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Abstract. We discuss the derivation of an effective interaction, obtained from a realistic
nuclear Hamiltonian using the formalism of Correlated Basis Functions (CBF) and the cluster
expansion technique. Unlike the bare nucleon-nucleon potential, the CBF effective interaction is
well behaved, and suitable for carrying out perturbative calculations in the basis of eigenstates
of the non interacting system. The results of studies of a variety of properties of nuclear matter,
at both zero and nonzero temperatures, are reported and analyzed.

1. Introduction

This paper will focus on the tiny—although arguably most important—region of the QCD phase
diagram corresponding to vanishing or very low temperatures and densities comparable to the
central density of atomic nuclei, ρ0 = 0.16 fm−3. Under these conditions, the ground state
of strongly-interacting matter is known to consist of protons and neutrons, the interactions of
which can be described by a non relativistic Hamiltonian.

In the case of isospin-symmetric nuclear matter (SNM)—that is, a tanslation invariant system
with equal numbers of protons and neutrons interacting through nuclear forces only—the binding
energy per particle can be determined from the extrapolation of the nuclear mass formula,
yielding the result E0 ≈ −16 MeV. Additional information can be extracted from measurements
of nuclear properties and nuclear reactions, giving access to quantities such as the compression
modulus, K ≈ 260± 30 MeV, and the symmetry energy, Esym ≈ 31.6± 2.66.

Effective interactions specifically designed to reproduce the available empirical information
on SNM (see, e.g., Refs. [1, 2]), while being remarkably successful in a number of instances,
are limited by the lack of a connection with nuclear dynamics at microscopic level. As a
consequence, they are inherently unable to provide a quantitative account of nucleon-nucleon
scattering processes—both in free space and in the nuclear medium—whose understanding is
needed for the description of non-equilibrium properties [3, 4].

Early attempts to derive an effective interaction from a phenomenological nucleon-nucleon
potential are described in Refs.[5, 6]. More recently, the authors of Refs. [7, 8] have improved on
the approach of Ref. [5], and developed a procedure to determine the effective interaction using
the Correlated Basis Function (CBF) formalism and the cluster expansion technique.

The results of extensive studies of the Fermi hard-sphere system strongly suggest that the
CBF effective interaction approach provides accurate estimates of a variety of fundamental

http://creativecommons.org/licenses/by/3.0
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quantities of interacting many-body systems other than the ground-state energy, such as the
self-energy determining the two-point Green’s function [9, 10].

The applications to nuclear matter, discussed in this paper, include calculations of a number
of properties of great astrophysical interest, such as the equation of state, the quasiparticle
spectrum and the chemical potentials of uniform matter at fixed baryon density and large neutron
excess, at both zero and nonzero temperature.

The main features of the nuclear Hamiltonian and the derivation of the CBF effective
interaction are described in Section 2, while Section 3 is devoted to the discussion of numerical
results, including the ground-state energy at arbitrary proton fraction, the symmetry energy,
the pressure and the single-nucleon spectrum. Finally, in Section 4 we summarize our findings,
and outline the prospects for future applications of the approach.

2. Theoretical framework

In this section, we will outline the phenomenological model of nuclear dynamics employed to
obtain the numerical results, and describe the procedure leading to the determination of the
effective interaction.

2.1. The nuclear Hamiltonian

Within non relativistic many-body theory (NMBT) atomic nuclei, as well as infinite nuclear
matter, are described in terms of point-like nucleons of mass m, whose dynamics are dictated
by the Hamiltonian

H =
∑

i

−
∇2

i

2m
+

∑

i<j

vij +
∑

i<j<k

Vijk . (1)

The nucleon-nucleon (NN) potential vij is obtained from an accurate fit of the measured
properties of the two-nucleon system—in both bound and scattering states—and reduces to
the Yukawa one-pion-exchange potential at large distances. Coordinate-space NN potentials are
usually written in the form

vij =
∑

p

vp(rij)O
p
ij , (2)

where rij = |ri − rj | is the distance between the interacting particles, and the sum includes up
to eighteen terms. The most prominent contributions are those associated with the operators

Op≤6
ij = [1, (σi · σj), Sij ]⊗ [1, (τi · τj)] , (3)

where σi and τi are Pauli matrices acting in spin and isospin space, respectively, while the
operator

Sij =
3

r2ij
(σi · rij)(σj · rij)− (σi · σj) , (4)

accounts for the occurrence of non-spherically-symmetric interactions. The potentials obtained
including the six operators of Eqs. (3)-(4) explain deuteron properties and the S-wave scattering
phase shifts. In order to describe the P -wave, one has to include two additional components
involving the momentum dependent operators

Op=7,8
ij = (ℓ · S), (ℓ · S)(τ1 · τ2) , (5)

where ℓ denotes the angular momentum of the relative motion of the interacting particles.
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The operators corresponding to p = 7, . . . , 14 are associated with the non-static components
of the NN nteraction, while those corresponding to p = 15, . . . , 18 account for small violations
of charge symmetry. All these terms are included in the state-of-the-art Argonne v18 (AV18)
potential [11], providing a fit of the scattering data collected in the Nijmegen database, the low-
energy nucleon-nucleon scattering parameters and deuteron properties with a reduced chi-square
χ2 ≃ 1.

The results reported in this paper have been obtained using the so-called Argonne v′6 (AV6P)
interaction, which is not simply a truncated version of the full AV18 potential—obtained
neglecting the contributions with p > 6 in Eq. (2)—but rather its reprojection on the basis
of the six spin-isospin operators of Eqs. (3)-(4) [12].

The inclusion of the additional three-nucleon (NNN) term, Vijk, is needed to explain the
binding energies of the three-nucleon systems and the saturation properties of SNM. The
derivation of Vijk was first discussed in the pioneering work of Fujita and Miyazawa [13].
They argued that its main component originates from two-pion-exchange processes in which
a NN interaction leads to the excitation of one of the participating nucleons to a ∆ resonance,
which then decays in the aftermath of the interaction with a third nucleon. Commonly used
phenomenological models of the NNN force, like the Urbana IX (UIX) potential [14], are written
in the form

Vijk = V 2π
ijk + V N

ijk , (6)

where V 2π
ijk is the attractive Fujita-Miyazawa term, while V N

ijk is a purely phenomenological
repulsive term. The parameters entering the definition of the above potential are adjusted
in such a way as to reproduce the ground state energy of the three-nucleon systems and the
equilibrium density of SNM, when used in conjunction with the AV18 NN interaction.

Note that within the framework of NMBT the determination of the nuclear Hamiltonian
implies very little theoretical bias, becaus the two- and three-nucleon systems are solved exactly,
and the equilibrium properties of SNM can be computed with great accuracy.

It has to be emphasized that local NN potentials derived within the alternate framework of
chiral perturbation theory are also written in the form of Eq. (2) [15, 16]. Since local versions of
the chiral NNN potentials [17] have the same spin-isospin structure of the UIX force, the scheme
described in this paper can be readily applied using chiral nuclear Hamiltonians.

2.2. Derivation of the CBF effective interaction

The formalism of Correlated Basis Functions (CBF) is based on the variational approach to the
many-body problem with strong forces, first proposed by R. Jastrow back in the 1950s [18].
Within this scheme, the trial ground state of the nuclear hamiltonian is written in the form

|Ψ0〉 ≡
F|Φ0〉

〈Φ0|F†F|Φ0〉1/2
, (7)

where |Φ0〉 is a Slater determinant built from single particle states |φα〉, with {α} being the set
of quantum numbers of the states belonging to the Fermi sea. In the case of uniform matter at
density ρ = νk3F /(6π

2)—where kF and ν denote the Fermi momentum and the degeneracy of
the momentum eigenstates, respectively—|φα〉 consists of a plane wave, with momentum k such
that |k| ≤ kF , and the Pauli spinors associated with the spin and isospin degrees of freedom.

The many-body operator F , describing the effects of correlations among the nucleons, is
written as a product of two-body operators, whose structure mirrors that of the AV6P potential,
as

F ≡ S
∏

i<j

Fij , (8)
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with

Fij =

6
∑

p=1

fp(rij)O
p
ij . (9)

Note that the symmetrization operator S is needed to fulfill the requirement of
antisymmetrization of |Ψ0〉 under particle exchange, since, in general, [Op

ij , O
q
jk] 6= 0.

The radial dependence of the correlation functions fp(rij), determined from functional
minimization of the expectation value of the Hamiltonian in the correlated ground state,

EV = 〈Ψ0|H|Ψ0〉 . (10)

is largely shaped by the strongly repulsive core of the NN interaction, resulting in a drastic
suppression of the probability to find two nucleons at relative distance rij . 1 fm. Longer range
correlations, mainly due to the non-central components of the NN potential, are also important.

The calculation of the variational energy of Eq. (10) involves severe difficulties. It can
be efficiently carried out expanding the right-hand side in a series, whose terms describe the
contributions of clusters involving an increasing number of correlated particles [19]. The terms
of the cluster expansion can be represented by diagrams, and classified according to their
topological structures. Selected classes of diagrams can then be summed to all orders solving
a set of coupled non-linear integral equations, referred to as Fermi Hyper-Netted Chain/Single-
Operator Chain (FHNC/SOC) equations [20, 21], to obtain an accurate estimate of the ground
state energy.

Under the assumption that the correlation structure of the ground and excited states of the
system be the same, the operator F obtained from the variational calculation of EV can be used
to generate correlated excited states from Eq. (7) by replacing |Φ0〉 → |Φn〉, with |Φn〉 being any
eigenstate of the non interacting Fermi gas. The resulting correlated states span a complete,
although non orthogonal, set, that can be used to carry out perturbative calculations within
the scheme developed in Ref. [22]. This approach, known as CBF perturbation theory, has
been successfully applied to study a variety of nuclear matter properties, including the response
functions [23, 24] and the two-point Green’s function [25, 26].

In CBF perturbation theory, one has to evaluate matrix elements of the bare nuclear
Hamiltonian, the effects of correlations being taken into account by the transformation of the
basis states describing the non interacting system. However, the same result can in principle be
obtained transforming the Hamiltonian, and using the Fermi gas basis. This procedure leads
to the appearance of an effective Hamiltonian suitable for use in standard perturbation theory,
thus avoiding the non trivial difficulties arising from the use of a non-orthogonal basis [27].

The CBF effective interaction is defined through the matrix element of the bare Hamiltonian
in the correlated ground state, according to

〈Ψ0|H|Ψ0〉 = TF + 〈Φ0|
∑

i<j

veffij |Φ0〉 , (11)

where TF denotes the energy of the non interacting Fermi gas, and the effective potential is
written in terms of the same spin-isospin operators appearing in Eq. (2)

veffij =
∑

p

veff ,p(rij)O
p
ij . (12)

From the above equation, it is apparent that veffij embodies the effect of correlations. As a
consequence, it is well behaved at short distances, and can in principle be used to carry out
perturbative calculations of any properties of nuclear matter.
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The authors of Ref. [7] first proposed to obtain the effective interaction performing a cluster
expansion of the left-hand side of Eq. (11) and keeping the two-body cluster contribution only.
While leading to a very simple and transparent expression for veffij , however, this scheme was
seriously limited by its inability to take into account the NNN potential Vijk. In Ref. [8] the
effects of interactions involving more than two nucleons have been included through a density-
dependent modification of the NN potential at intermediate range [28].

A significant improvement has been achieved by the authors of Refs. [29, 30], who explicitly
took into account three-nucleon cluster contributions to the ground-state energy. This procedure
allows to describe the effects of three-nucleon interactions at fully microscopic level using the
UIX potential.

Note that the correlation functions fp(rij) entering the definition of veffij are not the same as
those obtained from the minimization of the variational energy of Eq. (10). They are adjusted
so that the ground state energy computed at first order in veffij —that is, in the Hartree-Fock
approximation—reproduces the value of EV resulting from the full FHNC/SOC calculation. In
Refs. [29] and [30], this procedure was applied, separately, to SNM and pure neutron matter
(PNM). The effective interaction employed to obtain the results discussed in this paper, on
the other hand, simultaneously describes the density dependence of the energy per nucleon of
both SNM and PNM. This feature is essential for astrophysical applications, because it allows
to evaluate the properties of nuclear matter at fixed baryon density and large neutron excess,
which is believed to make up a large region of the neutron star interior.

3. Nuclear Matter Properties

3.1. Ground state energy of cold nuclear matter

The procedure developed by the authors of Ref. [31, 32], taking into account the contributions
of three-nucleon clusters, allows to use a realistic nuclear Hamiltonian, comprising two- and
three-nucleon potentials. The results reported in this paper have been obtained combining the
AV6P [33] and UIX [34] potentials.

The resulting effective interaction—derived using as baseline the FHNC variational estimates
of the ground state energy of PNM and SNM—can be used to evaluate the energy per nucleon
of neutron rich and spin polarized matter at fixed baryon density

ρ =
∑

λ

ρλ = ρ
∑

λ

xλ , (13)

where the index λ = 1, 2, 3, 4 labels spin-up protons, spin-down protons, spin-up neutrons
and spin-down neutrons, respectively, the corresponding densities being ρλ = xλρ. In SNM
x1 = x2 = x3 = x4 = 1/4, while in PNM x1 = x2 = 0 and x3 = x4 = 1/2.

At first order in the CBF effective interaction, the energy per baryon can be written in the
form

E

A
=

3

5

∑

λ

xλ
kFλ

2

2m
+

ρ

2

∑

λµ

xλxµ

∫

d3r
[

veff,dλµ (r)− veff,eλµ (r)ℓ(kFλ
r)ℓ(kFµr)

]

(14)

where veff,dλµ (r) and veff,eλµ (r) denote the direct and exchange matrix elements of the effective

interaction in spin-isospin space, kFλ
= (6π2ρλ)

1/3 is the Fermi momentum of the nucleons of
type λ and

ρλℓ(kFλ
r) ≡

1

V

∑

k

eik·rnλ(k) , (15)

with nλ(k) = θ(kFλ
− |k|) and V being is the zero-temperature Fermi distribution and the

normalization volume, respectively.
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The solid lines of Figures 1 and 2 illustrate the density dependence of the energy per nucleon
of PNM and SNM, respectively, obtained from Eq. (14) using the CBF effective interaction.
The shaded regions show the FHNC results obtained using the bare Hamiltonian, with the
associated theoretical uncertainty arising from the treatment of the kinetic energy [35]. For
comparison, the results of a calculation carried out using the Auxiliary Field Diffusion Monte
Carlo (AFDMC) [36] technique are also displayed. It clearly appears that the FHNC variational
estimates provide a very accurate upper bound to the ground state energy. Note, however, that
while the empirical equilibrium density of SNM is well reproduced, the corresponding energy is
underestimated by ∼ 5 MeV.

Figure 1. Density dependence of the
energy per nucleon of PNM. The solid lines
display results obtained using Eqs. (14)-
(15) and the CBF effective interaction.The
variational FHNC results are represented
by the shaded regions, accounting for the
uncertainty arising from the treatment of
the kinetic energy, while the open circles
correspond to the results obtained using
the AFDMC technique.

Figure 2. Density dependence of the energy
per nucleon of SNM. The solid lines display
results obtained using Eqs. (14)-(15) and
the CBF effective interaction.The variational
FHNC results are represented by the shaded
regions, accounting for the uncertainty arising
from the treatment of the kinetic energy.

The main advantage of the effective interaction approach is the possibility of carrying out
calculations of a variety of nuclear matter properties of astrophysical interest using perturbation
theory and the orthogonal basis of eigenstates of the non interacting system. Of great
importance, in this context, is the ground state energy of matter at fixed baryon density and
arbitrary proton fraction, xp = x1 + x2, shown in Fig. 3 for 0 ≤ xp ≤ 0.5.

3.2. Symmetry energy

Consider again unpolarized matter with proton and neutron densities ρp = xpρ and ρn =
(1−xp)ρ, respsctively. The ground-state energy per nucleon can be expanded in series of powers
of the quantity δ = (ρn−ρp)/ρ, providing a measure of neutron excess. The resulting expression
reads (see, e.g., Ref. [37])

1

A
E0(ρ, δ) =

1

A
E0(ρ, 0) + Esym(ρ)δ

2 +O(δ4) , (16)

where the symmetry energy

Esym(ρ) =

{

∂2[E0(ρ, δ)/A]

∂δ2

}

δ=0

(17)

≈
1

A
E0(ρ, 1)−

1

A
E0(ρ, 0)
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Figure 3. Energy per
nucleon of uniform nu-
clear matter, computed
as a function of baryon
density, ρ, and proton
fraction, xp = x1 + x2,
using Eqs. (14)-(15) and
the CBF effective inter-
action.

can be interpreted as the energy required to convert SNM into PNM. The density dependence
of Esym(ρ), that can be obtained expanding around the equilibrium density, is conveniently
characterized by the quantity

L = 3ρ0

(

dEsym

dρ

)

ρ=ρ0

. (18)

Empirical information on Esym(ρ0) and L have been extracted from data collected by
laboratory experiments and astrophysical observations [38]. The values resulting from our
calculations, Esym(ρ0) = 30.9 MeV and L = 67.9 MeV, turn out to be compatible with
those obtained from a survey of 28 analyses, carried out by the authors of Ref. [38], yielding
Esym(ρ0) = 31.6± 2.66 and L = 58.9± 16 MeV.

The density dependence of the symmetry energy has been recently discussed in Ref. [39],
whose authors combined the results of isospin-dependent flow measurements carried out by
the ASY-EOS Collaboration at GSI with those obtained from analyses of low-energy heavy-ion
collisions [40] and nuclear structure studies [41, 42, 43].

Figure 4 shows a comparison between Esym(ρ) resulting from our calculations and the
empirical information reported in Refs.[38, 39, 40, 41, 42, 43]. It appears that theoretical results
are compatible with experiments at most densities.

3.3. Pressure

The pressure of nuclear matter, which plays a critical role in determining the properties of the
equilibrium configurations of neutron stars, is simply related to the the ground-state energy
through

P = −

(

∂E0

∂V

)

A

= ρ2
∂(E0/A)

∂ρ
, (19)

where the derivative is taken keeping the number of nucleons constant.
The dashed line of Fig. 5 illustrates the density dependence of the pressure of SNM obtained

from our approach. For comparison, the shaded area also shows the region consistent with the
experimental flow data discussed in Ref. [44], providing a constraint on P (ρ) at ρ ≥ 2ρ0. It
appears while being within the allowed boundary at 2ρ0 ≤ ρ ≤ 3ρ0, the calculated pressure
exhibits a slope suggesting that a discrepancy may occur at higher density. However, in this
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Figure 4. Density depen-
dence of the symmetry en-
ergy of nuclear matter. The
regions labelled ASY-EOS,
Sn+Sn and IAS represent the
results reported in Refs.[39],
[40], and [41], respectively,
while the symbols correspond
to the analyses of Refs. [38]
(cross with error bar), [42]
(diamond), and [43] (square).
The results of the CBF effec-
tive interaction approach are
displayed by the dashed line.

context it has to be kept in mind that, being based on a non relativistic formalism, the CBF
effective interaction approach is bound to predict a violation of causality—signaled by a value
of the speed of sound in matter exceeding the speed of light—in the high-density limit.

Figure 5. The dashed
line illustrates the density
dependence of the pressure of
SNM obtained from the CBF
effective interaction approach.
The shaded area corresponds
to the region consistent with
the experimental flow data
reported in Ref. [44].

3.4. Single particle spectrum and chemical potentials

At first order in the effective interaction, corresponding to the Hartree-Fock approximation, the
energy spectrum of nucleons of type λ can be obtained from

eλ(k) =
k2

2m
+ ρ

∑

µ

xµ

∫

d3r
[

veff,dλµ (r)− j0(kr)ℓ(kF,µr)v
eff,e
λµ (r)

]

, (20)
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with j0(x) = sinx/x. The above expression is often parametrized in terms of the effective mass
m⋆, defined as

1

m⋆
=

1

k

(

deλ
dk

)

(21)

For vanishing temperature, equation (20) also gives the chemical potentials, which are simply
related to the energy spectrum through µλ = eλ(kF,λ).

Figures 6 and 7 show the density dependence of the ratios m⋆(kF )/m and of the nucleon
chemical potential in SNM (solid lines) and PNM (dashed lines).

Figure 6. Density dependence of the ratio
between the nucleon effective mass at k =
kF and the bare nucleon mass. The solid
and dashed lines correspond to SNM and
PNM, respectively.

Figure 7. Density dependence of the
nucleon chemical potential. The solid and
dashed lines correspond to SNM and PNM,
respectively.

3.5. Extension to nonzero temperature

To the extent to which thermal effects do not lead to modifications of the underlying nuclear
dynamics, the approach described in this paper can be readily generalized to treat nuclear matter
at nonzero temperature, by replacing the T = 0 Fermi distribution appearing in Eq. (15) with
the corresponding distribution at temperature T > 0

nλ(k, T ) = {1 + eβ[eλ(k)−µλ]}−1 , (22)

where β = 1/T , eλ(k) is the energy of a nucleon of type λ carrying momentum k, and the
chemical potential µλ is determined by the constraint

1

V

∑

kλ

nλ(k, T ) = ρλ . (23)

As an example, Figs. 8 and 9 show the temperature- and density-dependence of the Gibbs
free energy per baryon of PNM and SNM, respectively, defined as

F

A
=

E0 − TS

A
, (24)

where S denotes the entropy.
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Figure 8. Density dependence of the Gibbs
free energy per nucleon of PNM. The lines
are labelled according to the temperature,
T , expressed in units of MeV.

Figure 9. Same as in Fig. 8, but for SNM.

4. Summary and outlook

The results discussed in this paper provide convincing evidence that the effective interaction
obtained from a realistic nuclear Hamiltonian using the CBF formalism and the cluster expansion
technique is a powerful tool to carry out perturtative calculations of a variety of nuclear matter
properties, ranging from the ground-state energy to the quasiparticle spectrum, the in-medium
collision probability and the transport coefficients.

Unlike other advanced many-body approaches based on realistic models of nuclear dynamics
at microscopic level—the applications of which are largely limited to calculations of the equation
of state of SNM and PNM—the CBF effective interaction approach allows to study the
properties of nuclear matter at large neutron excess, which are known to play a critical role
in many astrophysical processes. In addition, under the assumption that thermal effects do
not significantly affect strong interaction dynamics—which may be expected to be applicable at
temperatures T ≪ mπ, mπ ∼ 140 MeV being the pion mass—it can be readily generalized to
treat nuclear matter at nonzero temperature.

Ongoing and future applications to neutron star matter include the calculations of the shear
and bulk viscosity coefficients, the superfluid gaps and the neutrino emission and absorption
rates.
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