above equation shoes that, for sufficiently high density, the contribution of electrostatic interac-
tions becomes negligibly small. As this condition is largely satisfied at the densities typical of white
dwarfs, electrons can be safely described as a fully degenerate Fermi gas.



1.2 Dynamical content of the equation of state 9

1.2 Dynamical content of the equation of state

The equation of state (EOS) is a nontrivial relation linking the thermodynamic variables specify-
ing the state of a physical system. The best known example of EOS is Boyle’s ideal gas law, stating that
the pressure of a collection of N noninteracting, pointlike classical particles, enclosed in a volume V,
grows linearly with the temperature T and the average particle density n= N/V.

The ideal gas law provides a good description of very dilute systems. In general, the EOS can be
written as an expansion of the pressure, P, in powers of the density (from now on we use units such
that Boltzmann’s constant is K = 1):

P=nT [1+nB(T)+n*C(T)+...] . (1.34)

The coefficients appearing in the above series, that goes under the name of virial expansion, are func-
tions of temperature only. They describe the deviations from the ideal gas law and can be calculated
in terms of the underlying elementary interaction. Therefore, the EOS carries a great deal of dynam-
ical information, and its knowledge makes it possible to establish a link between measurable macro-
scopic quantities, such as pressure or temperature, and the forces acting between the constituents of
the system at microscopiclevel.

400
300 —
= 200
> [
100 —

0
—|Uglf-----m--m-

0 S I AN Y
00 05 1.0 15 =20 25

«
o

Figure 1.1: Behavior of the potential describing the interactions between constituents of a van der
Waals fluid (the interparticle distance r and v(r) are both given in arbitrary units).

This point is best illustrated by the van der Waals EOS, which describes a collection of particles
interacting through a potential featuring a strong repulsive core followed by a weaker attactive tail
(see Fig.1.1). At |Upl/ T << 1, Uy being the strength of the attractive part of the potential, the van der

Waals EOS takes the simple form

nT 2
= —an”, 1.35
1-nb ( )

and the two quantities a and b, taking into account interaction effects, can be directly related to the
potential v(r) through [6]

* 2 16 3
aznf lv(Nlredr , b= 370 (1.36)
2

o



10 The structure of white dwarfs

where 2ry denotes the radius of the repulsive core (see Fig.1.1).
In spite of its simplicity, the van der Waals EOS describes most of the features of both the gas and
liquid phases of the system, as well as the nature of the phase transition.

1.3 Equation of state of the degenerate Fermi gas

Equation (1.30) is the EOS of the degenerate electron gas, providing a link between its pressure P

and the matter density p, which is in turn related to the electron number density n, through
p= My e, (1.37)
Y,

where Y, is the number of electrons per nucleon in the system. For example, for a fully ionized helium
plasma Y, = 0.5, whereas for a plasma of iron nuclei Y, = Z/A = 26/56 = 0.464 (Z and A denote the
nuclear charge and mass number, respectively).

The EOS of the fully degenerate electron gas takes a particularly simple form in the nonrelativistic
limit (corresponding to ¢ <« 1), as well as in the extreme relativistic limit (corresponding to ¢ > 1).
From Eq.(1.30) we find

8 ame (372" )3

"5 (m—p) p°3 . (1.38)
for er <« m, and

_2 anme (3”2Ye)4/3 413 (1.39)

3 23 \m, ’ '
for er > m,.
A EOS that can be written in the form
Pxp', (1.40)

is said to be polytropic. The exponent I' is called adiabatic index, whereas the quantity n, defined
through

1
r=1+-—, (1.41)
n

goes under the name of polytropic index.
The adiabatic index, whose definition for a generic equation of state reads

= d (InP)

=7 (Unp) (1.42)

is related to the compressibility y, characterizing the change of pressure with volume according to

l__V(a_P) _ (a_P) (1.43)
X VN P oply - .
through
1
=—. (1.44)
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The compressibility is also simply related to speed of sound in matter, cs, defined as

aP\V2 4
s = (—) =—. (1.45)
op xp
The magnitude of the adiabatic index reflects the so called stiffnes of the equation of state. Larger

stiffness corresponds to more incompressible matter. As we will see in the following lectures, stiffness
turns out to be critical in determining a number of stellar properties.

1.4 Hydrostatic equilibrium and structure of white dwarfs

Let us assume that white dwarfs consist of a plasma of fully ionized helium at zero temperature.
The pressure of the system, P, is provided by the electrons, the contribution of the helium nuclei being
negligible due to their large mass. For any given value of the matter density p, P can be computed
from Egs.(1.30) and (1.31) (in this case Y, = 0.5, implying n, = p/2m). The results of this calculation
are shown by the diamonds in fig. 1.2. For comparison, the nonrelativistic (Eq.(1.38)) and extreme
relativistic (Eq.(1.39)) limits are also shown by the solid and dashed line, respectively. Note that the
value of matter density corresponding to n. defined in Eq.(1.26) is p ~ 6.3 10° g/cm3.

28

[ ¢ He matter
26 ---P o« p#/3

24 F

22 F

logyo P [dY/sz]

20 F

VI ) AN SN I S A R

logo p [g/cms]

Figure 1.2: Equation of state of a fully ionized helium plasma at zero temperature (diamonds). The
solid and dashed line correspond to the nonrelativistic and extreme relativistic limits, respectively.

In order to show the sensitivity of the EOS to the value of Y, in Fig. 1.3 the EOS of the fully ionized
helium plasma (Y, = 0.5) is compared to that of a hydrogen plasma (Y, = 1).

The surface gravity of white dwarfs, GM/R (G is the gravitational constant), is small, of order
~ 107, Hence, their structure can be studied assuming that they consist of a spherically symmetric
fluid in hydrostatic equilibrium and neglecting relativistic effects.

Consider a perfect fluid in thermodynamic equilibrium, subject to gravity only. The Euler equa-

tion can be written in the form 3
v

1
6t+(v-V)v:—;VP—V¢), (1.46)
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logyo P [dy/cm®]

6
logi p [g/cm?]

Figure 1.3: Comparison between the EOS of a fully ionized plasma of helium (solid line) and hydro-
gen (dashed line).

where p is the density and ¢ is the gravitational potential, satisfying Poisson’s equation

Vz(/) =4nGp .

(1.47)

Eq.(1.46) describes the motion of a fluid in which processes leading to energy dissipation, occurring
due to viscosity (i.e. internal friction) and heat exchange between different regions, can be neglected.

For a fluid at rest (i.e. for v=0), it reduces to
VP=-p(V¢).
For a spherically symmetric fluid, Egs. (1.47) and (1.48) become

ap__ do

dar pdr

1d(, d¢)
— == | =4nGp.
r2dr (r dar nGp

Substitution of Eq. (1.49) in Eq. (1.50) yields

’

and

1 d (r2 dP) G
— | — — | =47 R
r2dr\p dr p
implying
P __ . GM()
ar P 2

with M(r) given by
.
M(r) =4nf p(rr'?dr' .
0

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)
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The above result simply state that, at equilibrium, the gravitational force acting on an volume
element at distance r from the center of the star is balanced by the force produced by the spacial
variation of the pressure.

Given a EOS, Eq.(1.52) can be integrated numerically for any value of the central density p. to
obtain the radius of the star, i.e. the value of r corresponding to vanishingly small density. The mass
can then be obtained from Eq.(1.53).

1.50

1.25

1.00

M/Me

0.75

0.50

[P I PN IV O

0.25

Erii

Cnnd v vl il

0.00
102 108 107 108 109 1010

logip pe [g/cma]

Figure 1.4: Dependence of the mass of a white dwarf upon its central density, obtained from the
integration of Eq.(1.52) using the equation of state of a fully ionized helium plasma.

For polytropic EOS Egs.(1.52) and (1.53) reduce to the Lane-Emden equation, whose integration
with the polytropic index n = 3/2, corresponding to the non relativistic regime, yields the relation

(1.54)

_ % (&)I/ZMO ’

where p denotes the matter density corresponding to the electron number density of Eq.(1.26). The
resulting values of M agree with the results of astronomical observations of white dwarfs. However, it
is very important to realize that Lane-Emden equation predicts the existence of equilibrium configu-
rations for any values of the star mass.

In 1931 Chandrasekhar pointed out that, due to the large Fermi enegies, the non relativistic treat-
ment of the electron gas was not justified [7]. Replacing the EOS of Eq.(1.38) with its relativistic coun-
terpart, Eq.(1.39), he predicted the existence of a maximum mass for white dwarfs. If the mass exceeds
this limiting value gravitational attraction prevails on the pressure gradient, and the star becomes un-
stable against gravitational collapse.

The dependence of the mass of a white dwarf upon its central density, obtained from integration
of Eq.(1.52) using the equation of state of a fully ionized helium plasma, is illustrated in Fig.1.4. The
figure shows that the mass increases as the central density increases, until a value M ~ 1.44 My, is
reached at pg ~ 10!° g/cm3. This value is close to the one found by Chandrasekhar. However, as we
will see in Chapter 2, at p ~ 108 g/cm® the neutronization process sets in, and the validity of the
description in terms of a helium plasma breaks down. At p = 108 g/cm®, matter does not support
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pressure as effectively as predicted by the equation of state of the helium plasma. As a consequence,
a more realistic estimate of the limiting mass, generally referred to as the Chandrasekhar mass, is
given by the mass corresponding to a central density of 108 g/cm3, i.e. ~ 1.2 M.

1.5 Equilibrium equation in general relativity
The Newtonian equilibrium equation employed in the case of white dwarfs represents a good

approximation when the matter density does not produce an appreciable space-time curvature, in
which case the metric is simply given by

ds* =ndxtdx", (1.55)
with
-1 00 0
0 100
= o 0 1 o (1.56)
0 001

In Einstein’s theory of general relativity, Eq.(1.55) is repalced by
ds® = gudxtdx”, (1.57)

where the metric tensor g,y is a function of space-time coordinates.

The effects of space-time distortion are negligible when the surface gravitational potential fulfills
the requirement GM/R < 1. This condition is satisfied by white dwarfs, having GM/R ~ 107, but
not by neutron stars, to be discussed in the following Chapters, whose larger density leads to much
higher values of GM/R, typically ~ 107,

Relativistic corrections to the hydrostatic equilibrium equations (1.52) and (1.53) are obtained
solving Einstein’s field equations

Guv =81G Ty, (1.58)

where T,y is the energy-momentum tensor and the Einstein’s tensor G, is defined in terms of the
metric tensor g, describing space-time geometry. Equations (1.58) state the relation between the
distribution of matter, described by T}, and space-time curvature, described by g,y.

Consider a star consisting of a static and spherically simmetric distribution of matter in chemical,
hydrostatic and thermodynamic equilibrium. The metric of the corresponding gravitational field can
be written in the form (x° = £, x! = 1, x*> =0, x> = @)

ds* = gudxtdx" = 2V g2 — A0 g2 _ 12(de% + sin®0dg?), (1.59)
implying
e?V(") 0 0 0
0 -e** o 0
81 o 0o -2 0 ! (1.60
0 0 0 -—r%sin%@

v(r) e A(r) being functions to be determined solving Einstein’s equations
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Under the standard assumption that matter in the star interior behave as an ideal fluid, the energy-

momentum tensor can be written in the form
Tyv =€+ Puyuy—Pgyuy,

where € and P denote energy density and pressure, respectively, while

dx
uy=—==("",00,0,

is the local four-velocity.
The Einstein tensor Gy, given by

1
G,uv = R,LW - Eg;WR )

with
R = gIJVR/JV )

depends on g, through the Christoffel symbols
)
w = Eg (apv + gav,u+ guv,a) »
appearing in the definition of the Ricci tensor Ry,
Ryy =Ty =Ty q =T T+ T%The

From Eqgs.(1.66) and (1.59) it follows that the nonvanishing elements of R, are

/
Ry = —V”+/1/V’—(V’)2—2—V eZ(v—}L)
r
20
Ry = V' -AV+0)2-=,
r
Ry = (1+rv—rA)e -1,
R33 = RggsinZB,
implyin
P " 10 N2 2 4V 4 —2A 2
R=|-2v"+20V -2V - S+ —-— e+ 5.
r r r r

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

Substitution of Egs.(1.61),(1.67) and (1.68) into Eqgs.(1.58) leads to the system of differential equations

1 Y 1
S - le? - = 8nGen),
r2 r r2
1 2V L, 1
ﬁ+7 e —ﬁ = —87TGP(T),
Y
VI+ W2 =AW + et = _8aGP(r),
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where e(r) and P(r) denote the space distribution of energy density and pressure, respectively.
The above equation can be cast in the form originally derived by Tolman, Oppenheimer and Vol-
foff (TOV) [8, 9]

dP(r GM(r P r 47rr3P r 2GM(r) |~
()=_€() () (r) () B (r) (1.69)
dar e(r) M(r)
with
dM(r) 9
=4nre(r). (1.70)
dar

The first term in the right hand side of Eq.(1.69) is the newtonian gravitational force. It is the same
as the one appearing in Eq.(1.52), but with matter density replaced by energy density. The first two
additional factors take into account relativistic corrections, that become vanishingly small in the limit
pr/m — 0, m and pr being the mass and Fermi momentum of the star constituents, respectively.
Finally, the third factor describes the effect of space-time curvature. Obviously, in the nonrelativistic
limit Eq.(1.69) reduces to the classical equilibrium equation (1.52).



Chapter 2

Introduction to neutron stars

The temperatures attained in stars with initial mass larger than ~ M, are high enough to bring
nucleosynthesis to its final stage (see Table 1.1), i.e. to the formation of a core of 56 Fe. If the mass of
the core exceeds the Chandrasekhar mass, electron pressure is no longer sufficient to balance gravi-
tational contraction and the star evolves towards the formation of a neutron star or a black hole.

The formation of the core in massive stars is characterized by the appearance of neutrinos, pro-
duced in the process

56 n7; _, 56 +
Ni — °Fe+2e" +2v,. 2.1)

Neutrinos do not have appreciable interactions with the surrounding matter and leave the core re-
gion carrying away energy. Thus, neutrino emission contributes to the collapse of the core. Other
processes leading to a decrease of the pressure are electron capture

e +p — n+v,, (2.2)

the main effect of which is the disappearance of electrons carrying large kinetic energies, and iron
photodisintegration
Y+ Fe — 13*He+4n, (2.3)

which is an endothermic reaction.

Due to the combined effect of the above mechanisms, when the mass exceeds the Chandrasekhar
limit the core collapses within fractions of a second to reach densities ~ 101* g/cm3, comparable with
the central density of atomic nuclei.

At this stage the core behaves as a giant nucleus, made mostly of neutrons, and reacts elestically to
further compression producing a strong shock wave which trows away a significant fraction of matter
in the outher layers of the star. Nucleosynthesis of elements heavier than Iron is believed to take place
during this explosive phase.

The above sequence of events leads to the appearance of a supernova, a star the luminosity of
which first grows fast, until it reaches a value exceeding sun luminosity by a factor ~ 10%, and then
descreases by a factor ~ 10? within few months. The final result of the explosion of the formation of a
nebula, the center of which is occupied by the remnant of the core, i.e. a neutron star.

The existence of compact astrophysical objects made of neutrons was predicted by Bohr, Landau
and Rosenfeld shortly after the discovery of the neutron, back in 1932. In 1934, Baade and Zwicky
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first suggested that a neutron star may be formed in the aftermath of a supernova explosion. Finally,
in 1968 the newly observed pulsars, radio sources blinking on and off at a constant frequency, were
identified with rotating neutron stars.

The results of a pioneering study, carried out in 1939 by Oppenheimer and Volkoff within the
framework of general relativity (i.e. using the equilibrium equations discussed in Section 1.5), show
that the mass of a star consisting of noninteracting neutrons cannot exceed ~ 0.8 M. The fact that
this maximum mass, the analogue of the Chandrasekhar mass of white dwarfs, turns out to be much
smaller that the observed neutron star masses (typically ~ 1.4 M) clearly shows that neutron star
equilibrium requires a pressure other than the degeneracy pressure, the origin of which has to be
ascribed to hadronic interactions.

Unfortunately, the need of including dynamical effects in the EOS is confronted with the com-
plexity of the fundamental theory of strong interactions. As a consequence, all available description
of the EOS of neutron star matter are obtained within models, based on the theoretical knowledge of
the underlying dynamics and constrained, as much as possible, by empirical data.

The internal structure of a neutron star, schematically illustrated in Fig. 2.1, is believed to feature
a sequence of layers of different composition and density.

inner crust (~ 0.5 Km) outer crust (~ 0.3 Km)
nuclei + n + e~ nuclei + e~

¢

uniform nuclear matter
n+p+e +u

p=2x10" g/cm?

,l_')’=‘4»><1(:)11 g/cma * R~ 10 Km —=

Figure 2.1: Schematic illustration of a neutron star cross section. Note that the equilibrium density
of uniform nuclear matter corresponds to ~ 2 x 10'*g/cm?3.

The properties of matter in the outer crust, corresponding to densities ranging from ~ 107 g/cm3
to the neutron drip density p; = 4 x 10" g/cm3, can be obtained directly from nuclear data. On the
other hand, models of the EOS at 4 x 10! < p <2 x 10! g/cm?® are somewhat based on extrapolations
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of the available empirical information, as the extremely neutron rich nuclei appearing in this density
regime are not observed on earth.

The density of the neutron star core ranges between ~ pg (= 2.67 x10'* g/cm?) at the boundary
with the inner crust, and a central value that can be as large as 1+ 4 x 10*® g/cm3. All models of
EOS based on hadronic degrees of freedom predict that in the density range po < p < 2po neutron star
matter consists mainly of neutrons, with the admixture of a small number of protons, electrons and
muons. At any given density the fraction of protons and leptons is determined by the requirements
of equilibrium with respect to f-decay and charge neutrality.

This picture may change significantly at larger density with the appearance of heavy strange
baryons produced in weak interaction processes. For example, although the mass of the X~ exceeds
the neutron mass by more than 250 MeV, the reaction n+ e~ — X~ + v, is energetically allowed as
soon as the sum of the neutron and electron chemical potentials becomes equal to the X~ chemical
potential.

Finally, as nucleons are known to be composite objects of size ~ 0.5 - 1.0 fm, corresponding to
a density ~ 10" g/cm3, it is expected that if the density in the neutron star core reaches this value
matter undergoes a transition to a new phase, in which quarks are no longer clustered into nucleons
or hadrons.

The theoretical description of matter in the outer and inner neutron star crust will be outlined in
the following Sections, whereas the region corresponding to supranuclear density will be described
in Chapter 3.

2.1 Outer crust

A solid is expected to form when the ratio of Coulomb energy to thermal energy becomes large,
i.e. when

72¢e?
I'=—>1, (2.4)
Try,
with ry defined through
4nr2
L L, (2.5)

n; being the number density of ions. If the condition (2.4) is fulfilled Coulomb forces are weakly
screened and become dominant, while the fluctuation of the ions is small compared to average ion
spacing rr. From (2.4) it follows that a solid is expected to form at temperature

2.2

T<T,=2% « Z2enll? . 2.6)

L
For example, in the case of °®Fe at densities ~ 107 g/cm? solidification occurs at temperatures below
102 °K and Coulomb energy is minimized by a Body Centered Cubic (BCC) lattice. As the density fur-
ther increases, r; decreases, so that the condition for solidification continues to be fulfilled. However,
as matter density advances into the density domain, 107 - 10'! g/cm?, the large kinetic energy of the
relativistic electrons shifts the energy balance, favouring inverse -decay (i.e. electron capture) that
leads to the appearance of new nuclear species through sequences like

Fe— Ni— Se— Ge. 2.7)
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This process is called neutronization, because the resulting nuclide is always richer in neutron con-
tent than that initial one.

Before going on with the analysis of the neutronization process in the neutron star crust, we will
duscuss a simple but instructive example, that will allows us to introduce some concepts and proce-
dures to be used in the following Sections.

2.1.1 Inverse -decay

Consider a gas of noninteracting protons and electrons at T = 0. The neutronization process is
due to the occurrence of weak interactions turning protons into neutrons through

pte —n+ve. (2.8)

Assuming neutrinos to be massless and non interacting, the above process is energetically favorable
as soon as the electron energy becomes equal to the neutron-proton mass difference

Am = my, —my =939.565—-938.272 = 1.293 MeV . (2.9

As a consequence, the value of n, at which inverse f-decay sets in can be estimated from
\/ Pz +ms=Am, (2.10)

pr, = B’ ne)’3, @2.11)

where (see Section 1.1)

leading to
1

ne= 3 (Am? - m2)*® x7x10¥cm™3 . (2.12)
The corresponding mass density for a system having Y, ~ 0.5, is p = 2.4 x 107 g/cm3.

Now we want to address the problem of determining the ground state of the system consisting
of protons, electrons and neutrons, once equilibrium with respect to the inverse -decay of Eq. (2.8)
has been reached. All interactions, except the weak interaction, will be neglected. Note that process
(2.8) conserves baryon number Np (i.e. the baryon number density ng) and electric charge.

For any given value of np, the ground state is found by minimization of the total energy density
of the systems, €(ny, ny, ne), np and ny, being the proton and neutron density, respectively, with the
constraints ng = ny, + ny (conservation of baryon number) and n, = n, (charge neutrality).

Let us define the function

F(np, Ny, ne) = €(Np, np, Ne) + Ag (ng — np — np) + Ao (np — ne) (2.13)

where ¢ is the energy density, while Ap and A are Lagrange multipliers.
The minimum of F corrisponds to the values of n,, n, and n, satisfying the conditions

OF _ OF oF
on, on, ' on,

0 (2.14)
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as well as the aditional costraints

OF  OF 2.15)
oA 0lg '
From the definition of chemical potential of the particles of species i (i = p, i, e)
._(GE) _(66) 2.16)
Hi= aNiV_ aniV '
it follows that Egs. (2.14) imply
/Jp—/13+/1Q=0, /Jn—/lB:O, /Je—/lQZO, (2.17)
leading to the condition of chemical equilibrium
Hn—Hp = He, (2.18)
where, in the case of noninteracting particles at T =0,
de 2 Opr.\ 0 PE
;= — = ! 4 dp\/p?+m?
Hi on; (2m)3 ( on; ) opr, ) P APV
_ 8w (omi 7 2 2_ [.2 2
= ors (ﬂ) ph P2+ m2=\[ph +m?. (2.19)
Defining now the proton and neutron fraction of the system as
n n
xp=b=—P =iy, (2.20)
ng np +n, ng
we can rewrite s s
PE, = PF, = (3n°xpnp) "~ , pr,=[37*(1-xp)np] "~ . (2.21)

For fixed baryon density, use of the above definitions in Eq. (2.19) and substitution of the resulting
chemical potentials into Eq. (2.18) leads to an equation in the single variable x,. Hence, for any given
np the requirements of chemical equilibrium and charge neutrality uniquely determine the fraction
of protons in the system.
Once the value of x, is known, the neutron, proton and electron number densities can be evalu-
ated and the pressure
P=P,+P,+P, (2.22)

can be obtained using Eq. (1.28).

Figure 2.1.1 shows the proton and neutron number densities, nj, and n, (recall that n, = n,) as a
function of matter density p. It can be seen that in the range 10° < p < 107 g/cm? there are protons
only and logn, grows linearly with logp. At p ~ 107 g/cm? neutronization sets in and the neutron
number density begins to steeply increase. At p > 107 n, stays nearly constant, while neutrons dom-
inate.

The equation of state of the -stable mixture is shown in the upper panel of Fig. 2.1.1. Its main
feature is that pressure remains nearly constant as matter density increases by almost two orders of
magnitude, in the range 107 < p < 109 g/cm3. The electron and neutron contributions to the pressure
are shown in the lower panel of Fig. 2.1.1. Note that, since charge neutrality requires n,=n,, the
proton pressure is smaller than the electron pressure by a factor (my/m,) ~ 2000.
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Figure 2.2: Number density of noninteracting protons and neutrons in $-equilibrium as a function
of matter density.

2.1.2 Neutronization

The description of B-stable matter in terms of a mixture of degenerate Fermi gases of neutrons,
protons and electrons is strongly oversimplified. In reality, electron capture changes a nucleus with
given charge Z and mass number A into a different nucleus with the same A and charge (Z—1). More-
over, the new nucleus may be metastable, so that two-step processes of the type

SoFe — 0Mn — 35Cr (2.23)
can take place. In this case, chemical equilibrium is driven by the mass difference between neighbor-
ing nuclei rather than the neutron-proton chemical potential difference.

The measured nuclear charge distributions and masses, p.;(r) and M(Z, A), exhibit two very im-
portant features

¢ The charge density is nearly constant within the nuclear volume, its value being roughly the
same for all stable nuclei, and drops from ~ 90 % to ~ 10 % of the maximum over a distance Rt
~ 2.5 fm (1 fm = 10x107!'3 cm), independent of A, called surface thickness (see Fig. 2.4). It can

be parametrized in the form
1

Pen()=po T D (2.24)

where R = roA” 3, with 7y = 1.07 fm, and D = 0.54 fm. Note that the nuclear charge radius is
proportional to A'/3, implying that the nuclear volume increases linearly with the mass number

A.
¢ The (positive) binding energy per nucleon, defined as

B(Z,A) 1
A A

[Zmp, + (A-Z)m, +Zm, - M(Z,A)] , (2.25)
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Figure 2.3: (A) Equation of state of a mixture of noninteracting neutrons, electrons and protons in
B-equilibrium. (B) Density dependence of the neutron (solid line) and electron (dashed line) contri-
butions to the pressure of 3-stable matter.
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where M(Z,A) is the measured nuclear mass, is almost constant for A= 12, its value being ~ 8.5
MeV (see Fig. 2.5).

The A and Z dependence of B(Z,A) can be parametrized according to the semiempirical-mass
formula

72 (A—27)2 1

BZA) 1
CA1/3 —aa 1A +A dpm 1. (2.26)

A 7l

avA — aSAZ/3 —a

The first term in square brackets, proportional to A, is called the volume term and describes the bulk
energy of nuclear matter. The second term, proportional to the nuclear radius squared, is associated
with the surface energy, while the third one accounts for the Coulomb repulsion between Z protons
uniformly distributed within a sphere of radius R. The fourth term, that goes under the name of sym-
metry energyis required to describe the experimental observation that stable nuclei tend to have the
same number of neutrons and protons. Moreover, even-even nuclei (i.e. nuclei having even Z and
even A — Z) tend to be more stable than even-odd or odd-odd nuclei. This property is accounted for
by the last term in the above equation, where A —1, 0 and +1 for even-even, even-odd and odd-odd
nuclei, respectively. Fig. 2.5 shows the different contributions to B(Z,A)/A, evaluated using Eq. (2.26).

The semi-empirical nuclear mass fomula of Eq. (2.26) can be used to obtain a qualitative descrip-
tion of the neutronization process. The total energy density of the system consisting of nuclei of mass
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Figure 2.4: Nuclear charge distribution of 2°8 Pb, normalized to Z/p(0) (Z = 82). The solid line has
been obtained using the parametrization of Eq. (2.24), while the diamonds represent the results of a
model independent analysis of electron scattering data.

number A and charge Z arranged in a lattice and surrounded by a degenerate electron gas is
npg
er(np,A2) = e+ (27| IMZA) +erl 2.27)

where €, is the energy density of the electron gas, Eq. (1.27), np and (ng/A) denote the number den-
sities of nucleons and nuclei, respectively, and €, is the electrostatic lattice energy per site. As a first
approximation, the contribution of ¢; will be neglected.

At any given nucleon density ng the equilibrium configuration corresponds to the values of A and
Z that minimize e (ng,A,Z), i.e. to A and Z such that

0
(_GT) :o,(_aeT) 0. (2.28)
07 ), A ),

Combining the above relationships and using Eq. (2.26) one finds
Z=~3.54 A2 (2.29)

Once Z is known as a function of A, any of the two relationships (2.28) can be used to obtain A as
a function of ng. The mass number A turns out to be an increasing function of np, implying that Z
also increases with np, but at a slower rate. Hence, nuclei become more massive and more and more
neutron rich as the nucleon density increases.

The above discussion is obvioulsy still oversimplified. In reality, A and Z are not continuous vari-
ables and the total energy has to be minimized using the measured nuclear masses, rather than the
parametrization of Eq. (2.26), and including the lattice energy, that can be written as

(Ze)?
I's

ELZ—K

(2.30)
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B(A,Z)/A [MeV]

A

Figure 2.5: Upper panel: A-dependence of the binding energy per nucleon of stable nuclei, eval-
uated according to Eq. (2.26) with ay = 15.67 MeV, as = 17.23 MeV, a; = .714 MeV, as = 93.15 MeV
and ap = 11.2 MeV. Lower panel: the solid line shows the magnitude of the volume contribution to
the binding energy per nucleon, whereas the A-dependence of the surface, coulomb and symmetry
contributions are represented by diamonds, squares and crosses, respectively.

where r is related to the number density of nuclei through (47/3)r3 = (ng/A)~! and K = 0.89593 for a
BCC lattice, yielding the lowest energy. At fixed nucleon number density np the total energy density
can be written in the form

er(ng,A,Z) =€+ (%)

1/3
M(Z,A) — 1.4442(Ze)? (%) ] , 2.31)

where, for matter density exceeding ~ 10® g/cm3, the extreme relativistic limit of the energy density
of an electron gas at number density n,=Zng/A (see Section 1.1)

3 (Z@)Ms

€o=— , (2.32)
has to be used.

Collecting together the results of Eqs. (2.30)-(2.32) and expressing np in units of ng, = 1079 fm™3
(the number density corresponding to a matter density ~ 106 g/cm?®), the total energy per nucleon,
er/ng, can be rewritten in units of MeV as

M(Z,A 1 72
er _MZA) | 1) 457743

1/3
7 (E) 2.33)
ng A A4/3 480.74 ' '

np,
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Figure 2.6: Total energy per nucleon of a BCC lattice of 52Ni (dashed line) and ®*Ni (solid line) nu-
clei surrounded by an electron gas, evaluated using eq.(2.33) and plotted versus the inverse nucleon
number density.

The average energy per nucleon in a nucleus is about 930 MeV. It can be conveniently written in
units of MeV in the form M(Z,A)/A = 930 + A. As long as we are dealing with nuclides that are not
very different from the stable nuclides, the values of A are available in form of tables based on actual
measurements or extrapolations of the experimental data.

In practice, er/np of Eq. (2.33) is computed for a given nucleus (i.e. for given A and Z) as a func-
tion of np, and plotted versus 1/np (see Fig. 2.6). The curves corresponding to different nuclei are
then compared and the nucleus corresponding to the minimum energy at given np can be easily
identified. For example, the curves of Fig. 2.6 show the behavior of the energy per particle corre-
sponding to 52Ni and 54Ni, having A-Z = 34 and 36, respectively. It is apparent that a first order phase
transition is taking place around the point where the two curves cross one another. The exact den-
sities at which the phase transition occurs and terminates can be obtained using Maxwell’s double
tangent construction. This method essentially amounts to drawing a straight line tangent to the con-
vex curves corresponding to the two nuclides. In a first order phase transition the pressure remains
constant as the density increases. Hence, as all points belonging to the tangent of Maxwell’s construc-
tion correspond to the same pressure, the onset and termination of the phase transition are simply
given by the points of tangency. As expected, at higher density the nucleus with the largest number of
neutrons yields a lower energy.

It has to be pointed out that there are limitations to the approach described in this section. Some
of the nuclides entering the minimization procedure have ratios Z/A so different from those corre-
sponding to stable nuclei (whose typical value of Z/A is ~ 0.5, as shown in Fig. 2.7) that the accuracy
of the extrapolated masses may be questionable. Obviously, this problem becomes more and more
important as the density increases. The study of nuclei far from stability, carried out with radioac-
tive nuclear beams, is regarded as one of the highest priorities in nuclear physics research, and new
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Figure 2.7: Chart of the nuclides. The black squares represent the stable nuclei as a function of Z and
N=A-Z. The solid lines correspond to the estimated proton and neutron drip lines.

dedicated experimental facilities are currently being planned both in the U.S. and in Europe.
Table 2.1 reports the sequence of nuclides corresponding to the ground state of matter at subnu-
clear density, as a function of matter density.

2.2 Inner crust

Table 2.1 shows that as the density increases the nuclides corresponding to the ground state of
matter become more and more neutron rich. At p ~ 4.3 x 10'! g/cm? the ground state corresponds
to a Coulomb lattice of ''8Kr nuclei, having proton to neutron ratio ~ 0.31 and a slighltly negative
neutron chemical potential (i.e. neutron Fermi energy), surrounded by a degenerate electron gas
with chemical potential u, ~ 26 MeV. At larger densities a new regime sets in, since the neutrons
created by electron capture occupy positive energy states and begin to drip out of the nuclei, filling
the space between them.

At these densities the ground state corresponds to a mixture of two phases: matter consisting of
neutron rich nuclei (phase I), with density pny,c, and a neutron gas of density png (phase II).

The equilibrium conditions are

()1 =)= Un (2.34)

and
Hp = Hn— He, (2.35)

where (1)1 and (uy) ;1 denote the neutron chemical potential in the neutron gas and in the matter of
nuclei, respectively.
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Nuclide 4 N=A-Z Z/A A O max
[MeV] [g/cm?]

S6Fe 26 30 4643 .1616 8.1 x 108
62Ni 28 34 4516 .1738 2.7 x 108
64N 28 36 4375 .2091 1.2 x 10°
84ge 34 50 4048 .3494 8.2 x 10°
82Ge 32 50 .3902 4515 2.1 x 1010
8471 30 54 .3750 .6232 4.8 x 1010
“8Ni 28 50 .3590 .8011 1.6 x 101!
"6Fe 26 50 3421 1.1135 1.8 x 1011
124Mo 42 82 3387 1.2569 1.9 x 10'!
1227y 40 82 3279 1.4581 2.7 x 1011
120Gy 38 82 3166 1.6909 3.7 x 1011
8Ky 36 82 .3051 1.9579 4.3 x 101

Table 2.1: Sequence of nuclei corresponding to the ground state of matter and maximum density at
which they occur. Nuclear masses are given by M(Z,A)/A = (930 + A) MeV (from Ref. [10]).

The details of the ground state of matter in the neutron drip regime are specified by the densities
0, Pnuc and pngG, the proton to neutron ratio of the matter in phase I and its surface, whose shape is
dictated by the interplay between surface and Coulomb energies.

Recent studies suggest that at densities 4.3x10'° < p < .75x10' g/cm?® the matter in phase Iis ar-
ranged in spheres immersed in electron and neutron gas, whereas at .75x10'* < p < 1.2x10' g/cm?3
the energetically favoured configurations exhibit more complicated structures, featuring rods of mat-
ter in phase I or alternating layers of matter in phase I and phase II. At p > 1.2x10* g/cm3 there is no
separation between the phases, and the ground state of matter corresponds to a homogeneous fluid
of neutrons, protons and electrons.



Chapter 3

The neutron star interior

Understandig the properties of matter at densities comparable to the central density of atomic
nuclei (pg ~ = 2.7 x 10 g/cm?®) is made difficult by both the complexity of the interactions and the
approximations necessarily implied in the theoretical description of quantum mechanical many par-
ticle systems. The situation becomes even more problematic as we enter the region of supranuclear
density, corresponding to p > py, as the available empirical information is scarce, and one has to
unavoidably resort to a mixture of extrapolation and speculation.

The approach based on non relativistic quantum mechanics and phenomenological nuclear hamil-
tonians, while allowing for a rather satisfactory description of nuclear bound states and nucleon-
nucleon scattering data, fails to fulfill the constraint of causality, as it leads to predict a speed of
sound in matter that exceeds the speed of light at large density. On the other hand, the approach
based on relativistic quantum field theory, while fulfilling the requirement of causality by construc-
tion, assumes a somewhat oversimplified dynamics, not constrained by nucleon-nucleon data. In
addition, it is plagued by the uncertainty associated with the use of the mean field approximation,
which is long known to fail in strongly correlated systems, such as, for example a van der Waals fluid
[11].

In this Chapter, after reviewing the phenomenological constraints on the EOS of cold nuclear
matter, we will outline the current understanding of the nucleon-nucleon interaction and the non
relativistic and relativistic approaches employed to study the structure of neutron star matter at nu-
clear and supernuclear density. As anticipated in Section 2.2, in this region a neutron star is believed
to consist of a uniform fluid of neutrons, protons and electrons in f-equilibrium.

3.1 Constraints on the nuclear matter EOS

The body of data on nuclear masses can be used to constrain the density depencence predicted
by theoretical models of uniform nuclear matter at zero temperature. Note that the zero temperature
limit is fully justified, as the typical temperature of the neutron star interior is ~ 10 °K ~ .01 MeV, to
be compared to nucleon Fermi energies of tens of MeV.

As we have seen in Section 2.1.2, the A-dependence of the nuclear binding energy is well de-
scribed by the semiempirical formula (2.26). In the large A limit and neglecting the effect of Coulomb
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repulsion between protons, the only term surviving in the case Z = A/2 is the term linear in A. Hence,
the coefficient ay can be identified with the binding energy per particle of symmetric nuclear mat-
ter, an ideal uniform system consisting of equal number of protons and neutrons coupled by strong
interactions only. The equilibrium density of such a system, ny, can be inferred exploiting satura-
tion of nuclear densities, i.e. the fact that the central density of atomic nuclei, measured by elastic
electron-nucleus scattering, does not depend upon A for large A (see Fig. 3.1).

0.20\\\\‘\\\\‘\\\\‘\\\\‘\\\\
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Figure 3.1: Saturation of central nuclear densities measured by elastic electron-nucleus scattering.

The empirical equilibrium properties of symmetric nuclear matter are

E
(—) =-16MeV , ng~.16fm=3. (3.1)
A n=ny

In the vicinity of the equilibrium density e = E/ A can be expanded according to

e(n)~e +15 (n ~ no)” (3.2)
AR nd ' '
where
K=9 nz(@) —9(6—})) 3.3)
0 on2 n=no on)p-n, ’

is the (in)compressibility module, that can be extracted from the measured excitation energies of nu-
clear vibrational states. Due to the difficulties implied in the analysis of these experiments, however,
empirical estimates of K have a rather large uncertainty, and range from ~ 200 MeV (corresponding
to more compressible nuclear matter, i.e. to a soft EOS) to ~ 300 MeV (corresponding to a stiff EOS).

Unfortunately, the quadratic extrapolation of Eq. (3.2) cannot be expected to work far from equi-
librium density. In fact, assuming a parabolic behavior of e(n) at large n (>> ng) leads to predict a
speed of sound in matter, c, larger than the speed of light, i.e. (compare to Eq. (1.45))

C_—$>l, (3.4)

f n



3.1 Constraints on the nuclear matter EOS 31

regardless of the value of K.
Equation (3.4) shows that causality requires

(GP) <1 (3.5)
O¢ ' '
€ being the energy-density. For a relativistic Fermi gas €  n*/3, and
P<S, =l (3.6)
<-—, Cs=—. .
37773

where the equal sign corresponds to massless fermions. In the presence of interactions the above
limits can be easily exceeded. For example, modeling the repulsion between nucleons in terms of a
rigid core leads to predict infinite pressure at finite density.

The relation between microscopic dynamics and speed of sound in matter has been analyzed by
Zel'dovich in th early 60s within the framework of relativistic quantum field theory [12].

The model of Ref. [12] describes a system of charged scalar particles of mass M interacting with a
massive vector field A*. The corresponding field equations are

OAM + m2 AF = jH, 3.7)
where m,, is the mass of the vector field. In the case of a point charge atrestatx=0
jo®=qs9x), 3.8)

g being the charge, and Eq.(3.7) has the solution

e_mlel

x|

X =q , A=0. (3.9)

Two charges at rest sitting at positions x; and x, repel each other, their interaction energy being
given by
2 e~ MvXi2
qé(x12) = q ) (3.10)
X12

with x;2 = [X;1| —Xo. Note that the effects of self interactions are included in the mass M.
The total energy of a system of N charges can be found using the superposition principle, with

the result
q2 N e—ml,xij

E=NM+->— ) (3.11)
izj=1  Xij
Denoting by n the density of charges and assuming that
nBamt, (3.12)

we can resort to the mean field approximation, and write the energy of one charge in the form

e~ MvX

n n
e:M+q2—fd3x =M+2nq*— . (3.13)
2 m2

X v
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Finally, from the above equation we can readily obtain the expresions of energy density and pressure

2

n
e=ne=nM+2nq°— , (3.14)
ml/
P—nz(ae)—2nq2 " 3.15)
on m?’

implying that, in the limit of large n, P — €.
Assuming that the energy density be related to number density through the power law

€e=—=an", (3.16)

e=—=av" !, (3.17)

P—nz(%)—(n—l)anv—(n—l)e (3.18)
- on) - ' '

From the above relations we easily see that that v = 4/3 corresponds to P = ¢/3 and that the limiting
case ¢ = 1, i.e. (0P)/(0e) =1 is reached when v = 2. Powers higher than v = 2 are forbidden by
causality.

In the model proposed by Zel'dovich matter consists of baryons interacting through exchange of
a massive vector meson described by the lagrangian density

1 1
Ly == B P~ E/JzAuA“ : (3.19)

where A* = (¢p,A) and p is the meson mass. The corresponding field equation is
00y +p) Ay =glyu, (3.20)

g being the coupling constant. In the simple case of a point source located atx =0

Ju=Uo)) =(6(x),0), (3.21)
and the solution of (3.20) is
px)=g B , A=0. (3.22)
X' —x|
Two charges at rest separated by a distance r repel each other with a force of magnitude
, d e M
F=—g'o s, (3.23)
and the corresponding interaction energy is
e M
gp=g" (3.24)

. .
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In the case of N particles of mass M, as the equation of motion (3.20) is linear, we can use the
superposition principle and write the total energy as (r;; = [r; — 1)

) N a—HTij
E=NM+g® ) (3.25)
j>i=1 Tij
Let us now make the further assumption that the average particle density be such that
13 1
— <-—. (3.26)
n H

The above equation implies that the meson field changes slowly over distances comparable to the
average particle separation. If this is the case we can use the mean field approximation and rewrite
Eq. (3.25) in the form

E 2 e M n

e=—=M+g—fd3r = m+2rg?l 3.27)
N 2 r u

The corresponding expression of the energy density and pressure read

2

Zn
e=ne=nM+2ng 7 (3.28)
and
P—nz(@)—zn 21 3.29)
= anl = g 0 .

From the above equations it follows that, in the large n limit P — ¢, inplying in turn ¢; — 1. In conclu-
sion, Zel'dovich model shows that the causality limit, corresponding to €  n?, is indeed attained in a
simple semirealistic theory, in which nucleons are assumed to interact through exchange of a vector
meson.

3.2 The nucleon-nucleon interaction

The main features of the nucleon-nucleon (NN) interaction, inferred from the analysis of nuclear
systematics, may be summarized as follows.

* The saturation of nuclear density (see Fig. 3.1), i.e. the fact that density in the interior of atomic
nuclei is nearly constant and independent of the mass number A, tells us that nucleons cannot
be packed together too tightly. Hence, at short distance the NN force must be repulsive. As-
suming that the interaction can be described by a non relativistic potential v depending on the
interparticle distance, r, we can then write:

vir)>0 , Irl<r, (3.30)

1. being the radius of the repulsive core.
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¢ The fact that the nuclear binding energy per nucleon is roughly the same for all nuclei with A=

20, its value being
B(Z,A)

~8.5MeV, (3.31)

suggests that the NN interaction has a finite range ry, i.e. that

vir)=0 , |rl>rg. (3.32)

* The spectra of the so called mirror nuclei, i.e. pairs of nuclei having the same A and charges
differing by one unit (implying that the number of protons in a nucleus is the same as the num-
ber of neutrons in its mirror companion), e.g. 175N (A=15,Z=7)and 1850 (A =15, Z=8), exhibit
striking similarities. The energies of the levels with the same parity and angular momentum
are the same up to small electromagnetic corrections, showing that protons and neutrons have
similar nuclear interactions, i.e. that nuclear forces are charge symmetric.

Charge symmetry is a manifestation of a more general property of the NN interaction, called iso-
topic invariance. Neglecting the small mass difference, proton and neutron can be viewed as two
states of the same particle, the nucleon (N), described by the Dirac equation obtained from the la-
grangiam density

L =yy(iy"o,—m)yn (3.33)
where
wN =( P ) (3.34)
nj’ '

p and n being the four-spinors associated with the proton and the neutron, respectively. The la-
grangian density (3.33) is invariant under the SU(2) global phase transformation

U=el%Ti, (3.35)

where a is a constant (i.e. independent of x) vector and the 7; (j = 1,2,3) are Pauli matrices. The
above equations show that the nucleon can be described as a doublet in isospin space. Proton and
neutron correspond to isospin projections +1/2 and —1/2, respectively. Proton-proton and neutron-
neutron pairs always have total isospin T=1 whereas a proton-neutron pair may have either T =0 or
T = 1. The two-nucleon isospin states | T, T3) can be summarized as follows

11,1) = Ipp)

11,00 = L(I n)+|np))
) - \/z p p

1,-1) = |nn)

10,00 = L(I ny—|np))
) - \/z p p .

Isospin invariance implies that the interaction between two nucleons separated by a distance r =
Ir; —rp| and having total spin S depends on their total isospin T but not on T3. For example, the
potential v(r) acting between two protons with spins coupled to S = 0 is the same as the potential
acting between a proton and a neutron with spins and isospins coupled to S=0and T = 1.
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3.3 The two-nucleon system

The details of the NN interaction can be best studied in the two-nucleon system. There is only
oneNN bound state, the nucleus of deuterium, or deuteron (°H), consisting of a proton and a neutron
coupled to total spin and isospin S = 1 and T = 0, respectively. This is clear manifestation of the fact
that nuclear forces are spin dependent.

Another important piece of information can be inferred from the observation that the deuteron
exhibits a nonvanishing electric quadrupole moment, implying that its charge distribution is not
spherically symmetryc. Hence, the NN interaction is noncentral.

Besides the properties of the two-nucleon bound state, the large data base of phase shifts mea-
sured in NN scattering experiments (~ 4000 data points corresponding to energies up to 350 MeV in
the lab frame) provides valuable additional information on the nature of NN forces.

The theoretical description of the NN interaction was first attempted by Yukawa in 1935. He made
the hypotesis that nucleons interact through the exchange of a particle, whose mass p can be related

to the interaction range ry according to

1
ro~—. (3.36)

u
Using rp ~ 1 fm, the above relation yields p ~ 200 MeV (1 fm = 197.3 MeV).

Figure 3.2: Feynman diagram describing the one-pion-exchange process between two nucleons.
The corresponding amplitude is given by Eq. (3.37).

Yukawa’s idea has been successfully implemented identifying the exchanged particle with the 7
meson (or pion), discovered in 1947, whose mass is m,; ~ 140 MeV. Experiments show that the pion
is a spin zero pseudoscalar particle! (i.e. it has spin-parity 07) that comes in three charge states,
denoted 7", 7~ and 7°. Hence, it can be regarded as an isospin T=1 triplet, the charge states being
associated with isospin projections T3=+ 1, 0 and —1, respectively.

The simplest 7-nucleon coupling compatible with the observation that nuclear interactions con-
serve parity has the pseudoscalar form igy®t, where g is a coupling constant and T describes the

IThe pion spin has been deduced from the balance of the reaction 7+ +2>H < p + p, while its intrinsic parity
was determined observing the 7~ capture from the K shell of the deuterium atom, leading to the appearance
of two neutrons: 7~ +d — n+n.
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isospin of the nucleon. With this choice for the interaction vertex, the amplitude of the process de-
picted in Fig. 3.2 can readily be written, using standard Feynman’s diagram techniques, as

5 WPy, s5)ysu(pa, s2)i(p}, s)ysu(py, s1)
k2 —m2

(fIMli)=—ig (r1-72), (3.37)

where k = p! - p1 = pa— pl, k? = k,k* = k2~ |kI?, u(p, s) is the Dirac spinor associated with a nucleon
of four momentum p = (p, E) (E=/p? + m?) and spin projection s and
(T T2 =nhTne 0l TN, (3.38)

7n; being the two-component Pauli spinor describing the isospin state of particle i.
In the nonrelativisti limit, Yukawa’s theory leads to define a NN interaction potential that can be
written in coordinate space as

g2 —MyT
Un = — (T1-T2)(01-V)(02-V)
idm
g2 mf’, (T r){[(a og2)+S 1+3+ 3) e’
(4m)2 4m? 3 1he e 12 x  x2 X
4
- (010259 (r)} : (3.39)
mﬂ
where x = m|r| and
3
S12 = ﬁ(gl ‘1)(02-1)—(01-02), (3.40)

is reminiscent of the operator describing the noncentral interaction between two magnetic dipoles.
A detailed derivation of Eq.(3.39) can be found in Appendix A.

For g?/(4m) = 14, the above potential provides an accurate description of the long range part
(lr] > 1.5 fm) of the NN interaction, as shown by the very good fit of the NN scattering phase shifts in
states of high angular momentum. In these states, due to the strong centrifugal barrier, the probabil-
ity of finding the two nucleons at small relative distances becomes in fact negligibly small.

At medium- and short-range other more complicated processes, involving the exchange of two or
more pions (possibly interacting among themselves) or heavier particles (like the p and the w mesons,
whose masses are m, = 770 MeV and m,, = 782 MeV, respectively), have to be taken into account.
Moreover, when their relative distance becomes very small (|r| < 0.5 fm) nucleons, being composite
and finite in size, are expected to overlap. In this regime, NN interactions should in principle be de-
scribed in terms of interactions between nucleon constituents, i.e. quarks and gluons, as dictated by
quantum chromodynamics (QCD), which is believed to be the fundamental theory of strong interac-
tions.

Phenomenological potentials describing the full NN interaction are generally written as

v="U;+ VR, (3.41

where U is the one pion exchange potential, defined by Egs. (3.39) and (3.40), stripped of the &-
function contribution, whereas v describes the interaction at medium and short range. The spin-
isospin dependence and the noncentral nature of the NN interactions can be properly described
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rewriting Eq. (3.41) in the form

vij =) [vrs(rij) + 8s1ver(rij)S12] PsIr, (3.42)
ST
S and T being the total spin and isospin of the interacting pair, respectively. In the above equation Pg
(§=0,1) are the spin projection operators

1 1
POZZ(l—Ul'Gg) , P121(3+0'1'0'2), (3.43)

satisfying
Py+P1=1, Ps|S) =6s51S"y, PsPs = Psbss (3.44)

and I17 are the isospin projection operators that can be written as in Eq. (3.43) replacing o — 7 . The
functions v7s(r;;) and v7(r; ;) describe the radial dependence of the interaction in the different spin-
isospin channels and reduce to the corresponding components of the one pion exchange potential
at large r;;. Their shapes are chosen in such a way as to reproduce the available NN data (deuteron
binding energy, charge radius and quadrupole moment and the NN scattering phase shifts).

Substitution of Eq. (3.43) and the corresponding expressions for the isospin projection operators
allows one to rewrite Eq. (3.42) in the form

6
vij= ) v ri)ofy, (3.45)
n=1
where
OE’;) =1 (zi 7)), (0i-0)), (@i-0))(Ti-T)), Sij, Sij(Ti-T)), (3.46)

and the v (r; j) are linear combination of the v7s(r;;) and v;7(r;;). Note that the operatos defined
in Eq. (3.46) form an algebra, as they satisfy the relation

(n) ~(m) _ )
o”qj_;mmwﬁ, (3.47)

where the coefficients Kj,;,;¢ can be easily obtained from the properties of Pauli matrices. Equations
(3.47) can be exploited to greatly simplify the calculation of nuclear observables based on the repre-
sentation (3.45)-(3.46) of the NN potential.

The typical shape of the NN potential in the state of relative angular momentum ¢ = 0 and total
spin and isospin S =0 and T =1 is shown in Fig. 3.3. The short range repulsive core, to be ascribed to
heavy meson exchange or to more complicated mechanisms involving nucleon constituents, is fol-
lowed by an intermediate range attractive region, largely due to two-pion exchange processes. Finally,
atlarge interparticle distance the one-pion-exchange mechanism dominates. Note the similarity with
the van der Waals potential of Fig. 1.1.

3.4 nonrelativistic many-body theory

Within non relativistic many-body theory (NMBT), nuclear systems are described as a collection
of pointlike nucleons interacting through the hamiltonian

A p% A
H= 2—l+ Z Vijt+..., (3.48)
i=1M sz
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Figure 3.3: Radial dependence of the NN potential describing the interaction between two nucleons
in the state of relative angular momentum ¢ = 0, and total spin and isospin S=0and T =1.

where p; denotes the momentum carried by the i-th nucleon, v;; is the two-body potential describing
NN interactions the and the ellipsis refers to the possible existence of interactions involving more
than two nucleons.

The validity of the assumptions implied in the treatment of nucleons as pointlike particles, in
spite of their finite size, can be gauged using the empirical information provided by elastic electron-
proton scattering experiments. The measured cross section are in fact simply related to the proton
charge form factor, the Fourier transform of which yields the charge distribution in coordinate space.
Figure 3.4 illustrates the overlap between the charge distributions of two protons separated by a dis-
tance 1 < d < 2 fm. The results of theoretical calculations, yielding an average nucleon-nucleon sep-
aration distance ~ 2.5 fm in isospin symmetric nuclear matter at equilibrium desity, suggest that the
finite size of the nucleon may not play a critical role up to densities p < 3py.

Unfortunately, solving the Schrédinger equation

H|W¥o) = Ep|Wo) . (3.49)

for the ground state of a nucleus, using the hamiltonian (3.48) and the NN potential of Egs.(3.45) and
(3.46), is only possible for not too large A. The numerical solution is trivial for A=2 only. For A=3 Eq.
(3.49) can still be solved using deterministic approaches, while for A>3 sthocastic methods, such as
the Green Function Monte Carlo method, have to be employed. The results of these calculations will
be briefly reviewed in the next Section.

3.4.1 The few-nucleon systems

The NN potential determined from the properties of the two-nucleon system can be used to solve
Eq. (3.49) for A > 2. In the case A = 3 the problem can be still solved exactly, but the resulting ground
state energy, E, turns out to be slightly different from the experimental value. For example, for 3 He
one typically finds Eg = 7.6 MeV, to be compared to E.x, = 8.48 MeV. In order to exactly reproduce
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Figure 3.4: Overlap between the charge distributions of two protons separated by a distance
1 < d < 2fm. The shaded area corresponds to the experimental error, while the dashed lines have
been obtained using a simple dipole parametrization of the proton charge form factor.

Eexp one has to add to the nuclear hamiltonian a term containing three-nucleon interactions de-
scribed by a potential V; jx. The most important process leading to three nucleon interactions is the
two-pion exchange associated with the excitation of a nucleon resonance in the intermediate state,
depicted in Fig. 3.5.

The three-nucleon potential is usually written in the form

Vije=V+ VY

ijk ijk’ (3.50)

where the first contribution takes into account the process of Fig. 3.5 while VIJ;] « s purely phenomeno-
logical. The two parameters entering the definition of the three-body potential are adjusted in such
a way as to reproduce the properties of 3H and 3He. Note that the inclusion of V; jk leads to a very
small change of the total potential energy, the ratio (V;;x)/(v;;) being ~ 2 %.

For A > 3 the Scrodinger equation is no longer exactly solvable. The ground state energy of nuclei
having A = 4 can be estimated from Ritz principle, stating that the expectation value of the hamilto-
nian in the trial state |¥y) satisfies

YvIHIVyv)
=—>Fy, 3.51
v (PvI¥v) 0 (551
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Figure 3.5: Diagrammatic representation of the process providing the main contribution to the
three-nucleon interaction. The thick solid line corresponds to an excited state of the nucleon.

Ej being the ground state energy. Obviously, the larger the overlap (¥y|Wy) the closer Ey is to Ejy.

In the variational approach based on Eq. (3.51) Ej is estimated carrying out a functional mini-
mization of Ey. The trial ground state is written in such a way as to reflect the structure of the nuclear
interaction hamiltonian. For few nucleon systems it takes the form

Wy)=Q1+U)[¥p), (3.52)

where
[Wp) =F|®s(JJ3TT3)) . (3.53)

In the above equations |®4(/ /3T T3)) is a shell model state, describing A independent particles cou-
pled to total angular momentum J and total isospin T, with third components J3 and T3, while the
operators U and F take into acount the correlation structure induced by the two- and three-nucleon
potentials, respectively. The dominant correlation effects, associated with the NN potential v;;, are
described by the operator F, which is usually written

A
F=% 11 fij (3.54)

Jj>i=1
where .# is the symmetrization operator and (compare to Eq. (3.45))

6
fir= X P wipof. (3.55)

n=1

The shape of the radial correlation functions £ are determined by minimizing the expectation value
Ey. In few nucleon systems this procedure is implemented choosing suitable analytical expressions
involving few adjustable parameters.

The main features of the f are dictated by the behaviour of the corresponding component of
the potential v;;. For example, due to the presence of the strong repulsive core f Wy <latrsl
fm. A typical set of radial correlation functions is shown in Fig. 3.6.
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Figure 3.6: Correlation functions in few nucleon systems: the central and tensor-isospin compo-
nents fU and f“ are denoted by f, and u,, respectively. The dashed lines show f?(*H) and f2(*He)
to illustrate the large r behavior. The dot-dashed line marked ¢, shows the independent particle
model wave function for °Li.

The main difficulty of the variational approach is the calculation of the expectation value Ey,
involving an integration over 3A space coordinate as well as a sum over the spin-isospin degrees of
freedom, which makes the dimensionality of the problem very difficult to handle for A= 8.

To understand this problem, let us write the variational state in the form

Py =) ¥p(R)n), (3.56)
n

where the sum includes all possible spin-isospin states, labelled by the index n, and R = {ry,...,ra}
specifies the space configuration of the system. For example, in the case of > He (J = T = 1/2) one
finds

1 = |tptnlin)
2y = |lptnlin)
13) = [lntpln)

= .. , (3.57)

The possible spin states of A spin-1/2 particles are 24 and, since Z of the A nucleons can be protons,
there are A!/ ZI(A - Z)! isospin states. Hence, the sum over 7 in Eq. (3.56) involves

Al

M=24 ———
ZNA-2)!

(3.58)

contributions.
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In the representation of Eq. (3.56) the nuclear hamiltonian H is a M x M matrix whose elements
depend upon R. To obtain Ey one has to evaluate the M x M integrals

f dRY! (R Hpm¥ m(R) (3.59)

whose calculation is carried out using the Monte Carlo (MC) method.
The expectation value of any operator O in the state ¥y can be written in the form

W1, (R)Opn(R)W 4 (R)
0O = dR Pun(R
‘@ me Prn () )
= Y [ dROmn(RPpun(R), (3.60)
with ;
~ YL (RO (RY,(R)
mn = P, (R) ) (3.61)
the probability distribution Py, (R) being given by
Pmn(R) = [Re(¥],(R)¥ 1 (R))] . (3.62)

Let{Ry} ={Ry,..., Ry} be aset of N configurations drawn from the probability distribution of Eq.
(3.60), i.e. such that the probability that a configuration R belongs to the set {R)} is proportional to
Py, (R). It then follows that

_ ) 1 N
f AR Opn(R)Pyn(R) = lim — Y Omn(Rp) . (3.63)

¢~ Ve p=1

The above procedure, called Variational Monte Carlo (VMC) method, allows one to obtain esti-
mates of the ground state energy Ey whose accuracy is limited by the statistical error associated with
the use of a finite configuration set and by the uncertainty in the choice of the trial wave function. The
second source of error can be removed using the Green Function Monte Carlo (GFMC) approach.

Let {|'¥,;)} be the complete set of eigenstates of the nuclear hamiltonian, satisfying

HIY ) = E|Vi) (3.64)

The trial variational wave function can obviously be expanded according to

Wv) =) Bnl¥m), (3.65)
n
implying
lim e 7|¥ ) = lim Zﬁn e BT \w, ) = By e EoT ) (3.66)
T—00 T—00 7

Hence, evolution of the variational ground state to infinite imaginary time projects out the true ground
state of the nuclear hamiltonian and allows one to extract the corresponding eigenvalue.
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The calculation is carried out dividing the imaginary time interval 7 in N steps oflength At =7/N
to rewrite

—Hrt _( —HAT)N .

e HT (o (3.67)

The state at imaginary time (i + 1)A7 is can be obtained from the one corresponding to 7 = iAt
through the relation

Wi =e "), (3.68)

that can be rewritten (|RST) specifies the configuration of the system in coordinate, spin and isospin
space)

(R'S'T'|Wiy = Zde (R'S'T'|e”AT|RST)(RST|¥!,) (3.69)
ST
or
Vs (R) :Zde Gs1 sT(R, Ry ¢p(R), (3.70)
ST

The Green’s function appearing in the above equation, yielding the amplitude for the system to evolve
from |RST) to |R'S'T') during the imaginary time interval At, is defined as

Gs 1 sT(R,R) = (R'S'T'le AT|RST) . 3.71)

The GFMC approach has been succesfully employed to describe the ground state and the low
lying excited states of nuclei having A up to 8. The results of these calculations, summarized in Table
3.1 and Fig. 3.7, show that the non relativistic approach, based on a dynamics modeled to reproduce
the properties of two- and three-nucleon systems, has a remarkable predictive power.

Table 3.1:

AZ(J™ T) VMC (¥7) VMC (¥y) GFMC Expt
211(1+;0) ~2.2248(5) ~2.2246
3H((1/2)%;1/2) -8.15(1) -8.32(1)  -8.47(1)  -8.48
4He(0%;0) —26.97(3) -27.78(3) -28.34(4) -28.30
6He(0%;1) —23.64(7) -24.87(7) -28.11(9) -29.27
6Li(1+;0) ~27.10(7)  -27.83(5) -31.15(11) -31.99
"He((3/2)7;3/2)  -18.05(11) -19.75(12) -25.79(16) -28.82
TLi((3/2)7;1/2)  -31.92(11)  -33.04(7) -37.78(14) -39.24
8He(0";2) ~17.98(8) -19.31(12) -27.16(16) -31.41
8Li(2+;1) ~28.00(14) -29.76(13) -38.01(19) -41.28
8Be(0*;0) —45.47(16) —46.79(19) -54.44(19) —-56.50

Experimental and quantum Monte Carlo ground state energies of nuclei with A=2-8 in
MeV. The columns marked VMC(¥ ) and GFMC show the VMC and GFMC results, respectively.
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Figure 3.7: VMC and GFMC energies of nuclei with A <8 compared to experiment.

3.4.2 Nuclear matter

In the case of neutron stars, correponding to A ~ 10°7, the computational techniques described
in Section 3.4.1 cannot be applied and approximations need to be made.

In the simplest scheme the complicated NN potential is replaced by a mean field. This amount to
substituting

A A
Y vij— Y Ui, (3.72)
j>i=1 i=1

in Eq. (3.48), witht the potential U chosen in such a way that the single particle hamiltonian

2

ho=2—+U, (3.73)
2m

be diagonalizable. Within this framework the nuclear ground state wave function reduces to a Slater
determinant, constructed using the A lowest energy eigenstates of hy:

L
VA

the ¢;'s (i =1, 2,..., A) being solutions of the Schrodinger equation

[Wo) = det{¢;}, (3.74)

holdi) =€ilp;) , (3.75)
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and the corresponding ground state energy is given by
A
Eo=Y €. (3.76)
i=1

This procedure is the basis of the nuclear shell model, that has been succesfully applied to explain
many nuclear properties.

Matter in the neutron star interior, however, is a uniform, dense nuclear fluid, whose single par-
ticle wave functions are known to be plane waves, as dictated by translational invariace. Shell effects
are not expected to play a major role in such a system. On the other hand, strong correlations between
nucleons induced by the NN potential, not taken into account within the mean field approximation,
become more and more important as the density increases, and can not be disregarded.

Let us first consider symmetric nuclear matter, defined as a uniform extended system containing
equal numbers of proton and neutrons which interact through strong interactions only. Neglecting,
for the sake of simplicity, three-nucleon forces, the nuclear matter hamiltonian can be written as in
Eq.(3.48) with v;; denoting the NN potential. In absence of interactions, the wave function is a Slater
determinant of single particle states

1 4
Pkor (1) = ﬁe‘“ YoMt ) (3.77)

where y and i) are the Pauli spinors describing spin and isospin, respectively, and |k| < kr = (3n2n/2)13,
n being the matter density.

The main problem associated with the application of many-body perturbation theory to nuclear
matter is the presence of the strongly repulsive core in the NN potential (see Section 3.2 and Fig. 3.3),
that makes the matrix elements

(P01 Phy oty V1210 017 Py, ) (3.78)

very large or even divergent. As we will see, this difficulty can be circumvented either through a proper
redefintion of the interaction potential or changing the basis of states describing the “unperturbed”
system.

A. G-matrix perturbation theory

Within the first approach the hamiltonian is first split in two pieces according to
H=Hy+H, (3.79)

with N
Hy=) (Ki+ Uy, (3.80)

i=1

where K = —V?/2m is the kinetic energy operator, and

N N
Hy= ) wvij-Y U, (3.81)
j>i=1 i=1
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with the single particle potential generally chosen in such a way as to make the perturbative expan-
sion rapidly convergent. The interaction hamiltonian H is then treated perturbatively, summing up
infinite set of diagrams to overcome the problems assciated with the calculation of the matrix ele-
ments (3.78). This procedure leads to the integral equation defining the G-matrix

R
GW)=v-v 7 G. (3.82)

The G-matrix, as diagrammatically illustrated in Fig. 3.8, is the operator describing NN scattering in
the nuclear medium. The quantity W appearing in Eq. (3.82) is the energy denominator associated
with the propagator of the intermediate state, while the operator Q prevents scattering to states in the
Fermi sea, forbidden by Pauli exclusion principle.

G Vv ® - ° @ - ®
| A S S ¢+ A+ e o +---
®-—------- Y
®--------- ®

Figure 3.8: Diagrammatic representation of Eq. (3.82).

The state describing two interacting nucleons ¥;; can be expressed in terms of G through the
Bethe-Golstone equation

Vij=ij - %G‘/’ij» (3-83)

where ¢;; = @@, with ¢; = @y,4,7, given by Eq. (3.77), is the corresponding unperturbed state. From
Eq. (3.83) it follows that the matrix elements of G between unperturbed states

(Pirjr|Glpij) = (i jlvlyij), (3.84)
are well behaved.

Although the expansion in powers of G is still not convergent, the terms in the perturbative series
can be grouped in such a way as to obtain a convergent expansion in powers of the quantity

x= nzfd3r|¢i,-(r)—wij(r)|2, (3.85)
ij

where the sum is extended to all states belonging to the Fermi sea. The definition shows that x mea-
sures the average distortion of the two-nucleon wave function produced by NN forces.
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Nuclear matter calculations carried out within G-matrix perturbation theory include contribu-
tions of order 3 to the energy per nucleon. The results show that the convergence strongly depends
on the choice of the single particle potential U.

B. CBF perturbation theory

In the alternative approach, called Correlated Basis Functions (CBF) perturbation theory, the non-
perturbative effects arising from the short range repulsive core of the interaction potential are in-
corporated in the basis functions. The unperturbed Fermi gas states |np) are replaced by the set of
correlated states
Flnp)
n) = ——m———, (3.86)
(nol FT F|ng)1/2

where F is the correlation operator, whose structure reflects the complexity of the NN potential. In
most nuclaer matter applications F is written in the form

A
F=< 1] fij (3.87)
Jj>i=1
where
fij —Zf "oy, (3.88)

& is the operator that symmetrizes the product on its right hand side and the operators O"” are
defined in Eq. (3.47).

The correlated states (3.86) form a complete set but are not orthogonal to one another. However,
they can be orthogonalized using standard techniques of many-body perturbation theory.

The radial shapes of the f(r) are determined minimizing the expectation value Ey = (0| H|0).
In nuclear matter, this procedure leads to a set of Euler-Lagrange equations, whose solutions satisfy
the boundary conditions

1 n=1

The short range behaviour of the two-nucleon correlation functions is such that the quantity
2 2

P;
fiHijfij= 1) (%+2—+v,])f,], (3.90)

which reduces to H;; at large interparticle distances, is well behaved as r — 0.

Once the correlated basis has been defined, the nuclear hamiltonian can be split in two pieces
according to Eq. (3.79), where Hy and H; are now defined as the diagonal and off diagonal part of H
in the correlated basis, respectively. We can then write

(m|Ho|n) = 6 mn(m|H|n) (3.91)

(m|Hy|n) = (1 =0mp) (m|H|n) . (3.92)

If the two-body correlation function has been properly chosen, i.e. if Ey is close to the eigenvalue Ej,
the correlated states have large overlaps with the true eigenstates of the nuclear hamiltonian and the
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matrix elements of H; are small. Hence, the perturbative expansion in powers of H; is expected to be
rapidly convergent.

The explicit calculation of matrix elements of H between correlated states involves prohibitive
difficulties, as it requires integrations over the coordinates of a huge number of particles. It is usually
performed expanding the matrix element in a series whose terms represent the contributions of sub-
systems (clusters) containing an increasing number (2, 3, ..., A) of nucleons. The terms in the series
can be classified according to their topological structure and summed up to all orders solving a set of
coupled integral equations, called Fermi Hyper-Netted Chain (FHNC) equations.

3.5 Relativistic mean field theory: the o0 — v model

The theoretical approach described in the previous section is based on the assumption that the
degrees of freedom associated with the carriers of the NN interaction can be eliminated in favor of
a static NN potential. While this procedure has proved exceedingly succesful at p ~ pg, as matter
density (and therefore the nucleon Fermi momentum) increases the relativistic propagation of the
nucleons, as well as the retarded propagation of the virtual meson fields giving rise to nuclear forces,
are expected to become more and more significant.

In principle, relativistic quantum field theory provides a well defined theoretical framework in
which relativistic effects can be taken into account in a fully consistent fashion. Due to the com-
plexity and non perturbative nature of the strong interaction, however, the ab initio approach to the
nuclear many problem, based on the QCD lagrangian, involves prohibitive difficulties. In fact, even
the structure of individual hadrons, like the proton or the 7 meson, is not yet understood at a fully
quantitative level in terms of the elementary QCD degrees of freedom. Let alone the structure of
highly condensed hadronic matter at supernuclear densities.

It has to be pointed out, however, that when dealing with condensed matter it is often conve-
nient to replace the lagrangian describing the interactions between elementary constituents, be it
solvable or not, with properly constructed effective interactions. For example, the properties of highly
condensed systems bound by electromagnetic interactions are most successfully explained using ef-
fective interatomic potentials. In spite of the fact that the lagrangian of quantum electrodynamics is
very well known and can be treated in perturbation theory, nobody in his right mind would ever use
it to carry out explicit calculations of the bulk properties of condensed matter.

The fact that most of the time nucleons in nuclear matter behave as individual particles interact-
ing through boson exchange suggests that the fundamental degrees of freedom of QCD, quarks and
gluons, may indeed be replaced by nucleons and mesons, to be regarded as the degrees of freedom of
an effective field theory.

In this section we will describe a simple model in which nuclear matter is viewed as a uniform
system of nucleons, described by Dirac spinors, interacting through exchange of a scalar and a vector
meson, called o and w, respectively.

The basic element of the o-w model is the lagrangian density

=N+ +Zint (3.93)

where £y, Zp and £, describe free nucleons and mesons and their interactions, respectively. The
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dynamics of the free nucleon field is dictated by the Dirac lagrangian of Eq. (3.33)
L) =y(x)(id -myx), (3.94)

where the nucleon field, denoted by ¥ (x), combines the two four-component Dirac spinors describ-
ing proton and neutron, as in Eq. (3.34). The meson lagrangian reads

ZLpx) = L) +ZLs(x)
1 Hv 1 2 M
= —ZF (x)Fm,(x)+§meH(x)V (x)

+ %aw(x)a%(x) -~ %m?,(p(x)z (3.95)

where
F[JV(x) =0y Vu(x) - 6y Vy(x), (3.96)

Vi(x) and o (x) are the vector and scalar meson fields, respectively, and m,, and m, the corresponding
masses.

In specifying the form of the interaction lagrangian we will require that, besides being a Lorentz
scalar, Z;,:(x) gives rise to a Yukawa-like meson exchange potential in the static limit. Hence, we
write

Lint(x) = gePOY (XY (x) — g0 Vu (X)W (X)YHy(x), (3.97)

where g, and g, are coupling constants and the choice of signs reflect the fact that the NN interaction
contains both attractive and repulsive contributions.

The equations of motion for the fields follow from the Euler-Lagrange equations associated with
the lagrangian density of Eq. (3.93). The meson fields satisfy

(O+m2)p(x) = g FOY () (3.98)

and
O+ m3)Vu(x) —0u(0" V3) = 8o W ()Y pw (X) (3.99)

while the evolution of the nucleon field is dictated by the equation
[(d-guy VF () - (m—gep(x))]w(x)=0. (3.100)

The above coupled equations are fully relativistic and Lorentz covariant. However, their solution in-
volves prohibitive difficulties, that can not be circumvented using approximations based on pertur-
bation theory. Here we will restrict ourselves to the discussion of a different scheme, known as mean
field approximation and widely used to solve Egs. (3.98)-(3.100), that essentially amounts to treat ¢(x)
and V),(x) as classical fields.

We replace the meson field with their mean values in the ground state of uniform nuclear matter

P(x) = (P(x)), Vu(x) = (Vu(x)), (3.101)

where (¢(x)) and (V,(x)) must be computed from the equations of motion. In uniform nuclear matter
the baryon and scalar densities, nz = (¢ ) and ng = (), as well as the current Ju = Wyuy), are
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constants, independent of x. In addition, rotation invariance implies (yy;w) =0 (i =1, 2, 3). As a
consequence, the mean values of the meson fields satisfy the relations

m5 () = go (W) (3.102)
m2 (Vo) = go (v y) (3.103)
mZ (Vi) = goWyiy) =0, i=1,23. (3.104)

The nucleon equation of motion, rewritten in terms of the mean values of the meson fields, reads

(8- guyu(V™) - (m - go()) | w(x) =0. (3.105)

In uniform matter, the nucleon states must be eigenstates of the four-momentum operator, that can
be written as
wkelkx — wkelkﬂxu :wkel(kot—k‘l‘) , (3.106)

the four-spinors i being solutions of

[(k = 8uyu(VE)) = (m ~ go ()] vk
= [y (k¥ ~ 80 (V) = (m — g ()| Y= 0. (3.107)

The above equation can be recast in a form reminiscent of the Dirac equation for a non interacting
nuleon. Defining

Ky =ky—gu(VH) (3.108)

m*=m-—gg{Pp), (3.109)
we obtain

(K-m*)y=0. (3.110)

The corresponding energy eigenvalues can be easily using

(K+m*)(K-m*) = KK-m**=K,Ky"y" —m*?

sV 4 Vb
O O A b
= K,K'-m**. (3.111)
Substitution in Eq.(3.110) yields
(Kuk = m**)yac=0, (3.112)
implying
(Kuk¥ = m*?) =0, (3.113)
and
K¢ = (ko — 8u(Vo))? = [kI* + m** = EZ . (3.114)

It follows that the energy eigenvalues associated with nucleons and antinucleons can be written

ex = 8o (Vo) + Ex, (3.115)
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and
ex = 8o (Vo) — Ex, (3.116)

respectively. The above equations give the nucleon and antinucleon energies in terms of the mean
values of the meson fields, which are in turn defined in terms of the ground state expectation values
of the nucleon densities and current, according to Egs. (3.102)-(3.104).

The ground state expectation value of an operator yT'y can be evaluated exploiting the fact that
each nucleon state is specified by its momentum, k, and spin-isospin projections. Denoting the av-
erage of yT'y in a single particle state by (yT'y),,, where the index a labels the spin-isospin state, we
can write the ground state expectation value as

_ a3k _
@rv) =% f S TV Oler—e), (3.117)

where the 0-function restricts the momentum integration to the region corresponding to energies
lower than the Fermi energy er.
To obtain the single particle average (wy, ), ,, we use Eq. (3.110), implying

ko ="vYo (¥ -k+ guyu(VFy+m™) . (3.118)

The quantity defined by the above equation can be regarded as the single nucleon hamiltonian, whose
eigenvalues are given by (compare to Eq. (3.115))

(koYia = W koW, = 8w (Vo) + Ex . (3.119)

The ground state expectation value of the baryon density can be readily evaluated from Egs. (3.118)
and (3.119) noting that

0 0

¥ = _— =
a<v0><”’ koWia = TV (80 (Vo) + Ex) = 8o
ok
= WL e = oW Wa 3.120
(W 6<VO>1//)1< 8wV Pk ( )
implying
WP =1. 3.121)

It follows that ng can be obtained using Eq. (3.117), leading to

3
ng=(yly)=v ﬂe(eF —ex), (3.122)
2m)3

where v is the degeneracy of the momentum eigenstate (v = 2 and 4 for pure neutron matter and
isospin symmetric nuclear matter, respectively).

The same procedure can be applied to calculate the ground state expectation value (@y’y) (i =
1, 2, 3). Taking the derivative with respect to k; we find

O0Ex
ok;

0 0
a—kiw*kowka = % (80 (Vo) + Ex) =

+0ko 1,00 — i
W' Wk = WYY Wk = @Y Pia (3.123)
l
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leading to
Wy'y) = @k (aEk) 0(er — e
vryr = em3\ok; ) F ok
- #[}H#dkj dE 0(ep—e) =0. (3.124)

The above result follows from the fact that, by definition, ex = er—g,, (Vo) everywhere on the boundary
of the integration region. The vanishing of the baryon current had been anticipated noting that in
uniform matter the mean values of the space components of the vector field vanish, i.e. that (V;) =0.
As a consequence, the energy eigenvalues depend upon the magnitude of the nucleon momentum
only, according to

e = e = 8u(Vo) + \/Ikl2 +(m = g (P))?, (3.125)

and the occupied region of momentum space is a sphere. Eq. (3.122) then shows that in symmetric
nuclear matter, with Z=(A-Z)=A/2, the baryon density takes the familiar form np = 2k3/(37?), kr
being the Fermi momentum.

Finally, the scalar density n; = (W) can be evaluated from the derivative of (¢ koy )i, with re-
spect to m:

i< Tkow) —@% 19k Ya = W Y0WKa = W) (3.126)
amllf OWka—am—wakaa—V’YO’//ka—U”//kay .
yielding
— (m—ga<¢>)
WY)ka = : (3.127)
VK2 + (m— gg (P))?
and .
_ v (ke (m—go ()
W) = — f K*dk . (3.128)
2m% Jo VIKZ + (m— go ()2

Collecting together the results of Egs. (3.122), (3.124) and (3.128) we can rewrite the equations of
motion (3.98)-(3.100) in the form

2 k
8o v Eog (m—gs{¢p))
o >=(—) —f |k|“d|K| ) (3.129)
8o4¢ mq) 21 Jo VIKZ + (m— go(p))?

2 2 kS

8w 8w F
Vey = B - IV 3.130
8o Vo) (mw) " (mw) V6n2 ( )
m2(V;)=0, i=1,2,3. (3.131)

Note that, while Egs. (3.130) and (3.131) are trivial, Eq. (3.129) implies a self-consistency requirement
on the mean value of the scalar field, whose value has to satisfy a transcendental equation.

To obtain the equation of state, i.e. the relation between pressure and density (or energy density)
of matter, in quantum field theory we start from the energy-momentum tensor, that for a generic
Lagrangian £ = £ (¢,0,,¢) can be written

v 02
- 00u)

p-gve, (3.132)
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g"¥ being the metric tensor.
In a uniform system the expectation value of TV, is directly related to the energy density, €, and
pressure, P, through
(Tyy) = uylty (€ + P) — g P, (3.133)

where u denotes the four velocity of the system, satisfying u,u* = 1. It follows that in the reference
frame in which matter is at rest (T},y) is diagonal and

€ =(Too) = (Wyokoy) — (&), (3.134)
1 1 __
pP= §<Tii> = §<w,~kiw> +(&ZL). (3.135)
Within the mean field approximation, the lagrangian density of the o-w model reduces to
— 1 1
Lyr = [0 = 8oy (Vo) = m = go (PN |y = S mo () + Zmig(Vo)* (3.136)
implying . :
Typ = 19710y = g | =S ma () = Smg (Vo)*| (3.137)

As a consequence, Egs. (3.134) and (3.135) become

€ =—(Lmr) + Wyokow) (3.138)

1 _
P=(Lyp) + §<1//Yikﬂ//>» (3.139)

where (use Egs. (3.119), (3.125) and (3.130))

kg
@yokoy) = Ik d]k] [\/ IKI2 + (1 — 8o ()% + 8 (Vo)

212 Jo

= v LA \/k2 2
= guf 0)”3+W A \kl“d|k| /K| + (m — g5 {P))

2 v kr
B %”fzﬁﬁ | k*dik V1K +0m— go ()2, (3.140)
()

and (use eq.(3.124))
Ik|*
VIKZ+ (m— go(N?

Substitution of the above equations into Eqs. (3.138)-(3.139) finally yields (use Eq. (3.136) and the
equation of motion for the nucleon field)

(3.141)

J— . v kr
yikiw) = @y 0w = fo dik|

1 m? 1 g2 T
e=o—(m-m")’+ ——guﬁ ng+— | IkPdikl \/Ik]? +m*2 (3.142)

2 o 2mw 21 Jo

1mg 1 g 1 v [k IKk[*
P:———Um—m*2+——wn2+——f dlk| —— 3.143

22 T e s )y M 0149
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The first two contributions to the right hand side of the above equations arise from the mass
terms associated with the vector and scalar fields, while the remaining term gives the energy density
and pressure of a relativistic Fermi gas of nucleons of mass m* given by (see Eq. (3.129))

2 k *
* 8s Vv r 2 m
m-—— kl“dk] ————=
mg 27 Jo VIk|2 + m*?
2 m* kr +e;
m . . F
_ & m krel—m zln(_F)

m2 m? m*

) (3.144)

with ey, = ,/k% +m*?. Equations (3.142)-(3.144) yield energy density and pressure of nuclear mat-
ter as a function of the baryon number density np (recall: kr = (6n°ng/v)’¥). The values of the
unknown coefficients (m(ZT/ g(zf) and (mi/ gg,) can be determined by a fit to the empirical saturation
properties of nuclear matter, i.e. requiring

B e(ny)

A no

—-m=-16 MeV (3.145)

with ng =.16 fm~3. This procedure leads to the result

2
80 m2=2671, 82 m2=1959. (3.146)
g ma)
20_""I""I""I""I"""'/'/_
[ ——N =7 =A/2 ]
=10 - N=A,Z=0 /o
B oL e -
' I ]
m - -
g I ]
P g
_20-|||||||||||||||||||||||||||||-
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Figure 3.9: Fermi momentum dependence of the binding energy per nucleon of symmetric nuclear
matter (solid line) and pure neutron matter (dashed line) evaluated using the o — w model and the
mean field approximation.
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Fig. 3.9 shows the binding energies of symmetric nuclear matter (solid line) and pure neutron
matter (dashed line) predicted by the o0 — w model, plotted against the Fermi momentum kr. Note
that pure neutron matter is always unbound.
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Chapter 4

Exotic forms of matter

As the density increases up to values well beyond nuclear saturation density, different forms of
matter, containing hadrons other than protons and neutrons, can become energetically favoured.
Strange hadrons are produced through weak interaction processes, such as

pre—A'+v,, 4.1)
pte— ZO + Ve, (4.2)
n+e—2 +v,. (4.3)

For example, the reaction (4.1), leading to the appearance of a £, sets in as soon as the sum of the
proton and electron chemical potentials exceeds the rest mass of the produced baryon, Ms-! . The
results of theoretical calculations suggest that this condition is typically fulfilled at densities n 2 2ny.

At even larger density (n > 4np) a new transition, to a phase in which quarks are no longer clus-
tered into hadrons is eventually expected to take place.

4.1 Stability of strange hadronic matter

The properties of baryons with non zero strangeness, also referred to as hyperons, are sum-
marised in Table 4.1.

The mechanism responsible for the stability of strange hadronic matter matter—driven by the
Fermi-Dirac statistics obeyed by the constituent particles —is analog to the one leading to neutron-
ization, discussed in Chapter 2.

Let us consider a system consisting of B baryonic species b ...bg and L leptonic species ¢; ... ¢,
in equilibrium with respect to the weak interaction processes

bi_’bj"'gk"'vi, (4.4)
bj+fk—>b,'+1/g, (4.5)

with i,j =1...B and k = 1...L. The ground state of system, specified by the densities of the con-
stituent particles, np, and ny,, is determined through minimisation of the energy density, with the

Recall that we always assume that neutrinos have vanishing chemical potentials.



58 Exotic forms of matter

Charge | Mass [MeV] | Valence quark structure | Strangeness

A° 0 1115.7 uds -1
- -1 1197.4 dds -1
>0 0 1192.6 uds -1
>t +1 1189.4 uus -1
=0 0 1314.8 dss -2
= -1 1321.3 dss -2

Table 4.1: Properties of strange Baryions.

constraints dictated from conservation of the baryon density, np, and charge neutrality, implying

B
> N, =g, (4.6)
i=1
B L
Qp,np,+ ) Qpng, =0, 4.7)
i=1 i=1

where Qp, and Q,, denote the electric charge of the i-th baryonic and leptonic species, respectively.
Minimization of energy density e with respect to the densities nj;, and n,, with the above con-
straints results in L+ B equations involving the chemical potentials of the constituents
Oe Oe

Hbi:al’lbi y M

- al’lgl. '
and two Lagrange multipliers, denoted A and Aq. There are as many independent chemical poten-
tials as there are conserved quantities. All other chemical potentials can be expressed in terms of the
independent ones.

To see how the determination of matter composition works, consider, as an example, a system of
protons (p), neutrons (n), electrons (e), muons (1), and hyperons =~ and A°. In addition to Eqgs.(4.6)
and (4.7), which in this case take the form

nn+np+nA+n>::nB,

and
np—Ne—Npu—nz =0,

we obtain B + L — 2 = 4 equations involving the chemical potentials

KEp =Hn—He,
Hs-=Up+ Ue,
Hao = Hn,

My = He,
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showing that there are in fact only two independent chemical potentials, e.g. 1, and p.

In principle, for any given baryon density, ng, the densities of the constituent particles can be
determined from the above equations. Treating all constituents as non interacting particles, one finds
that X~ and A° appear at densities ~ 4ny and ~ 81, respectively, ny being the equilibrium density of
isospin-symmetric nuclear matter.

Note that the density at which the production of a strange hadron is expected to occur do not
depend on its mass only. Let us consider the A° and =~ hyperons, whose appearance becomes ener-
getically favoured as soon as the threshold conditions

Un+ e = Ms-,

Hn= MA0 ’
are fulfilled. From the above relations it follows that, in spite of the larger mass, the threshold density
of =~ production is in fact lower than that of A° production if the electron chemical potential is such

that
Ue > Ms- — Mo = 80 MeV .

Treating the electron as a non interacting particle, the corresponding electron density can be easily
obtained, and the threshold condition takes the form

e =/ pe it = pro = 370" > 80 eV,

Ne>2x1073 fm™3.

implying

Under the reasonable assumption that the electron density be of the order of one percent of the
baryon density, the above estimate corresponds to nz > 0.2 fm™ > ng, a density that is certainly
reached in compact stars.

4.1.1 Hyperon interactions

While lepton interactions can be safely neglected, the interactions of baryons, including hyper-
ons must be properly taken into account in the calculation of the corresponding chemical poten-
tials. The maximum mass of a star consisting of non interacting neutrons, protons and leptons, ob-
tained by solving the Tolman-Oppenheimer-Volkoff equations discussed in Section 1.5, turns out to
be Mmax ~ 0.8 Ms—to be compared with the canonical value of the neutron star mass, M ~ 1.4 Mo,
resulting from observations—and the appearance of strange baryons, leading to a softening of the
EoS, makes things worse, bringing the value of Mp,3x down to ~ 0.7 M.

In principle, the EoS of strange hadronic matter can be studied using either non relativistic many-
body theory or relativistic mean field theory, as discussed in Sections 3.4 and 3.5, respectively. How-
ever, the former approach requires the determination of the potentials describing hyperon-nuleon
(YN) and hyperon-hyperon (YY) interactions, while the latter involves the YN and YY coupling con-
stants.

Experimental data providing information on YN and YY information are scarce and not very ac-
curate. Studies of hypernuclei and Ap scattering suggest that the Ap interaction is weaker than the
pn and pp interactions.
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Some insight on the relation between strong interactions in the nucleon and hyperon sectors can
be obtained from an admittedly crude argument based on the quark model of hadrons. According to
this model, the m-meson is a quark-antiquark system, and the composition of the three charge states
is given by

+ 7 - - o_ 1 7
n°=ud , n=di , 1 =—(wa-dd),
V2
where u and d denote the up and down quark, respectively. As discussed in Chapter 3, the intermediate-
range NN force can be described in terms of exchange of a quark-antiquark system, modelled by a
scalar meson whose structure can be written in the form

1 -
o=—(ui+dd),
V2

which is essentially the number operator of non-strange quarks. Since nucleons contain three non-
strange quarks, while the A and X~ only contain two, it follows that the coupling constants of the Ap
or Zp interaction mediated by the o-meson is 2/3 of the corresponding pp coupling constant. In the
language of nuclear many body theory, this argument leads to predict the following simple relations
between the interaction potentials

2
UAN = VN = §VNN )

4
UAA= VAL = Vsx = §VNN )

where N denotes either a proton on or a neutron.

More realistic and accurate models of the YN potentials, referred to as Jiilich and Nijmegen mod-
els, have been developed exploiting all the available information on YN scattering and hypernu-
clear properties. Unfortunately, the predictions of the two models are appreciably different. Using
the Jiilich potential leads to predict X~ and A appearance at density ~ 2ny and ~ 3ny, respectively,
whereas the corresponding quantities obtained from the Nijmegen potential are ~ 1.5n¢ and ~ 4ny.
Figure 4.1 illustrates the typical composition of matter resulting from a calculation carried out using
the formalism of nuclear many-body theory, a realistic nuclear Hamiltonian and the Nijmegen model
of YN interactions.

Recently, it has been suggested that the inclusion of a purely phenomenological three body force,
involving two nucleons and a A hyperon, is needed to achieve an accurate description of the A bind-
ing energy in a variety of nucleons. The results of a quantum Monte Carlo calculation performed
taking into account AN N interactions are displayed in Fig. 4.2

4.2 Deconfinement and quark matter

The ab initio description of the QCD phase diagram would require numerical simulations on a
lattice [13, 14]. However, application of this approach in the region corresponding to non vanishing
chemical potential presents severe difficulties. Therefore, most studies of the properties of quark
matter are carried out within simplified models, inspired to QCD and involving a set of of parameters,
the values of which are determined in such a way as to reproduce the observed properties of hadrons.
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Figure 4.1: The bottom panel shows the composition of strange hadronic matter obtained from non
relativistic nuclear many-body theory using the Nijmegen model of YN interactions. The density de-
pendence of the chemical potentials is illustrated in the upper panel. Three-body forces involving
nucleons and hyperons are not taken into account.
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Figure 4.2: A binding energy as a function of A=2/3, The results of quantum Monte Carlo calculations,
labelled AFDMC, are compared to data collected using different experimental techniques.
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4.2.1 Thebagmodel

In this section, we will analyse a model developed in the 1970s at the Massachusetts Institute
of Technology (MIT)—referred to as bag model—in which the main features of QCD are taken into
account in a rather crude fashion. It is remarkable that, in spite of its simplicity, the MIT bag model
provides a reasonable description of the hadronic spectrum.

Within the MIT bag model, the fundamental properties of QCD, that is, asymptotic freedom and
confinement, translate into two simple hypoteses:

¢ the QCD vacuum exerts a pressure on any quark aggregate of vanishing color charge, thus con-
fining it to a finite region in space: the bag;

¢ within the bag, gluon-excgange interactions between quarks are negligible, or tractable at low-
est order of perturbation theory.

In the simplest implementation of the above scenario, in which the quarks within the bag are
described of non-interacting particles obeying Fermi statistics, the thermodynamic potential can be
computed explicitly.

Consider a system consisting of Ny types of fermions with masses m;, described by the Dirac
Lagrangian density

Ny ) )
%= G'ia-myq'. (4.8)

i=1
The formalism suitable to describe fermion fields, satisfying anticommutation rules, is based on
the use of Grassman variables n; (i = 1,..., N), whose gaussian integral is given by [15, 16]

f dn' dny - dn',dnye” 7 = det(A) . 4.9)

Exploiting the techniques descrided in Appendix C we can therefore write the partition function
of the system in the form [15]

Zznfi@qﬁfgqiexp
i

p . . .
f drfdgx E/l(—y061+i77.V—m,~+u,~y°)q’] , (4.10)
0

where the integration is extended to all paths satisfying the antiperiodicity conditions g’ (%,0) = —q' (%, B).
We can now transform to momentum space using the expansion

i 1 (BFAET) ~i (=
90 =752, e e (), (@.1)
np

where « is the index associated with the components of Dirac’s spinors, and the antiperiodicity con-
straint requires
Ein=02n+1nT. (4.12)

Using Eq.(4.9) we obtain the partition function

Z= 1] | 2@, f DGonexp iy (Gi,) DG}, = det(D) (4.13)

i,a,p,n inp
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with
D=—i[(=iEin+u) —y°7-p—miy°]. (4.14)
In addition, exploiting the operatorial relation

In[det(D)] = Tr [In(D)] (4.15)

we can now derive from Eq.(4.14) the thermodynamic potential, defined as

Q=-Tln Z=-PV. (4.16)
The results is
Q = -Tnldet(D)]=-2T ) W{f°[(Ein+u)*+E;, ]}
in,p
= -T Y In{f°(E;, + (Eip—p)*l} +In{B°[E7, + (Eip + )1}, (4.17)

in,p

where E;, =1/1p1> + ml2 Using Eq.(4.12). we can rewrite the logarithms appearing on the right hand
side of Eq.(4.17) in the form

In[@2n+ 1)?n? + ,Bz(Eip + ,Ui)z]
j‘ﬁz(Eipiﬂi)z do?
1

= m+ln[l+(2n+l)2ﬂ2] , (4.18)

which allows us to perform the sum over n, because

3 ! 1(1 ! ) (4.19)

nzz,oo 02+ 2n+1)272  O\2 0+l

By integrating over the variable 6§ we obtain an expression for the logarithm of the partition function
which involves terms independent of § and the chemical potentials y;. These contributions do not
affect the thermodynamics, because, after being exponentiated, can be included in the normalization
of the partition function.Neglecting these terms we find

Nf d3
Q=-6TV Z f # [,BEip +In(1+ e_ﬁ(Eip_#i)) +In(1+ e_ﬁ(Eprli))] , (4.20)
i=1

where the factor 6 = 2 x 3 accounts for the degeneracy associated with colour and spin degrees of
freedom, the second and third terms on the right hand side represent the contributions arising from
particles and antiparticles, respectively, and the first term contributes to the vacuum energy.
From Eq.(C.6), establishing the relation between pressure, thermodynamic potential and parti-
tion function, we finally obtain
d*p
Py=6 TZ[ e {ln [1+expB(E;p—pi)]+In[l+exp B(E;p+ ,ui)]} . 4.21)
1

Within the bag model, we have to add to the pressure Py, corresponding to a gas of non inter-
acting quarks and antiquarks, three additional contributions: 6 Pgjye, describing the pressure of a
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gluon gas (which can be computed using a technique similar to that employed to obtain Eq. (4.21)—),
0 Ppert taking into account perturbative corrections arising from strong interaction processes associ-
ated with gluon exchange, and the constant term — B, which parametrises the pressure exerted by the
QCD vacuum on the perturbative vacuum within the bag. Therefore, we can write

P =Py+06Pgue+6Ppert— B, (4.22)

with [15] ,

Consider now the simplest implementation of the model, in which the number of flavours is
limited to two—u and d, with m, = m; = 0 and u, = y4 = p—and perturbative gluon exchange is
neglected. Under these simplifying assumptions, the calculation of the pressure can be carried out
analytically, with the result [17]

In[1-e7A7]. (4.23)

n o4 2 M
P=-B+37T—=T"+u' T +—. (4.24)
90 272
The factor 37 in front of the term proportional to T* results from the sum 16 + 21, where 16 = 8 x 2 is
the number of gluonic degrees of freedom and 21 is obtained by multiplying the number of degrees
of freedom associated with quarks and antiquarks (24 = 2 x 3 x 2 x 2) by the factor 7/8 typical of Fermi
statistics.
Equation (4.24) can be exploited to obtain a qualitative description of the QCD phase diagram.
Assuming that a pion gas with vanishing potential provides a schematic representation of the hadronic
phase, we can write the corresponding pressure in the form [15]

2

Praq=3 = T* (4.25)
had - 90 y .

where 3 is the number of pionic degrees of freedom, that is, the number of isospin states. Gibb’s
equilibrium condition is represented by the curve of Fig. 4.3, computed using the value B = 57.5
MeV/fm3, resulting from a fit to the masses and magnetic moments of light hadrons [18].

4.2.2 The equation of state of quark matter

The thermodynamic functions describing a many-particle system at temperature 7T =1/ can be
obtained from the grand partition function, defined as

Z=Tr

exp(—ﬁ(H —ZﬂiNi))] : (4.26)

where H is the hamiltonian operator and y; and N; are the chemical potential and the number oper-
ator associated with particles of species i, respectively.

For example, pressure (P) and energy density (¢) can be defined in terms of the Gibbs free energy,
Q, which is in turn related to Z through

1
Q= —Ean, (4.27)
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Figure 4.3: Diagramma di fase del bag model con Ny = 2, ottenuto ponendo m,, = mg =0, py, = g =
pe B =57.5MeV/fm? (corrispondente a B4 = 145 MeV). La fase adronica & descritta come un gas di
pioni a potenziale chimico nullo.

according to
Q
P=——, 4.28
v (4.28)
and a0
€=Q—Z(—) y (4.29)
7 \oui) gy

where V is the volume occupied by the system.

In the case of quark matter, due to the properties of QCD described in Section XXXX, Q consists
of two contributions. One of them, that will be denoted Q.;;, is tractable in perturbation theory,
while the second one takes into acount nonperturbative effects induced by the properties of the QCD
vacuum.

The relation (4.28) between pressure and Gibbs free energy and the interpretation of the bag con-
stant discussed in Section 4.2.1 suggest that within the MIT bag model the difference between QO and
Qpert can be identified with the bag constant, i.e. that

Q=Qpert+VB. (4.30)

The perturbative contribution can be expanded according to

Qperc=V 33 QP 4.31)
f n
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where the index f specifies the quark flavor, while Q}”) is the n-th order term of the perturbative
expansion in powers of the strong coupling constant, a.

The EOS of quark matter can be obtained from the relations linking pressure and energy density
to Q:

—_9__ _ (n)
P= V= B ;;Qf ) (4.32)

0Q
alltf

e:%_;(

ny and u¢ being the density and chemical potential of the quarks of flavor f.
The lowest order contribution at T = 0, reads (compare to Egs. (1.29) and (1.30))

11 5
o _ _ -1z 2 _ 02,2 _ 2 02
Qp = n2[4'uf\/“f ’"f(“f sz)
NG R

4
+§mflog m,

):—P+Zufnf, (4.33)
f

(4.34)

where m¢ is the quark mass.
Substituting Eq. (4.34) into Egs. (4.32) and (4.33) and taking the limit of massless quarks one finds

the EOS
_€— 4B

3
The contribution of first order in a;, arising from the one-gluon exchange processes discussed in
Appendix 22, reads

P (4.35)

2a
n _ =%s
Q ;T 3

2 _ 02
e |

1 2 252

The chemical potentials appearing in Eqgs.(4.34) and (4.36) can be written

uf:epf+6,uf=,/m§+p%f+6uf, (4.37)

where the first term is the Fermi energy of a gas of noninteracting quarks of mass m at density ny =
p%f /m?, whereas the second term is a perturbative correction of order o, whose explicit expression is

2
2,(15 me eFf + pr
6,U,f = —37[2 pr -3 eFf log( mf (4.38)

Including both Q;ﬁn and Q;}) in Egs. (4.32) and (4.33) and taking again the limit of vanishing quark
masses one finds

P:L(1—2;”S)Zu4—3 (4.39)
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e:%(l—%);p‘}+3. (4.40)
Comparison to Eq. (4.35) shows that the EOS of a system of massless quarks in unaffected by one-
gluon exchange interactions.

For any baryon density, quark densities are dictated by the requirements of baryon number con-
servation, charge neutrality and weak equilibrium. In the case of two flavors, in which only the light
up and down quarks are present, we have

1
ng = g(nu +ng), (4.41)
2n 1n ne=0 (4.42)
3 u 3 d e — .
Hd = Hu+ He (4.43)

where 7, and u. denote the density and chemical potential of the electrons produced through
d—u+e +v,. (4.44)

Note that we have not taken into account the possible appearance of muons, as in the density region
relevant to neutron stars g, never exceeds the muon mass.

As the baryon density increases, the d-quark chemical potential reaches the value g = mg, m;
being the mass of the strange quark. The energy of quark matter can then be lowered turning d-quarks
into s-quarks through

d+u—u+s. (4.45)

In presence of three flavors, Egs. (4.41)-(4.43) become

1
ng = g(nu +ng+ng), (4.46)
2 ! 1 0 (4.47)
—Ny——Ng— —Ng— Ng = .
3 u 3 d 3 s e
Mg =Us=y+Ue. (4.48)

Unfortunately, the parameters entering the bag model EOS are only loosely constrained by phe-
nomenology and their choice is somewhat arbitrary.

As quarks are confined and not observable as individual particles, their masses are not directly
measurable and must be inferred from hadron properties. The Particle Data Group reports masses of
a few MeV for up and down quarks and 60 to 170 MeV for the strange quark. At typical neutron stars
densities heavier quarks do not play a role.

The strong coupling constant a can be obtained from the renormalization group equation

127
aS = 2 )
(33—2Np)In (@*/A2)

(4.49)

where N = 3 is the number of active flavors, A is the QCD scale parameter and u is an energy scale
typical of the relevant density region (e.g. the average quark chemical potential). Using A ~ 100 +200
MeV and setting u = pq ~ 14, at a typical baryon density ng ~ 41 one gets a; ~ 0.4 + 0.6.
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The values of the bag constant resulting from fits of the hadron spectrum range between ~ 57
MeV/fm3, with A =220 MeV, and ~ 350 MeV/fm?3 , with A = 172 MeV. However, the requirement that
the deconfinement transition does not occur at density ~ 1y constrains B to be larger than ~ 120—-150
MeV/fm?, and lattice results suggest a value of ~ 210 MeV/fm?3.

Figure 4.4 shows the energy density of neutral quark matter in weak equilibrium as a function
of baryon density, for different values of B and a;. Comparison between the dotdash line and those
corresponding to a # 0 shows that perturbative gluon exchange, whose inclusion produces a sizable
change of slope, cannot be simulated by adjusting the value of the bag constant and must be explicitly
taken into account.

BOO-I-----------------
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e—ngM [MeV]

400 -
200 [

0.50 0.75 1.00 1.25 1.50

ng [fm™2]

Figure 4.4: Energy density of neutral quark matter in weak equilibrium as a function of baryon num-
ber density. The solid and dashed lines have been obtained setting @ = 0.5 and B = 200 and 120
MeV/fm3, respectively, while the dashdot line corresponds to a s = 0 and B = 200 MeV/fm3. The quark
masses are m, = mg =0, mg = 150 MeV.

The composition of charge neutral quark matter in weak equilibrium obtained from the MIT bag
model is shown in Fig. 4.5. Note that at large densities quarks of the three different flavors are present
in equal number, and leptons are no longer needed to guarantee charge neutrality.
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Chapter 5

Cooling mechanisms

The physical processes leading to neutron star cooling are driven by the emission of neutrinos
(and antineutrinos) produced through a variety of mechanisms, depending on the different forms of
matter present in the crust and the core of the star.

In this Chapter, we will briefly describe the emission processes taking place in the core, where
matter is believed to consist mainly of neutrons, with a small fraction of protons and leptons, the
abundance of which is determined by the requirements of weak equilibrium and charge neutral-
ity. These processes turn out to be dominant, and can be described within a realistic and consistent
model of the microscopic dynamics.

5.1 Direct Urca process

The most efficient neutrino and antineutrino production mechanisms, dubbed direct Urca pro-
cesses, are the simplest weak processes taking place in matter consisting of neutrons, protons and
leptons: neutron B-decay and electron capture by protons

n—p+e+ve, pte—n+v,. (5.1

At B-equilibrium, the above reactions take place at the same rate, and the chemical potentials of
the participating particles satisfy the condition'

Hn=Up+Ue. (5.2)

Because at equilibrium the rate of production of neutrinos and antineutrinos is the same, the total
neutrino emissivity, Qp, is simply twice the emissivity associated with neutron $-decay, discussed in
Appendix B

dpn

QD=2 defiﬁvafn(l_fp)(l_fe)- (5.3)

IWe will always assume that neutrinos and antineutrinos be non degenerate, i.e. that they have vanishing
chemical potential.
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In the above equation dW;_. ¢ is the differential probability of f-decay, f; is the equilibrium Fermi-
Dirac distribution of the particles of species j and E, denotes the neutrino energy. Note that the
calculation of Qp requires the evaluation of a twelve-dimensional integration, which can be reduced
to a eight-dimensional one exploiting energy and momentum conservation.

The calculation of Eq.(5.3) can be greatly simplified, and treated analytically, using the approxi-
mation known as phase space decomposition, which is expected to be applicable to strongly degen-
erate fermions. This scheme is based on the tenet that, as at the temperatures typical of neutron stars
both nucleons and leptons are strongly degenerate, the main contribution to the emissivity is pro-
vided by particles occupying quantum states in the vicinity of the Fermi surface. As a consequence,
one can set [pj| = pr;, implying in turn that the energy scale relevant to the process is driven by the
temperature, i.e. that E, ~ T. As the neutrino momentum is also of order T, it can safely be ne-
glected, with respect to the momenta of the degenerate fermions, in the argument of the momentum
conserving 6 -function.

The differential transition probability reads

dpp dpe

@2m)3 @2m)3’ 64

AW;_ =218(Ep— Ep— Ec — E,) (pn—Pp — Pe) IMy;|* 47 E. dE,

with |[My;1* = 2G*(1 +3g3), where G = Grcos, Gr and 6, being the Fermi constant and Cabibbo’s
angle, respectively, while g4 is the axial vector coupling constant.
Equation (5.4) can be cast in the form

dpn

dWi—»fW 2 )8 ——0(E,— Ee_Ev)a(pn_pp_pe) (5.5)
3
x|My;|* 4nE; dEy [] prjm] dE;dQj, (5.6)
j=1

whered(); is the differential solid angle specifying the direction of the momentum p;, m;‘ = prjlvEj
is the effective mass of the particles of species j and vrj = (0Ej/0p;j) p=p,; denotes the corresponding
Fermi velocity.

Substutution of Eq.(5.5) in the definition of the neutrino emissivity, Eq.(5.3), leads to the result

Q= )8 T® AI|Mj;? jﬂlppj (5.7)

with
A= 47;[ dQ1dQdQ36(pr—Pp—Pe) » (5.8)

and
f dxv H ) dx] fil| 6(x1+x2+x3—x). (5.9)
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The definition of A, Eq.(5.8), involves the integration on angular variables, while the calculation
of I, defined by Eq.(5.9), requires integration over the adimensional variables x, = E,/T and x; =
(Ej —uj)/T. The details of the calculations of both A and I are described in Appendix D. The final
results are

A 327° o - 4577° 5,10
ppn pr pFe npe ’ 5040 ) .

where the function
1 se < +
Onpe = { PFn = PFp + PFe , 5.11)

0 otherwise

enforces the threshold condition that must be satisfied to fulfill he requirement of momentum con-
servation.
The resulting expression of the emissivity is

k ok ok
my,m,m,

hlo CS

457
Qp = mGi—coszec(l +3g%) (KpT)° ©ppe

8 m; my,

my

1/
n
~4.00 x 10%7 (—") TS @ppe ergem > s, (5.12)

no
where, as usual, 19 = 0.16 fm™3 is the equilibrium density of isospin symmetric nuclear matter, ob-
tained from extrapolation of the central density of atomic nuclei and the semi empiric mass formula,
while Ty denotes the temperature measured in units of 10°K. Note that the emissivity depends on
temperature according to the power law Qp Tgﬁ. The power six can be easily explained on the basis
of simple phase space considerations.

Integration over the momenta of the three strongly degenerate fermions participating in the pro-
cess contributes a term o< T2, as the integration region is restricted to a thin shell of size ~ T around
the Fermi surface. On the other hand, the integration over the momentum of the non degenerate neu-
trino is not restricted, so that its contribution is oc T3. Taking into account that the energy conserving
8-function brings about a factor 7!, that cancels the factor T arising from the neutrino energy, one
gets the expected o« T® dependence. This example illustrates how neutrino emissivity in neutron star
matter is strongly affected by degeneracy.

5.1.1 Threshold of the direct Urca process

The main feature of the direct Urca process is the occurrence of a threshold, reflected by the pres-
ence of the step function Onpe in Eq. (5.12). Because the neutrino emissivity associated with this
process, when active, dominates by many order of magnitude, it is very important to understand the
implications of the threshold condition.

As we have already seen, the occurrence of the direct Urca process requires that the Fermi mo-
menta of the degenerate fremions, pry, prp € pre, fulfill the triangular condition pg, < prp + pre. At
densities around the equilibrium density of isospin symmetric nuclear matter, ng, this requirement
is not met. However, several models of the nuclear equation of state predict that the Fermi momenta
prp and pr, can grow faster than pr, with increasing density, thus allowing the onset of the process.
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The Urca process is active when the proton fraction reaches a critical value. In the case of matter
consisting of neutrons, protons and electrons (npe matter), electric neutrality implies prp, = pre and
the triangular condition simplifies to prp = pr,/2. It follows that the proton and neutron densities
must be such that n, = n,/8. In terms of proton fraction this inequality reads

np

1
X = 3 (5.13)

P np+ny
If the electron chemical potential exceeds the muon rest mass, m, = 105.7 Mev, a different kind
of direct Urca process is energetically allowed, in addition to the one described above

n—p+u+vy, ptu—n+vy. (5.14)

The emissivity associated with the above processes can be written in the same form as Eq. (5.12), since
the condition of $-equilibrium requires y;, = g, implying in turn m;, = mg. The threshold function
alone is modified to ©,,,,, as the appearance of muons affects the critical value of the proton fraction,
which grows until it reaches the upper limit x, = 1/[1+ (1 +271/3)3]  0.148 when p, > my,.

As mentioned in the previous Chapters, early models of neutron star matter were largely based
on the non interacting Fermi gas description. Within this oversimplified picture, the proton fraction
never exceeds the threshold of direct Urca processes. However, in the 1980s [19] and early 1990s [20]
it was shown that inclusion of the effects of strong interactions — through models of nuclear dynamics
predicting large symmetry energies — leads to a sizeable increase of the proton fraction. The resulting
values of x, turn out to be above the direct Urca threshold in a density region which is believed to be
attained in the neutron star core.

Figure 5.1 shows the proton, electron and muon fractions in cold, i.e. T = 0, nuclear matter ob-
tained from the equation of state of Ref. [21]. It clearly appears that the horizontal lines correspond-
ing to the thresholds of direct electron and muon Urca processes are crossed at densities in the range
06<n<0.9fm3.

The density dependence of the of the neutron Fermi momentum is displayed in Fig. 5.2. For
comparison, the quantities prp + pre and prp + pry are also shown. It can be seen that the triangular
condition on the Fermi momenta is fulfilled at density ~ 0.7 fm ™ and ~ 0.9 fm ™3 for the electron and
muon Urca process, respectively.

5.2 Modified Urca processes

If the direct Urca process is not allowed, the most efficient mechanism of neutrino emission is
the modified Urca process, in which momentum conservation is made possible by the presence of an
additional, spectator, nucleon.

The modified Urca reactions involve a nucleon-nucleon collision associated with -decay or cap-
ture

n+n—p+n+e+v, , ptnt+te—n+n+v,, (5.15)

n+p—p+p+e+v, , prpte—n+p+v,. (5.16)

where the two lines correspond to the neutron and proton branches, respectively. As we will see, the
addition of the spectator nucleon dramatically slows down the reaction rate.
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Figure 5.1: Proton, electron and muon fractions predicted by the model of Ref. [21]. The two

horizontal lines show the thresholds of the direct Urca processes involving electrons and
muons.

In the following, modified Urca processes will be denoted by the label M N, where M stands for
modified, whereas N = n and p refers to the neutron or proton branch. Both branches include the
direct and inverse reactions, the rates of which at equilibrium are the same. Hence, only one rate is to
be computed, and multiplied by a factor two to get the total emission rate.

Neutrino emissivity can be written in the usual form

QMszf

1
x6Pr-P)AfA-f)1A-f)A-f) §|Mf,~|2 : (5.17)

dp. dp.
2m)3 (2m)3

4 dp] )
]1:[1 2m)3 E, (2n) 5(Ef _E)

where the indices i and f refer to the initial and final states and |M; |? is the squared modulus of the
ampletude associated with the process. The additional factor 2 is a symmetry factor, the inclusion of
which is needed to avoid double counting in collisions involving identical particles.

One can proceed following the same procedure employed in the discussion of the direct Urca

process (see Appendix D), and rewrite the emissivity associated with the direct reaction in the form

5

1
MN _ 8 2 R
QMN = i T® AI(IMyi %) .|_| prjm;, (5.18)
j=1
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Figure 5.2: Density dependence of pgy, prp + pre and prp + pry, obtained from the model
of Ref. [21]. The triangular conditions on the Fermi momenta are fulfilled at densities larger
than the values at which the dashed and dotted lines cross the solid line.

with
5
A=4n Hfde SPr-P;), (5.19)
j=1
2y _Am |2 2
Myl = 2 Hfdfzj 5P —P;) M| (5.20)
j=1
and

o0
I:f dx, x3
0

Note that, as the magnitudes of the momenta of the degenerate fermions, p; are set to be equal to
the corresponding Fermi momenta, the quantities A and (|M filz) only involve integrations over the
angles specifying the directions of the particle momenta.

In the evaluation of A, the integration over the neutrino momentum can be readily carried out,
as py is neglected in the §-function. Because, in general, | M fi|2 depends on the momenta, we have
introduced the the squared modulus of the angle-averaged matrix element, (| M¢; 12y.

5 [es) 5
H[ dx; fj 6(2 xj—xv) . (5.21)
j=17eo j=1
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Figure 5.3: Neutrino emissivity obtained from the dynamical model of Ref [21]. The direct
Urca process set in at density ~ 1.3 g cm™3. Below threshold the dominant emission mecha-
nism is the modified Urca process.

Calculation of the integral of Eq. (5.21) yields (see Appendix D)

_ 115137°

. (5.22)
120960

At this stage the neutron and proton branches require separate discussions.

5.2.1 Neutron branch

Let us consider the first reaction of Eq. (5.15). We label with 1 and 2 the neutrons in the initial
state, while 3 and 4 refer to the neutron and proton in the final state, respectively. The calculation of

T

Figure 5.4: Feynman diagram illustrating the first reaction of Eq. (5.15)
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A can be performed, with the result
_ 2n(4m)*

Prn
Recall that the above expression should be modified at high density, if direct the Urca process sets in.
In this case, modified Urca processes would give a negligible contribution to the emissivity.

The evaluation of the matrix elements My; involves non trivial difficulties, as it includes strong
interactions. The nucleon-nucleon interaction, discussed in Chapter 2, features a long range com-
ponent arising from one-pion-exchange (OPE) processes, taken into account within Yukawa’s theory,
and a short range, strongly repulsive, component, that is generally described within phenomenolog-
ical approaches.

The long range contribution has been estimated in the classic work of Friman and Maxwell [22],
treating nucleons as non relativistic particles and assuming that all lepton momenta can be neglected.
The result, obtained averaging over the direction of the neutrino momentum, can be written in the
form

Ay (5.23)

16 G2 4
IMpN? = 2 (ﬁ) g3 Fa, (5.24)
e /2

where m; is the pion mass, f; =1 and

B 4Q} N 4Q; (Q1-Q2)%-3Q7Q3
AT @emd? T (Q@rm2? QR rmR)QE+md)

with Q1 =p1-ps e Q2 =p1 —pa.

The first contribution arises from the amplitude of the reaction with 1 — 3 and 2 — 4, whereas
the second one is associated with the exchange process, in which 1 — 4 and 2 — 3. Finally, the third
contribution takes into account interference between the two amplitudes. In addition, Friman and
Maxwell neglect the proton momentum, setting |Q;| = |Q2| = prr, e Q1-Q2 = p%n/ 2. Their final result
reads

(5.25)

4,2 4

Mn2 _ o fn)" 8a21 PEn

IMMP2 = 16G (—) sA__ (5.26)
my) E; 4 (pFn+mﬂ)

Being independent of the directions of the momenta, the above expression can be moved out of the
integral appearing in Eq, (5.20), with the result ((M 1\/11 n2y = |MMn2, Comparison between the above

fi
result and the exact solution, obtained through numerical integration, shows that the approximation
employed in Ref. [22] are remarkably accurate. The discrepancy turns out to be few percent at n ~ ny,

and ~ 10% at n ~ 3ng.
In conclusion, the emissivity associated with the neutron branch of the modified Urca process
obtained by Frimam and Maxwell is

ain 11513 GE cosOc g mi2my, (£, \4 pry(kpT)®
o] T plogg  %nPn

30240 271 My
mi\3 (mE\ (n,\1/3
~8.1x10% (—”) —r (—”) Tea, B, ergem™3s7!, (5.27)

with a,, =1.13 e §, = 0.68.
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5.2.2 Proton branch

Let us now consider the second reaction of (5.16). We will label 1 e 2 the initial state protons 3 and
4 the final state proton and neutron, respectively.

The calculation of A turns out to be more compilex, with respect to the case of the neutron branch.
We find

2(2m)°

— e (pre+3PEp — PEn)’ Omp (5.28)
PFn Py, PFe

Ap:

where Oy, = 1 if the proton branch is allowed by momentum conservation and ©,;, = 1 otherwise.
The triangular condition translates into the inequality pr, <3pFp + pre. Note that the expression of
Ap should also be modified at densities larger than that corresponding to the threshold of the direct
Urca process. However, in this density region the contribution of the modified Urca processes turns
out to be negligible.

The calculation of the squared matrix element yields a result identical to (5.24). Replacing |Q,| =
|Q2| = prn — prp (Maximum momentum trasfer) and Q1 - Q2 = —(prn — pr)z, one obtains an expres-
sion similar to Eq. (5.26), apart from the replacements of 21/4 with 6 e pr,, with pr, —pr),. Neglecting
the angular dependence of the matrix element has been shown to be a good approximation in both
the neutron and neutron branches.

The proton branch emissivity can be obtained from the corresponding neutron branch result
exploiting the rescalingrule

Mp,2 )
QMp (M7 >(mp) (PFe+3PFp—PFn)2®

QM™ (M) \ my, 8preprp g
* 2
my\° (pre+3PEp — PEn)?
~ Z PFe+SPFp — PFn Ory . (5.29)
my 8pFepr

In applications, it is common practice setting (IM%’D 1y =(IM }Vl[ |2y, as illustrated by that the last line
of Eq. (5.29).

The main difference between the two branches is the presence of a threshold for the proton
branch. In npe matter, this condition reduces to pr, < 4pgp, corresponding to a critical proton
fraction x = 1/65 = 0.0154, which is believed to be attained almost everywhere in the neutron star
core. Once the modified Urca process is active in the proton branch, the associated emissivity slowly
grows, starting from zero and eventually becoming comparable to the the emissivity associated with
the neutron branch, in the vicinity of the threshold of the direct Urca process.

In conclusion, it has to be pointed out that the temperature dependence of the emissivity of the
modified Urca process is a power law T®. The additional factor T2, with respect to the direct Urca
process, is to be ascribed to the presence of two additional degenerate fermions.
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5.3 Neutrino bremsstrahlung in nucleon-nucleon collisions

To complete the discussion of neutrino emission processes in the neutron star core, we need to
consider neutron bremsstrahlung associated with nucleon-nucleon collisions

n+n—n+n+v+v, n+p—-n+p+v+v, p+p—op+p+v+v. (5.30)

T

Figure 5.5: Feynman diagram illustrating the first reaction of 5.30.

In these reactions, the scattering process driven by strong interactions leads to the production
of a neutrino-antineutrino pair, of any flavour. Neutrino bremsstrahlung has no threshold, and is
therefore active at any densities. In addition, unlike the processes discussed above, does not change
the composition of matter.

The emissivity associated with bremsstrahlung can be written in the form

de dp,v

s s @ @) 8(Ep ~E

4 dp;

NN _ J

< ‘f[,l:[l(zn)s
1

x 6Py ~P) fi fo(1-f3) (1~ fa) ;|Mfi|2 , (5.31)

where the index j labels nucleons, p, and p’, are the neutrino and antineutrino momenta, w, =
E, + E,, is the energy carried by the neutron pair and the symmetry factor s (s = 1 for the np channel
and s = 4 for the nn and pp channels) is meant to avoid double counting. In the non relativistic limit,
the squared matrix element, after spin summation, reads

|Mpil? = | Myl 05 . (5.32)

The factor w? in the denominator comes from the propagator of the virtual nucleon appearing in the
Feynman diagram.

Neglecting the momenta of the neutrinos with respect to those of the nucleons, |M fi
independent of p, e p’,,. As a consequence, the integration over the neutrinos phase-space yields

|2 become

(e.9) o0 1 o0
foﬂﬁdafo E§dE1’,---:%f0 wddwy -, (5.33)
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and the emissivity takes the form (we follow the decomposition approximation again)
Qo B Ll ) 7 Hm (5.34)

(2118 30 ik PES '
con
A= (4m)? f Ay dQy dQ3dQu8(p1 +Pp2—P3—Pa) (5.35)
~ 2 4 7[)2
(IMpil") = fd(h dQ, dQ3 dQ46(p1 +p2 —P3 —pa) Myl (5.36)
16478

=f0 dx, xﬁ o (]; Xj— xv) = Ve (5.37)

Ef_oo dx; fj

Recall that x; = (Ej—;)/ T is the dimensionless nucleon energy, while x, = w,/ T is the corresponding

variable for neutrinos. The result of the angular integrations is

_ (4n)® (4m)° (4m)°
nn=_"_3 » np= T 5 pp = T a3
p%n ZP%nPFP Zp%p

Phase-space decomposition provides the rules to rescale the different processes

an <|M p| ) ;; 2 Prp QPP <|Mpp| ) ; 4pr
=4 ) =4 o
an <|Mnn|2> * fl PFn

pen QM (MBI
Within the OPE dynamical model, the squared matrix element turns out to be

fu

My

|MNN| _IGGFgA( ) FNN’

with
Q] Q; Q2Q2-3(Q;-Q2)?

Q%+ m2)?  (Q3+m2)?  (Q+m2)(Q3+m3)

Fynn =

for nn e pp processes, and

Q! 200 Qj5- @@’

Q+m)? " (QG+md)? " (@ +md)QG+md)

Fyn =

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

for the np process. Recall that Q; = p;—ps, Q2 = p1 —p4 and, in the strong degeneracy limit, Q;-Q, = 0.
After averaging the squared matrix element over the directions of the nucleon momenta, one

obtains

fn

my

(MEN?Y =161, GFgA( ) (FnN)

(5.43)
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where

1 1
(FNN) =3 - garctanq + + arctan (q 2+ qz) , (5.44)

AN

for nn or pp processes, and

3 arctang 1 2 P4Fn ( - arctan q) 2 Plzgn

Fyn)y=1- + -
{Fnn) 2q 20+qD) (%, +m2)? g ) pi, +md

) (5.45)
with gy = 2pp,/ my, for the np process.

Note that Eq. (5.44) has been derived within the model under consideration, while Eq. (5.45) has
been obtained assuming pr, < pr,. However, this approximation is applicable at densities n S 3ny.

To summarise the calculation of neutrino emissivity, we can refer again to the treatment of Friman
and Maxwell. In the nn channel they neglect the exchange contribution to the squared matrix ele-
ment (5.44), average over the directions of the nucleon momenta and set n = ny. Finally, they plug
(M f,-|2> obtained within this scheme into the expression of Q"", with an arbitrary correction fac-
tor B, meant to take into account all neglected effects (correlations, repulsive component of the
nucleon-nuhcleon interaction ...). The same procedure is applied to the np contribution, in which
the interference term of Eq. (5.45) is omitted.

The pp process, not taken into account in Ref. [22], has been studied by Yakovlev and Levenfish
[23]. Their results read

41_Gpgam' ( fr

4
= 14175 277210 o8 ) PFnann,Bnn(kBT)SJVv

an Jr
T
oM 4 n, |13 o .
~7.5x%x10 | 7 AnnPun M Ty ergem s, (5.46)
n 0

2 02 a2 2
Q" = 82 Gpgamn mp (fn

4
8
T 14175 27 hl0 (B ) PEp Anp Prp (kg T)° Ay

My

* k) 2 1/3

n

~1.5x 1020(#) (n_p) Anp Prp Ny Ts ergem s, (5.47)
nttp 0

QPP =

a1 Gigimy! ( fa
14175 2mhl0c8

4
_) PEp App Bpp (kp %A,
My

m*\* (13
~7.5x 1019(m_1:) (n_p) app Bpp Ny Ts ergem™>s™!, (5.48)
p 0

where m;; is the n° mass and .#;, is the number of neutrino flavours. The dimensionless flavours a yx
are obtained from estimates of the matrix elements at n = ny. Their values are a,,, = 0.59, a,p = 1.06,
app=0.11.

The emissivities of all process turn out to be comparable, with QPP < Q"? < Q"",

Note that the emissivity is always oc T®. This result can be explained with the usual phase-space
consideration. The four degenerate nucleons contributecontribuiscono a power T* and the two neu-
trinos a power T°. The squared matrix element is proportional to w}?, i.e. to T~2, which remove the

power T? in excess.
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Figure 5.6: Density dependence of the neutrino emissivity in the neutron star core, associ-
ated with different mechanisms. The density range is restricted to the region in which the
direct Urca process is not allowed. The most effective mechanism is the modified Urca pro-
cesses, while the contribution arising from bremsstrahlung of neutrino-antineutrino pairs
in nucleon-nucleon collisions is more than one order of magnitude smaller. The emissivity
from bremsstrahlung in scattering processes driven by electromagnetic interactions appears

to be negligible.
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Figure 5.7: Log-log plot illustrating the temperature dependence of the neutrino emissivity
associated with the different processes discussed in the text.
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Appendix A

Derivation of the one-pion-exchange
potential

Let us consider the process depicted in Fig. 3.2. The corresponding S-matrix element reads
2

S = (—ig)? @m)*6® (1 + p2— pr = p2)

(E\E2Ey Ex)'/?

l

X 77];/'”71 uriys ul_—mZT];TW U Y5 U (A1)
y/

k2
where m; is the pion mass, k = p» — p>» and 1; denotes the two-component Pauli spinor describing
the isospin state of particle i. Equation (A.1) can be rewritten in the form

2

m
Sri = igf—————— 2m*6W(p1+ p2—pr - p2)
fi § (E1ExEy Ex) 2 p1+p2—pr—p2
_ _ 1
X <T1 -Tz) uzr’y5 MZU11Y5 ulkz_—m% , (AZ)
with (T -T3) = T];,T’I]z 77;'”]1-
Substituting the nonrelativistic limit
v (BEx +m)"2 (B, +m)'? [ | o-po t P2
2Yskz = 2m S’E2+mxs XS’E21+mXS
10P2—p2) 4 (0-K)
Xs/ 2m XS_ s 2m XS (A.3)

and the similar expression for i)ysu; in the definition of S¢; and replacing (use E; ~ Ej ~ my and

k* = (E; — Ep)* — [k|* = —|k|?) X X
~— A4
k% —m?2 k|2 + m2 (A-4)

we obtain

2
Spi = —ifw(%)%(‘”(pl+p2_p1,_p2,) (T1-T2)
+ 1 (01-K)(02-K)

1 Xor 2X1 (AS)
VA2 k2 + m2
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The corresponding potential in momentum space is
g> (01-K(02 K
T1°T2

vk = -
o am? K2+ m?
2
g1-k(o2-k
_ (ﬁ)(1 )(072 )11_12 A.6)
my K2+ m2
with g?/4m = 14 and
2 2
5 o My (140)
=g ——==4nx 14— =471 x0.08 = 1 A7
Ii=¢ am? 4 x (939)2 (A7)
The configuration space v” (r) is obtained from the Fourier transform:
2 3
d’k 1 ;
V'r) = —f—”2 —— 111201 ko k———5 ~iler
ms; J (2m) (k|2 + m3)
2 3
d’k 1 ;
= —ﬂ2T1'T20'1'V0'2'V 3 2 —iker
ms 2m)° (k|2 + m%)

1 2 e~ M
- L e Ve, (A8

4w ms

The Laplacian of the Yukawa function,
=" f L (A.9)
r)= =45 , .
Va @3 (K12 + m2)
involves a §-function singularity at the origin, as can be easily seen from
(A.10)

(=VZ+m2) yu(r) = 478 (x) .

Gradients in Eq. (A.8) have to be evaluated taking this singularity into account. For this purpose it is

convenient to rewrite
1 2
01-Vo3-Vyz(r) = |01-Vo2-V- 501 -0 V7| Yz (1)
1 2
+ 501 ~02 V° yg(1), (A.1D)
as the §-function contribution to V2y, (r) does not appear in the first term, yielding
(A.12)

1
(01 Vo, V- § g1 'UZVZ) V(1)
3Imy

. L1 2
=(01'r02~r—§01‘02)(mﬂ+ +ﬁ)yn(r),

where £ = r/|r|. The laplacian V2, (r) in the second term of Eq. (A.11) can be replaced with m2 y, (1) —

47 6(r) using Eq. (A.10).
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Carrying out the calculation of the derivatives in Eq. (A.8) in this way we find

with

and

i.e. Egs. (3.39) and (3.40).

11
V() = gafimnﬁ"rz

4n
+ (Yn(r)——35(r))01-az] )
m

T

T (r)S12

e—m,,r
YT[(r) = )
Mmxgr
3
Tn(r):(1+ +TZ) Yn(r),
Mmgr myr

(A.13)

(A.14)

(A.15)
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Appendix B

Neutron §-decay

Consider the reaction
n—p+e+v, (B.1)

illustrated by the Feynman diagram of Fig. B.1, where py, = (Ey, Pn), Pp = (Ep, Pp)s Pe = (Ee,pe) and
pv = (Ey, pyv) denote the neutron, proton, electron and antineutrino four momenta, respectively.

p(p,) e(p) v(p,)

Figure B.1: Feynman diagram illustrating the neutron -decay process (B.1)

The Fermi interaction hamiltonian, driving the decay process, is given by

G
He 2 i o0 (B.2)
V2

with G = GrcosOc, Gr = 1.463x1074° erg cm3andfc ~ 13 deg being the Fermi constant and Cabibbo’s
angle, respectively. The weak leptonic current ## has the form

Ot =i (p)y* (1-7v°) vr(py), (B.3)

where u,(p) e v,(p) denote the four-spinors associated with the positive and negative energy solu-
tions of the Dirac equation, describing a non interacting fermion of mass m with four-momentum p
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and spin projection r. They are normalised is such a way as to satisfy the relations
i (P)ur(p) = 0 (P)vr(p) =2m 6y (B.4)

In the non relativistic limit, fully justified in the present context, the hadronic weak current reduces
to

j,u:X:r (5u0gv+5,uigAUi)Xs; (B.5)

where o0; (i=1,2,3) are Pauli matrices, y; and yy are Pauli spinors satisfying the relations )(I, xXs =0
and the values of the vector and axial coupling constants are g, = 1 and g4 = 1.26.

The transition rate from the initial state |i) to the set of accessible final states | f) can be obtained
using Fermi’s golden rule

2 dpl’ dpe dpv

dw,_s=2n6(E, —-E,—-E,—E Hy¢; , B.6
i—f=2m0(Ep p e V)SI;ZJ fl| 2n)3 2m)? 2n)? (B.6)
where )
G 1 1
> |Hpil® = @m*=6®n—Pp —Pe—Pr) s = Jau L™ B.7)
spins I 2 vt FP R RVoR, 2B, M
with
D=3 jAij (B.8)
spins
and .
M= Z Yy (B.9)
spins

Substituting the leptonic weak current in Eq. (B.9) and exploiting the completeness relations ful-
filled by Dirac’s spinors, we find

™ = Y 4 (p)y* A=) e (p) 0 (P)YH A = Y U (pe)

rr!
= 8| plpl+piph - g™ (pepy) + i€ pe,py, | (B.10)
where g = diag(1,-1,—1,—1) and e*?#? are the metric tensor and the fully antisymmetric unit ten-
SOr.
The explicit expression of J,, is obtained using Eq. (B.5), implying
P=xlxs=0s . J=gaxlolys , ((=1,2,3). (B.11)

Carrying out the spin sum we readily find that the the tensor J, is diagonal, and its non vanishing
components are given by
=2, == =285, (B.12)

Finally, substitution of Egs. (B.10) and (B.12) in the expression of the differential decay rate leads to

dWiy = @m)*6(En—Ep—Ec—E)8(Pn—Ppp—Pe—Pv)

dp, dp, dp,
@2n)3 2m)3 (2m)3’

x  2G*[1+cosf+ga*(3-cosh)] (B.13)
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where 0 is the angle between the lepton momenta p. and p, .
Neglecting the contribution of p, in the argument of the §-function expressing momentum con-
servation!, we can perform the cos@ integration, yielding the final result

AWi_y = 2168(Ey—Ep—Ee—E\)6(pn—pp—Pe)

dpp dpe
2m)3 2m)3

x  2G*(1+3ga%)4nE2 dE, (B.14)

I This approximation is fully justified for emission of antineutrinos of energy E, ~ T, T being the tempera-
ture, in dense degenerate matter.
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Neutron -decay




Appendix C

Basics of QCD thermodinamics

Lo studio delle diverse fasi della QCD a temperatura e potenziale chimico diversi da zero, richiede
la conoscenza delle grandezze termodinamiche, definite a partire dalla funzione di partizione grancanon-
ica Z. Per un sistema a temperatura T = 7! la cui dinamica & descritta dall’hamiltoniana H

z=ﬂmmpmH—ZmNm, (C.1)

dove gli N; sono gli operatori associati alle grandezze conservate (per esempio, nel caso della QED,
la differenza tra il numero di elettroni e quello di positroni) e y; i potenziali chimici corrispondenti.
Dalla (C.1) seguono immediatamente le relazioni

b _pOnZ €2
B ov "’ '
oln Z
N;=T , (C.3)
o,
0T InZ
g2 L C.4
aT (C.4)
olnZ olnZ
E=-PV+TS+Y N;=T 0nT AT Y an , (C.5)
i i i

dove P, S ed E sono, rispettivamente, pressione, entropia ed energia del sistema.
Le equazioni (C.2)-(C.5) mostrano che € conveniente introdurre il potenziale termodinamico

Q=-ThZ=-PV, (C.6)

dal quale si ottengono in modo semplice le grandezze termodinamiche tramite derivate parziali.

In teoria quantistica dei campi, la traccia nella definizione di Z, ovvero la somma sugli elementi
diagonali della matrice densita, si effettua usando il formalismo degli integrali funzionali. Per esem-
pio, nel caso semplice di un di campo scalare, la cui densita lagrangiana &

1 1
£=3 010, — 5mz(pz , (C.7)
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non ci sono cariche conservate e si ottiene [15, 17]
Z=N f D¢ e’ (C.8)

ovvero l'integrale esteso a tutti i cammini periodici, tali cioe che ¢(X,0) = ¢(X, 1), dell’esponenziale
dell'integrale d’azione per tempi immaginari r =it

B 1 1P
s:f drfd?’xff@,a(p/ar)z——f drfd%c
0 0

Kl 2
: (a_(f) + (V) +mP¢?| . (C.9)

Si noti che il fattore di normalizzazione ./ che compare nel secondo membro dalla (C.8) ¢ irrilevante,
poiche la presenza di un fattore moltiplicativo non cambia la termodinamica del sistema.

Il calcolo della funzione di partizione nel caso del campo di Dirac ¥ (x), discusso in dettaglio nella
Sezione 4.2.2, da il risultato [15]

p _ o} -
J=[i@1/ﬁf@1//expf drfdsxu/(—yoa—+i)7-V—m,~+,u,~)/0 v, (C.10)
0 T
dove iy' e y vanno considerati come variabili dinamiche indipendenti e I'integrale & esteso a tutti

i cammini che soddisfano alla condizione di antiperiodicita v (X, 0) = —y/(X, B), come richiesto dalle
regole di anticommutazione dei campi fermionici.



Appendix D

Phase-space decomposition

In the is Appendix, we describe the elements entering the calculation of neutrino emissivity asso-
ciated with nucleonic Urca processes, carried out using the phase-s/ace decomposition method.

On account of the strong degeneracy of nucleons and electrons, the main contribution to the
integral yielding the emissivity

d
QP = 2[ (271;”3 AWi_¢ [nQ=fp)A - fo), (D.1)

arises from quantum states with momenta within a thin shell around the Fermi surface. As a conse-
quence, we can set |p;| = pr, in the integrand. Moreover, the typical energy exchanged in the reactions
is~T.

Because the energy carried by the neutrino is E, ~ T, the corresponding momentum, being of the
same order, is much smaller than the momenta of the degenerate fermions involved in the process.
Hence, it can be safely neglected in the argument of the momentum-conserving §-function. The
resulting expression is

dp, (@2n)*
dWi_,fw = W&En —Ep—Ec.—E)6(P,—Pp—Pe)

3
x |Myil*4nEydEy [ prjm]dE;dQ;. (D.2)
j=1

We now transform to the new variables

E Ej—p;

(j=n,p e,

and replace x; — —x; for j = p, e, to exploit the property of the Fermi distribution 1 - f(x;) = f(-x;).
In addition, we introduce the quantity

A=4n f dQ1dQ2dQ38(p, — P, —Po)- (D.3)
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Using the above definitions, Eq.(D.1) can be rewritten in the form

QP = o )8|Mf,| A :r7f dx,x3 (f f f dx]f])
x—5(x1+x2+x3—xv) prj (D.4)
j=1

As the system is strongly degenerate, we can replace u;/ T — oo, the associated error being expo-
nentially small. Thus, we finally obtain

Q= 8|Mf,| T AI]‘[pF]m : (D.5)
(2m) j=1
where
[ dx,, H dx]f] O(xX1+X2+x3—Xy). (D.6)
—00

D.1 Calculation of A

Let us start rewriting the momentum conserving d-function in spherical coordinates. To do this,
we exploit the fundamental property of Dirac’s §

fé(a—b) da= [6(ax— by) daxfé(ay —-by)da, f&(az -by)da,=1.
The requirement that the above relation still hold true in spherical coordinates, i.e. that
fc?s(a—b) da= fés(a—b) a*dadQ, =1,

implies S5 -
Ssa-b)=d(a— b)M

In the case under consideration the above expression becomes

0(Q1 —Q243)

A=47rfdQldQ2dQ36(pn—|pp+pe|) 5
n
(pn - |pp + pel)

2
n

(D.7)

1)
= 471'[ szng
The radial 6-function can be transformed into a §-function for one of the angular variables. We first
rewrite the §-function in the form
1
6(f(cosB2)=61pn-— (pi + pi +2pppecosth)?],

with the z-axis chosen along the direction electron momentum p,. The root of the function f(cos83)
is
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and
pppb
If' (@)= 2=
n
It follows that
S(pn—IPp+tP.) 1 1
. zp ‘ =— 0(cosl, —a) = 0(cosl, —a),
P py 1f' (@)l PnPpPe
and replacing in (D.7) we obtain
3273
A= ——0Oype, (D.8)
PEnPFpPFe

where the function 0, takes into account the triangular condition on the Fermi momenta of the
degenerate fermions.

D.2 Calculation of /

Le us rewrite I in the form

I= f dxy,x3 J(xy), (D.9)
0
with
oo 3 3
J(x) = dej(1+exf)_16(z xj—xv) : (D.10)
-0 j=1 s}

and start with the calculation of J.
Using the definition of the §-function in terms of its Fourier transform

1 S
6(x):_/ elZX,
27 J-o
we find

3 .
[Tdx;+e ) e~

1 IS 0
J(xy) = — f dz
271 J-o —00 j=]
1 I

. m .
= dze "% (f dx(1+e*) Le#™
27 J-o -0

3

_i oo —izx, 3
=5 f_oodze [f(@], (D.11)

where -
f(2) =f dx(1+e*)'e'®*. (D.12)

To obtain the expression of f(z), consider the integral

K:fdx(uex)‘lei”, (D.13)
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~-R+2in @ —R+2in

<
<

A

in

Rx

Y

_R @ R

Figure D.1: Integration contour employed for the evaluation of K (see Eq.(D.13)).

to be evaluated using Cahchy’s theorem, with the contour shown in Fig. D.1.
As R — oo the contributions of the vertical sides become negligible. Along the real axis, ®, K = f(z),
whereas along the path marked with @

Kzf dx(1+ e%Rx+2m)—lelz(9?x+2m) — e—erz]c(Z) ]
-0

It follows that
K=f(2)—e?™f(z2)=(1-e ) f(2).

The value of K can be obtained using the mot hod of residues. From

izx eizx
ResK(z) = lim (x—im) — = lim (x—in) o —
X—im l+e X—inm I—anom(x—m)
izx
. e _
= lim - —e %

x—in ¥ ni!(x_ im)(n-1

it follows that
K(z) = (1—e 2") f(2) = —2ime "%,

. and using the above result we find

b8
zZ)=—. D.14
/@ isinhmz ( )
Using the above results, we can write J in the form
1 oco—i€ .
J(xy) =——= dze '™ ( d

3
) D.15
2IT J—co—ie ) ( )

sinhmz

where the quantity —ie, with € = 0* takes into account the presence of a pole of third order in the
itegrand. To determine a suitable integration contour, we carry out the transformation z = z’ — i,
leading to

o) = S f T e (L)S (D.16)

207 Joco—ieti sinhzz
Summing Egs. (D.15) and (D.16) we obtain an integration along the contour shown in Fig. D.2

1 oco—i€ oco—i€+i X T 3
(1+e) J(x) = - [ [ dze”' (i)
2i7 |J-co—ie J—oco—ic+i sinhnz
L fazeim ( z )3 . (D.17)
2inm sinhmz
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A

A

Rz

Y

Y

Figure D.2: Integration contour employed for the evaluation the integral of Eq.(D.17).

From Eq. (D.17) it follows that

. T 3
1+e™)J=-R T
(+e™)] es[e (sinhnz)

z=0

= _lim = — z~°>e-l“v(L)3

z—02 dz? sinhnz

1 _; 3 . T3 coshnz
=—lim - —xf,e ’Z"V(.—) +6ix,e lzx”(.—) nd——= 72

z—02 sinhmz sinhmz sinhmz

,coshmz _ , 4 1 » 3(coshmz)?] mde i#%
+|6z— 1812 ——— + — , , -
inhwz (sinhmz) sinhnwz (sinhmz)

Let us consider the first line of the above result. In the z — 0 limit, the second contribution van-
ishes, as can be easily seen substituting the first order expansion

coshnz 1

sinhnz 7wz’

while the first contribuito reduces to —x2. The second line must be expanded up to the zero-th order
term. The resulting contributions are

6mz 6 1 6
1. —z—(l——nz 2) =——3n2,
2)3 |1+ (ﬂZZ)2 z2 2 z2
371523 5,
2. RS =T
(12)° |1+ 5(722)2] z 2
9’z 9 3
3. ; (1+7rzz2 :—2+—n2;
(2)5 |1+ 5(722) ] z 2
1874 Z? 1 18
4, — 1+-7%2*|~—-= +371° .
(mz)* [1 + —2(’;2)2] 2 z

and their sum is —72. Hence

2+

I+e™) J(xy) = 5

2
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implying
S = T (D.18)
Y20 +em)’ '
Finally, the integral

I= f dx,x3J(xy),
0

that can be found in Ref. [24], Eq. (3.411), is given by

o0 x2n—1 27.[ 2n B
f ——dx = (1—21‘2”)(—) Wznl
o eP¥+1 p 4n

where B, is a Bernoulli number. In the case under consideration, correpondingtop=1en=2, 3, we
use By = —35 € Bg = 75, to find
4577
5040 °

Substitution of the above results in Eq. (5.7), yields the expression of the neutrino emissivity of Eq. (5.12).

(D.19)
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