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ABSTRACT

Neutron stars are studied in the framework of Lagrangian field theory of interacting nucleons, hyperons,
and mesons, which is solved in the mean field approximation. The theory is constrained to account for the
four bulk properties of nuclear matter; the saturation binding and density, compressibility, and charge sym-
metry energy. The cores of the heavier neutron stars are found to be dominated by hyperons, and the total
hyperon population for such stars is 15%—20%, depending on whether pions condense or not. The p-meson,
which contributes to the isospin symmetry energy, has an important influence on the baryon populations.
Lepton populations are strongly suppressed and charge neutrality is achieved among the hadrons. A possible
consequence for the decay time of the magnetic field of pulsars and hence for their active lifetime is men-

tioned.

Subject headings: dense matter — elementary particles — stars: neutron

I. INTRODUCTION

The traditional approach to the nuclear many-body
problem is the nonrelativistic Breuckner-Bethe theory, which
seeks to account for the bulk properties of nuclear matter, in
particular the binding and saturation density, in terms of the
free nucleon-nucleon interaction. It is powerful in the class of
diagrams that are summed. However it is an extreme extrapo-
lation from the interaction in vacuum to the properties of
matter at saturation density, and even more extreme to the
conditions of matter at supernuclear densities. Recent system-
atic calculations employing this approach overestimate the
saturation density by 50% (Day 1981a, b). This result is consis-
tent with all many-body calculations based on the two-body
potential; the binding and saturation density fall within the
so-called Coester band, which does not intersect the empirical
point. The conclusion seems inescapable that the properties of
nuclear matter cannot be derived from static two-body poten-
tials between nucleons determined by scattering experiments
(Negel 1982), at least not in a non-relativistic theory.

An alternative approach to the nuclear many-body problem,
which has been explored in recent years, involves the formula-
tion of an effective relativistic field theory of interacting
hadrons. This approach, which is outlined in greater detail
below, is presumed to be valid below the deconfinement phase
transition and amounts to identifying the appropriate degrees
of freedom at the scale under discussion. It is like discussing the
properties of ordinary matter in terms of atoms, molecules, and
electrons instead of neutrons, protons, and electrons (or
quarks, gluons, and electrons). The equations of motion for the
baryon and meson fields are solved self-consistently in the
mean field approximation. The coupling constants of the
theory are regarded as effective couplings that are determined
not by the free interaction but by the saturation binding and
density (Walecka 1974; Chin and Walecka 1974) and com-
pressibility of symmetric nuclear matter (Boguta and Bodmer
1977). The charge symmetry energy is of course very important
for such asymmetric systems as neutron stars, and we require
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that the symmetry coefficient of nuclear matter be correctly
reproduced (Glendenning, Hecking, and Ruck 1983). It has
been verified in a number of papers that with the parameters of
the theory thus determined, a large number of single-particle
properties of finite nuclei are very well accounted for, including
charge distributions, spin-orbit interaction, single-particle
spacings (Serot and Walecka 1980; Horowitz and Serot 1981;
Boguta 19814, b, c). The theory therefore gives a good account
of nuclear matter and finite nuclei. The justification for
extrapolating it to higher density has been given by Chin
(1977), and a number of investigations of the properties and
phase transitions in dense hadronic matter have been carried
out (Banerjee, Glendenning, and Gyulassy 1981; Glendenning,
Banerjee, and Gyulassy 1983; Glendenning, Hecking, and
Ruck 1983).

In this paper we build on this approach (Glendenning 1982).
At the high densities expected in the cores of neutron stars,
additional baryon states besides the neutron and proton may
be present, including the A and the hyperons, A, Z, .... They
can be incorporated into the theory as in our earlier work on
high-temperature matter (Garpman, Glendenning, and Karant
1979; Glendenning 1981). The charge symmetry energy which
is driven by the p-meson will play an especially important role
in determining how a charge-neutral system can achieve a state
of low isospin by appropriately populating the various baryon
states. Within such a relativistic field theory of interacting
nucleons, isobars, hyperons, and mesons we investigate a
number of properties of neutron stars and suggest a possible
consequence of the existence of hyperon populations.

There have been earlier discussions than this one concerning
hyperons in neutron stars. The very early discussion of
Ambartsumyan and Saakyan (1960) based on Fermi gases
makes a very plausible case for the existence of a hyperon
charge on neutron stars. Later calculations included effects of
nuclear forces in the Schrodinger theory (Libby and Thomas
1969; Langer and Rosen 1970; Pandharipande and Garde
1972; Pandharipande 1971; Bethe and Johnson 1974; Mosz-
kowski 1974). The main focus of the traditional Breuckner-
Bethe approach to the nuclear many-body problem has been
on the saturation density and binding. So far there is no
general agreement on convergence of the theory to the empiri-
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cal values. Consequently, the symmetry energy and nuclear
compressibility are also as yet uncontrolled in the traditional
approach. The absence of a control on the symmetry energy is
very serious for neutron stars and accounts for some of the
major differences between our results and earlier ones (Libby
and Thomas 1969; Langer and Rosen 1970; Pandharipande
and Garde 1972; Pandharipande 1971; Bethe and Johnson
1974 ; Moszkowski 1974 ; Gao et al. 1981).

In our theory we retain relativistic covariance. Consequent-
ly, our equation of state automatically respects the causality
limit p < p. This is sometimes a problem with the Schrédinger
theory.

In the following sections the general principles of chemical
equilibrium for a system that has lived a long time with respect
to some elementary processes and a short time with respect to
others is discussed. We describe the Lagrangian, discuss its
completeness and the related question of phase transitions,
derive the self-consistency conditions for the mean fields, and
show how to calculate the baryon currents, which are sources
of various mesons. Then numerical solutions of the theory are
presented. A number of features are investigated including the
role of the p-meson (isospin symmetry energy), the hyperons,
and a pion condensate. It is found that the ground state of
dense, charge-neutral matter develops large populations of
hyperons as the density of matter approaches that which is
typical of the center of heavier neutron stars. The development
of such populations in a star that originally contained no
strange particles is not in violation of the fundamental laws of
elementary processes but a consequence of them. The kaons,
produced in association with hyperons, decay on a time scale
~1071° s with the eventual leakage of photons and neutrinos,
thus lowering the energy of the star. Consequently, the strange
baryons become Pauli blocked from decaying back to
nucleons. In this way the strangeness quantum number evolves
until the neutron star becomes cold. We calculate density pro-
files of the various baryons in typical neutron stars and check
the populations for uncertainties in the theory. The hyperons
are found to be the dominant population in the cores of the
heavier neutron stars and are about 15%-20% of the total
baryon population of such stars. It is also found that charge
neutrality is achieved through the cancellation of charges on
massive particles. The electron and muon populations are
quenched by hyperons and pions. The possible consequences
for the electrical conductivity (and hence the lifetime of the
magnetic field of pulsars) are suggested.

II. CHEMICAL EQUILIBRIUM IN A STAR

To understand the nature of chemical equilibrium in a star,
it is useful to note that the star evolves, and that a cold neutron
star is a possible ground state configuration. Many different
reactions can occur during the evolution. Toward the end of
the evolutionary phase, reactions between hadrons occur. Any
photons or neutrinos produced in these reactions can even-
tually leak out, thus lowering the star’s energy. Certain
quantum numbers are conserved absolutely or on a time scale
long compared to the evolutionary period or the period over
which observations are made on the star. Others are violated
by weak and electromagnetic interactions on a short time scale.
Therefore the ground state of a star is to be found as a problem
of chemical equilibrium subject only to the constraints of
baryon and electric-charge conservation. The strangeness
quantum number, for example, exerts no constraint on the
evolution of the star whatsoever. Thus, when the Fermi

momentum of nucleons is sufficiently high, reactions such as
N+ N->N+A+K )]

become possible. The associated kaon is free to decay (unless
driven by a phase transition as discussed later). For example,

K°—>2y, 2
Ki-p +v,
pTHK o+t vy + v,

The star’s energy is lowered through the leakage of the photons
and neutrinos. Consequently, the A becomes Pauli blocked,
and a net strangeness can evolve for sufficiently dense neutron
stars. Other hyperons are populated as the density of nucleons
increases.

Of course, solving a problem of chemical equilibrium does
not require that individual reactions be studied such as the
examples cited above. It requires only the recognition of which
attributes are conserved by the system. It is the electroweak
interactions that determine which attributes are not conserved.
To high precision, they play no further role in the determi-
nation of the ground-state energy. The energy and particle
populations are determined by the strong interactions, the
baryon masses, charges, and isospin projections, subject only
to the constraints imposed by the long-lived attributes. These
being baryon number and electric charge, all particle chemical
potentials can be written in terms of the two independent
chemical potentials u, and p, for baryon number and (negative)
electric charge.

For example, at densities in the vicinity of nuclear matter
density, charge-neutral matter is almost pure in neutrons, but
must have a small admixture of protons with an equal number
of electrons to establish equilibrium with respect to n<>p +
e~ + 9, For a cold star, neutrinos and photons escape and
equilibrium is established when the Fermions occupy their
lowest energy states up to energies that satisfy the balance

Hp = Hy — He - (3)

As the neutron density increases, so does that of electrons.
Eventually p, reaches a value equal to the muon mass. There-
after it too will be populated, and equilibrium with respect to
e —pu” +v,+7,is assured when pu, = pu,. The weak and
electromagnetic decays (2) together with the vanishing popu-
lations of neutrinos and photons imply that

#K0=09 Hg- = He s Hg+ = —He> 4)
while equilibrium with respect to equation (1) yields

Ha = - 5)

In general for an arbitrary particle, chemical equilibrium in a
star in which baryon number and electric charge are conserved
are expressed by

1= Gty — e e > (6)

where g, and g, are the baryon and electric charge of the
particle in question. This particle will be populated when u
exceeds its lowest eigenstate in the medium. In the absence of
interactions, this will be its mass. Interactions will of course
shift the threshold, as we shall see explicitly in later sections.

III. THE RELEVANT HADRONIC FIELDS, PHASE TRANSITIONS

In this section we will determine which are the relevant
hadronic fields. The Lagrangian will consist of the free

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985ApJ...293..470G

472

Lagrangians of leptons, baryons, and mesons, together with an
interaction Lagragian. The strong interaction Lagragian is

gstrong=§$l)0+§$M0+$im’ @)

where B is summed over the baryons
B=np AT O B0 AT ®)

Their quantum numbers and masses are listed in Table 1. We
shall find that no others are populated up to baryon densities
substantially higher than the 1.2 fm =3 limit that we place on
our discussion. M is summed over mesons of various quantum
numbers. Table 2 lists some of the mesons, their quantum
numbers, and typical interaction Lagrangians, which, of
course, must be Lorentz scalars. It will become apparent that
the theory depends on the meson masses and coupling con-
stants only through the ratios g/m, and these ratios are deter-
mined for those mesons that contribute to the normal state of
matter by demanding that that the theory account correctly for
the four bulk properties mentioned in the introduction.

The Euler-Lagrange equations for the ground state expecta-
tion values of the meson fields are:

(O +m,*)}{o> = ;goB<EB>
(D + mw2)<wu> - auav<a)v> = ;ng<ByuB>

(&)
O+ mK2)<K> = gx</_\)’5 N>+ -

>

where [] = 0,0" The kaon has both neutral and charged
states, and the appropriate baryons are understood to appear
on the right. The sources in these field equations are the
ground-state expectation values of the baryon currents that
appear in the interaction Lagrangian of Table 2.

Certain of these sources have familiar meanings. For
example, the baryon number density is

n= ; (ByoB) = ; (B'B) . (10)

TABLE 1

THE Six LOWEST MAss BARYON MULTIPLETS,
THEIR QUANTUM NUMBERS AND CHARGES

Baryon m Y J I I q
N o, 93  +1 4 3 +4 41
_1 0
2
A 1116 o 1 o0 0 0
o 1193 0 1 1 41 41
0 0
-1 -1
A, 122 +1 3 2 +3 42
+3 +1
-1 0
.
E o 1318 -1 3 3 +3 0
_1 —1
2
Q 1672 -2 3 0 0 -1
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TABLE 2

PARTIAL Li1ST OF MESONS ORDERED AS TO QUANTUM
NUMBERS AND THE CORRESPONDING PART OF
THE INTERACTION LAGRANGIAN

Meson Jt I |S] inta
O e, 0o* 0 0 g, 9(BB)
O i 1= 0 0 g,0,(B"B)
. 2 0~ 1 0 g.7 * (BystB)
D e = 1 0 g, p,(By"tB)
) U (V| 1 gxK(AysN). ..
K* ... 1~ 1 1 gx K, *ZE - ty*N)..

* The parentheses enclose the various baryon currents to
which the mesons are coupled.

This density drives the w-meson. The 3-component of the
isospin density,

1 —
Is) =5 L <Brots B>, (11)
B

drives the neutral p-meson, while the scalar density (BB)
drives the o-meson. However, not all source currents on the
right sides of the field equations (9) will be simultaneously
finite. We define the normal state of infinite matter to have the
following characteristics: it is uniform and isotropic, and, in
addition, the baryon eigenstates in the medium carry the same
quantum numbers as they do in vacuum. Then pseudo-scalar
and pseudo-vector currents vanish in the normal state as well
as the nondiagonal currents that are sources of the charged p’s
and the kaons. The Ays; N current, for example, changes the
number of nonstrange and strange baryons each by one unit
and therefore has vanishing expectation value in the normal
ground state. Consequently such mesons, 7, p*, K, K*, as
would be driven by these currents satisfy the field equation for
free particles in the normal ground state, and therefore they can
decay freely. The star’s energy will be lowered in the sub-
sequent leakage of any neutrinos and photons produced in the
decays.

We come now to the question of phase transitions, by which
we mean a change in the character of the ground state of the
system such that additional source currents besides the three
mentioned above acquire a finite value. The meson coupled to
such a source current then ceases to be free and is driven to
have a finite amplitude. The pion condensate has been exten-
sively studied (Baym 1978; Banerjee, Glendenning, and Gyu-
lassy 1981; Glendenning, Banerjee, and Gyulassy 1983;
Glendenning, Hecking, and Ruck 1983). The repulsive s-wave
n—N interaction inhibits condensation by raising the effective
mass of the pion in matter. Consequently condensation, if it
occurs, will do so by virtue of the attractive p-wave interaction.
For this reason the pion condensed phase has finite wave
vector k and corresponds to a phase in which the isotropy of
matter is broken. We now consider the plausibility of addi-
tional condensates.

Consider the kaon as a general example of a meson whose
source current vanishes in the normal state. Rewrite the field
equation for the Fourier components as

[—k,2 + mg? + Tglko, K)ICK) =0 (12)
where k,? = ko> — k*. Consider this at the threshold of a pos-
sible phase transition. In this case ITy is known as the polariz-
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ation operator or self-energy and can be written as

ﬂ>_ (13)

where J is the source current on the right side of equation (9).
The nonrelativistic form of equation (13) is the Lindhardt func-
tion. The essential point, however, is that equation (12) implies
that the condition for nonvanishing (K is

—ko? + k% + m? + Tg(ko, k) =0 . (14)

The threshold baryon density for the charged K~ condensate is
that density for which this equation first has a solution for real
k and for k, = u,, the electron chemical potential. A similar
equation holds for the =~. We can now discuss the plausibility
of phase transitions in terms of the pion condensate. First note
that from nuclear matter density, the electron chemical poten-
tial p, = p, — p, is an increasing function of density until it
attains a value on the order of the pion mass. At that point
negative pions will condense, and being bosons they can con-
dense in the same energy state. Therefore, 1, will tend to satu-
rate. The saturation point would be precisely m,, if the pion did
not interact with other hadrons. In the presence of interactions
the discussion is more complicated. The s-wave repulsion in
the #n-N interaction produces a positive polarization operator
and tends to inhibit condensation. In this event y, would satu-
rate not at m, but at some larger value or not at all. The p-wave
interaction, on the other hand, is attractive but requires that
the pion have nonzero wavenumber k. Actual calculations of
pion condensation in neutron star matter indicate that a con-
densate is expected with k ~ 1.5 fm ™! and that p, saturates at
~ 177 MeV (Glendenning, Hecking, and Ruck 1983). The con-
sequence of the saturation of p, near the pion mass is that the
pion forecloses the possibility of other types of phase tran-
sitions. Since k, = pug- = u, in equation (14) is bounded from
above by the pion, the polarization operator IT for the K~
would have to be very large and attractive so as to overcome
its large mass in order that equation (14) be satisfied. However,
the experimental evidence on kaon—nucleon interactions sug-
gests that they are weaker than pion interactions. In this case
the kaon cannot condense. It is even less plausible that the K*
would condense.

We have focused the above discussion on negatively charged
mesons since their chemical potential u equals that of the elec-
tron, whose chemical potential in a neutron star is positive,
te = My — i, The threshold condition for a free particle is
obviously > (k? + m?)'/?, which cannot be satisfied for a
neutral (u = 0) or positively charged (u = —pu,) free meson.
These conclusions remain valid for interactions with the
medium, so long as they are not strongly attractive. So the
above discussion is certainly adequate for all charged states of
the kaon. The n—N attractive interaction in the p-wave can
modify the discussion for pions because of the structure of
II(k,, k) in such a case. It is possible that the =,* spin-isospin
sound mode discussed in reviews by Migdal (1978) and by
Baym could be lower than the n~ (Baym 1978). However,
taking into account s- and p-wave interactions and coupling to
the isobars we find for our quasiparticle spectrum (case 5 dis-
cussed later is the appropriate one) that the #~ remains lower
than . *.

Our conclusion, therefore, is that the only meson that can
condense in neutron stars is the n~, other than those that are
driven by finite baryon source currents in the normal state (the
o, o, p°). The complexity of the interaction Lagrangian, rele-
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vant to ground state properties of charge neutral matter, is
thus strongly limited by the pion.

IV. LAGRANGIAN AND FIELD EQUATIONS

Following from the discussion of the preceding section, the
Lagrangian from which we can derive the equation of state of
neutron star matter can be written for the hadronic phase as

3 = Z B(Wu aﬂ — Mg + gdsB0 — ngyu (I)#)B
B

—9pPu3t + L+ L+ L+ 2.°— Ulo)
+ Y Pyt —m)¥,. (15)

A=e~,u—

Here B denotes a Dirac spinor for the baryon B, and B = B'y,
(Bjorken and Drell 1964, 1965; the notation of this reference is
used for the y-matrices and the metric). The pion hadronic
interactions will be ignored. As we will see later, this approx-
imation will provide a conservative estimate of hyperon popu-
lations. Of the charged states of the p-meson, only the neutral
is kept, which is denoted by the subscript 3 corresponding to its
isospin projection. The others are rejected by virtue of the
discussion of § III, since their sources vanish in normal matter.

In the above equation, J;* is the 3-isospin component of the
isospin current
1o = 0¥
=) BytB+n x ——— X .
25 BB e S P Ham
The coupling of the neutral p-meson to the isospin density
provides a driving force to isospin symmetry and, in normal
nuclei, is responsible for the symmetry energy. (The last two
terms in eq. [16] can be dropped because we shall introduce
pions only as free particles and because the p field is space-time
independent in infinite matter.)

The potential U(o) represents self-interactions of the scalar
field (Boguta and Bodmer 1977; Boguta and Rafelski 1977)
and is important in reducing the unrealistically large value of
the nuclear compressibility of the Walecka model (Walecka
1974; Chin 1977; China and Walecka 1974). Its specific form is

U(o) = [bmy + c(g,0)1(g,0)° - (17)

The mean field approximation consists of replacing all
baryon currents in the Euler-Lagrange equations that follow
from equation (15) by their ground-state expectation values.
The baryon ground state consists of a degenerate Hartree state
constructed from solutions of the field equations for the
baryons in which meson fields are replaced by their mean
values. The resulting equations are coupled nonlinear equa-
tions that are to be solved for the self-consistent values of the
mean fields. Particle populations are to satisfy the conditions
of chemical equilibrium and, in the case of a star, charge neu-
trality.

The Dirac equations for the baryons that follow from equa-
tion (15) are

[Ij - ngd) - %ngT3 ¢3 - (mB — Yo G')]B =0, (18)

where p = 7, p*, and w, p, 6 now denote ground-state expecta-
tion values. The spin-degenerate eigenvalue spectrum for the

baryons follows upon rationalizing the Dirac operator. We
find

Ji =

(16)

€5(P) = 9o @0 + g,8 P03 138 £ Exp) , (19)
Egp)=[p — g,p0 — ngI3Bp3)2 + (mg — g,80)*1"*, (20)
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where I denotes the 3-component of isospin of the baryon B
and my is its mass. The + sign in equation (19) corresponds
respectively to particles and holes. Table 1 lists all the baryons
that are populated up to densities of 1.2 fm 3. The field equa-
tions that are satisfied by the mean meson fields are

au _
m,’c = ———+ Y g,5{BB) , 21
do 5

mwzwu = Z ng<Byu B> ’ (22)
B

1 - _
mpzpu3 = 5 %: ng<BVu'53 B) = ;ng I,5¢{By, B> . (23)

These equations are all coupled through the baryon currents
appearing in them because of equation (18). The total electric
charge density is

3

k
Q = Z qB<BTB> - I:Z 3_12 + n, @(ﬂ" - mn:)ile s (24)
B 7 O

where g is the charge on baryon B, k; is the Fermi momentum
of lepton A, n, is the n~ charge density, which is zero if u, =
U, < m,, and O is the step function that is unity for zero or
positive argument and zero otherwise.

Chemical equilibrium is imposed through the chemical
potentials and involves two independent potentials u, and u,
corresponding to baryon and electric charge conservation, as
previously discussed. For baryon B the chemical potential is

HUp = Wy — qpHe » (25)
while for 7, 4™, and e~ the chemical potentials are
Hr = Py = He - (26)

The Fermi momenta of the baryons kg are the positive real
solutions of

g = €p(kp) , (27)
and the remaining Fermi momenta are determined by
(k> +m>)' = p, , (28)
(k2 +m? = p, = p,, (29)
(ke +m )2 =y =, (30)

when the solutions are real, and otherwise zero.

Equations (21)30) provide a set of coupled transcendental
relations defining the meson field amplitudes, Fermi momenta,
and chemical potentials. We shall see in the next section that
the space-like components of the p,; and w, fields vanish iden-
tically. The list of unknowns is therefore

o, wO’ p039 :um .ue’ k k kn’ kp’ kn’kA5 CIENCEY kE,- ey

CERATE]

of which there are (8 + N), where N is the number of baryon
types included (Table 1). Note that the lowest energy state has
U, < m,. When the equality holds, then n, replaces y, as an
unknown, and its value is to be determined from equation (24).
Of course in the ground state, the free pions will condense in
the zero momentum state.

V. EVALUATION OF THE SOURCE CURRENTS

The source currents appearing in the field equations (21)-
(23) are very easy to obtain in explicit form because we have an
explicit expression (19) for the Fermion eigenvalues. The Dirac
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Hamiltonian following from equation (18) is

Hy=9ly P+ 9gus® + 39,8736 +mg—g,p0]. (31)

Notice that the eigenvalues (19) and (20) do not depend on the
intrinsic spin of the baryon. Denote the z-component by u. A
single-particle state is then characterized by p and u. Denote
the creation operator for such a state by a,,'. According to the
definition of the ground state given in the previous section, the
ground state expectation of any operator I' is
d*p

KI>=)Y<BTBy=3)Y% J 5 (B'TB),, 05, (32)

B B u (2m)

where

{B'TB),, = {0l|a,, B'TBa,,"|0), (33)

and Op = Op[uyz — €5(p)] is the step function previously
defined, which here is unity if eg(p) is equal to or less than the
chemical potential ugz. Take the expectation of Hy with respect
to a single-particle state,

<BTHBB>pu = <0|apuBTHBBapuT|O> =PDo= eB(p) s (34)

where eg(p), which is independent of u, is given by equation
(19). From this equation we can derive the relations that are
needed to obtain explicit expressions for the source currents
and number density.

To evaluate the source of the w field, take a derivative of
equation (34) with respect to p;. The result is

_ 0
BBy, =22 69)
Hence
. Py oclp)
by =iy + 1) [ S5 2D o,

=@+ 1) f e, 4p: f deslp) PO =0 (36
(@2m)

The integral vanishes because, according to equation (27), the

value of e4(p) on the boundary of the region of integration is

the constant Fermi energy ug. From this result we learn from

equations (22) and (23) that the spacelike components of the w,,

and p,,; fields vanish identically,

o=p;=0. (37

Therefore, the energy eigenvalues (19) and (20) simplify and
depend only on p through p = |p|. This means that the Fermi
surface defined by equation (27) is a sphere characterized by
kg = | kg|, and henceforth we can drop the @ factor in expres-
sions like (32) and perform an integration over the Fermi
sphere instead. Next, the normalization of the state p, u can be
derived by taking the derivative of equation (43) with respect to
. This yields

(B"B)M =1. (38)

Hence,
=(B'BY=Y I NS AL Mot
ng = - = Jo (271_)3 < >pu - ( B + ) 67'[2 ( )

expresses the number density of baryon type B in terms of kg
and its spin Jg. This result could have been anticipated but is
derived to give explicit meaning to what follows.
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To evaluate the scalar density, which is the source of the ¢
field (21), take a derivative with respect to mg, obtaining

= Oep(p) Mg — go0
BBS, = = , 40
0= ey ~ 7 + my—gpor1® O
where in view of equation (37),
€5(P) = 980 + 9o P03 135 + Ep(p) ,
Eg(p) = [p* + (mp — g,50)*]"* . (41)
Consequently,
_ 2Jg+1 J' My — Gyp 0
BB) = 2d < . (42
BB =0 |, PP vty gy P

With the foregoing results the mean field equations take the
explicit forms,

dU 2Jp+1
24U B
(A %: 22 908

XFPP —fen? @3)
o (r® +(m3 9,50)°1"%°

mwsz = % .20 (44)

mp2p03 = ; 9813815, (45)

with ng given by equation (39).

VI. ENERGY DENSITY AND PRESSURE

Once the system of equations developed above has been
solved, the energy density and pressure can be calculated from
the canonical expression for the stress-energy tensor,

0¥
.7"“,= _guv$+z_a—(br¢)av¢’ (46)

where the sum is over the various fields. This yields for the
hadronic energy density and pressure

p=-Z+ % {Byopo B + (0o ) (47)

p=%+)Y <{By;p;B) + (0;n)*, (i unsummed), (48)
B
where 2 is the mean value of the strong interaction Lagrang-
ian
Z = —im,*e? — U(o) + 3m,*wo® + 3m,%pos* . (49)

The contribution of free pions vanishes in .#. For free charged
pions in the zero momentum state we have for the pion field
amplitude, 7, = T cos kot, T, = T sin kot, n3 = 0. The field
equation of course gives k, = m,. The charge density of pions
from (16)is n, = (= x 0, m);. Hence,

ke=m,, k=0, (Byn)?=n*m?2=n,m,, ©B;m)?=0.
(50)
For the single-particle energies we have
_ a3
Y. {ByopoB) =) I+ 1) J~—p3 €x(p)
B B (2n)
2Jp+ 1
=m, 0o + m, pos® + ), > 2
7 2=
ks
x J pdp[p* + (m — g,50)°1"%, (51)
0

where equations (39), (44), and (45) were used in the last step.
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To calculate single-particle contribution to the pressure we
calculate from equation (34)

= Oeg(p) P

ByB> , = - ‘

BB g o [p*+(mg—g,p0)°1"° 2

Hence
_ 2JB+1 p*
By« pB> =
By pB) = [p* + (mg — g,50)*1'"? -
(53)

Therefore, the total energy density and pressure including
leptons are

1 1 1
p=U(o) + 3 m,%o? + 3 m,?wy? + 5 m,2pos* + nym,

2JB

+2

J [p? + (mg — g,50)*1"*p*dp
+ Z = J (p* +m;»)*pdp , (54)

1
——U(a)——m a? +2
2JB+1 p4

[P + (mp — gaBO')ZJI/z

1
m,2w, +5m‘,2p032

1
+§§
l

f Tl =

The extension of the theory to finite temperature is straightfor-
ward (Garpman, Glendenning, and Karant 1978).

w

VII. PARAMETERS OF THE THEORY

As is well known in this kind of theory (Johnson and Teller
1955; Duerr 1956; Walecka 1974; Chin 1977; Chin and
Walecka 1974), saturation of symmetric nuclear matter is
achieved by the o and w, meson. The former reduces the effec-
tive mass of the baryon

mg* = mp — g,50 , (56)

thus lowering the contributions of the single-particle energies,
while the repulsive quadratic term in w,? is, by virtue of equa-
tion (44), proportional to n2.

At the saturation point of nuclear matter only the neutron
and proton states will be populated. They are equally coupled
to the meson fields. One can see from equations (43)—«(45) that
the field variables are g, 0, g, @, and g, py3, and that the solu-
tion depends on couplmg constants and masses only through
the ratios (9,/m,)?, (9.,/m,)?, and (g,/m,)*.

For symmetric matter the leptons are omitted and proton
and neutron densities are equal. The four bulk properties of
nuclear matter together with the choice of an effective mass at
saturation can be used to determine the five parameters of the
Lagrangian. With the parameters (Banerjee, Glendenning, and
Gyulassy 1981)

(g,/m,)?* = 9.957 fm?, (g,/m,)?* = 5.354 fm? ,
(g,/m)* =62 fm?, b=000414, c=000716, (57)

we obtain the correct saturation density 0.145 fm3, binding
energy 15.95 MeV, a compression modulus K = 285 MeV, and
charge symmetry coefficient of 36.8 MeV in accord with the
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droplet model of atomic masses (Myers 1977). The compress-
ibility is not directly measured in experiment but has to be
extracted through a theoretical model that must make a deli-
cate distinction between volume and surface effects to derive a
nuclear matter compressibility (Treiner et al. 1981). The value
so obtained is 220 MeV, some 20% smaller than the value of
this theory. However, the lowest value that the theory will
support with parameters that leave nuclear matter as the
absolute minimum in energy is K = 285 MeV. The effective
mass is m*/m = 0.77, which is in the expected range (Boguta
and Stocker 1983). As already noted in the introduction, the
theory, whose parameters are thus adjusted to the bulk proper-
ties of nuclear matter, is then found to account for a large
number of additional data on single-particle properties of finite
nuclei. The binding energy as a function of density correspond-
ing to the above parameters is shown in Figure 1.

The coupling strength of the isobars and the hyperons to the
meson fields are of course not determined by the properties of
normal matter. We write these couplings as the ratio of coup-
ling constant for the A or hyperons to the nucleon coupling
constant,

XA = gAd/gNa" Xy = gHo/gNo‘ > (58)

and similarly for the coupling to the w- and p-mesons. For the
hyperons we adopt the value of x; obtained by Moszkowski
(1974) on the basis of the strange and non-strange quark
content of the baryons. This yields x;,? = 2. We will test the
dependence of the theory on this parameter by also investigat-
ing the case of universal coupling, x; = 1. We adopt the same
coupling for the A as for the nucleons, i.e., x, = 1.

VIII. CHARGE NEUTRALITY AND ISOSPIN SYMMETRY

The raison d’étre of a neutron star is the constraint of charge
neutrality. For stars in the main sequence and through the
evolution to the white dwarf stage, the symmetry energy of
nuclei is compatible with charge neutrality. However, an ideal-

100

n H o2} [o]
o o o o
T T e e

Binding per nucleon (MeV)
o

U
N
(=)

o
)

n (fm=3)

Fic. 1.—Binding energy per nucleon, p/n — m,, as a function of baryon
number density n, for (a) symmetric nuclear matter, (b) pure neutron matter, (c)
the present theory of neutron-star matter including hyperons and free n~
condensate and with a p-meson coupling that yields the correct charge sym-
metry energy in nuclear matter, and (d) like (c¢) but without hyperons and n
condensate.
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ized neutron star is highly isospin asymmetric. The asymmetry
is resisted by the interaction of baryons with the neutral p-
meson. Its amplitude is driven by the 3-component of the total
isospin density according to equation (45). This provides a
quadratic restoring term in the energy density (51),
%mp2p032 >

which in ordinary nuclei is proportional to (N — Z)? and con-
tributes, along with the difference in Fermi energies of neutrons
and protons, to the symmetry energy in nuclei. The coupling in
our model is chosen, as mentioned already, to yield the correct
symmetry energy coefficient.

Because of the opposition of charge neutrality and the
isospin symmetry energy of neutral matter, it is worth recalling
that charge neutrality is an absolute constraint, since it is
imposed by long-range forces. If the net charge on a star is Ze
and an additional charged particle of mass m and charge e of
the same sign is added, stability requires that

G(Am)m - Ze?
R T R’
where the star’s mass is represented by Am. For net positive
(proton) or negative (electron) charge, this means

10-—36
10—39

Effectively the charge density must be zero and the short-range
interactions must operate within this constant. Accordingly,
baryon populations will arrange themselves in such a way as to
minimize the energy density and in accord with charge neutral-
ity. In particular, the isospin symmetry energy will disfavor
baryons of the same sign of isospin projection as the neutron.
This can be inferred from equations (41) and (45). Conversely it
will favor those with the opposite isospin projection. Other
factors affecting the populations of the various baryon species
are the baryon masses, electric charges, and other interactions.
The precise manner in which these factors determine the par-
ticle thresholds is explicit in equations (27) and (41), which
relation will be employed later in understanding the outcome
of the numerical solutions.

(39)

(positive) ,

(negative) . (60)

Z/As{

IX. ELECTRON CHEMICAL POTENTIAL

As discussed in § IIL, the condensation of negative pions in
charge-neutral matter imposes an upper bound on the electron
chemical potential. This bound will of course depend on the
pion-baryon interactions (cf. eq. [14]). In this work we are
going to neglect these interactions. We therefore need to
discuss the behavior of g, in various systems in order to gauge
the effect of our approximation on the hyperon populations.
This turns out to be straightforward.

First, however, we discuss why our present problem becomes
extremely complicated by the n—B interactions. If pion conden-
sation occurs in an interacting system it is because of the
attractive p-wave interaction in the n—N system, the interaction
being repulsive in the s-state (Baym 1978). As has been dis-
cussed in detail elsewhere, the p-wave interaction distorts the
Fermi seas of the baryons (Banerjee, Glendenning, and Gyu-
lassy 1981; Glendenning, Banerjee, and Gyulassy 1983; Glen-
denning, Hecking, and Ruck 1983). As a consequence their
densities cannot be characterized simply by Fermi momenta.
The distortion of the Fermi seas of all baryons has to be solved
self-consistently with the field equations for the mesons. This
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F1G. 2—Electron chemical potential as a function of baryon number
density in neutron-star matter, showing quenching for (a) interacting pion
condensate in f-stable neutron-proton matter with correct charge symmetry
energy (from Glendenning, Hecking,and Ruck 1983), (b) free pion condensate
in stable matter containing nucleons and hyperons and with correct charge
symmetry energy, (c) like (b) but no pion condensate, and (d) no hyperons or
condensate but correct charge symmetry energy.

problem has been solved for simpler systems, for symmetric
nuclear matter (Banerjee, Glendenning, and Gyulassy 1981),
and for stable charge-neutral neutron star matter in which, of
the baryons, only the proton and neutron were considered
(Glendenning, Banerjee, and Gyulassy 1983; Glendenning,
Hecking, and Ruck 1983). The behavior of the electron chemi-
cal potential in the latter case is shown in Figure 2. It saturates
and at an energy larger than for free pions, which occurs
instead at m,. The reason for this is that the attractive part of
the interaction is p-wave, requiring therefore a finite kinetic
energy (k # 0). The behavior of p, in the presence of a conden-
sate of free 7~ mesons is also shown in Figure 2. For this
calculation all baryon types of Table 1 were introduced.

We can study another case, that in which pions do not con-
dense. This situation would occur if the 7—N interaction were
strongly repulsive. Then equation (14) could not be satisfied at
any density. We can realize this situation by arbitrarily increas-
ing the value of m,. The behavior of p, in the case of no pion
condensation, in our system including all baryons of Table 1, is
also shown in Figure 2. The electron chemical potential still
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saturates but at a larger value, around 195 MeV. The reason
for saturation in this case is that for sufficiently large baryon
densities (>0.5 fm?), charge neutrality is achieved most eco-
nomically among the baryon populations with only a very
small negatively charged lepton population. That is,?

n+n—on+A
becomes more economical than

n—p+e o n—o>p+u .

From these considerations we may infer that if u, does not
reach an upper bound because of pion condensation, it will do
so because of the growth of heavier baryon populations. We
find this upper bound to be ~200 MeV, far less than all meson
masses save that of the pion. Therefore the discussion of § IIT
can be extended. The possibility of phase transitions corre-
sponding to mesons that are not driven by finite baryon cur-
rents in the normal state are foreclosed by the existence of
heavier baryons. The 7~ phase transition is also foreclosed for
the same reason unless equation (14) has a solution for k that is
real when k, = u, < 200 MeV. Therefore the two cases corre-
sponding to the lower and upper curves of Figure 2 may be
considered bounds on the possible behavior of u,. These two
bounds correspond to the condensation of free pions and to no
pion condensation, respectively. We shall examine the hyperon
populations in the two limiting cases and are able to claim that
whatever the n—B interaction, the case of condensation of free
pions yields the lower bound on the hyperon admixture.

X. PROPERTIES OF DENSE NEUTRON-STAR MATTER

For a complete description of a neutron star, including the
surface, the equation of state is needed over a wide range of
densities, as listed in Table 3. In this section the properties and
composition of stable charge-neutral (neutron-star) matter in
the supernuclear density regime are presented together with
comparisons that bring out the roles of the isospin symmetry
property of the interactions, of the hyperons, and of the n~
condensate.

For the above purpose the following cases will be studied,
the first of which is the complete theory as described in §§
IV-VI and with parameters as in § VII. We characterize the
cases by the particle content and any modifications to the
standard coupling constants discussed in § VIL They are:

1) n, p,hyperons,A,e,u”,n";

2) n, p,hyperons, A, e, u”;

3) like (2) but universal coupling of hyperons (x5 = 1);

4) like (3)butg, = 0;

2 As can be inferred from our discussion of chemical equilibrium, the
associated kaon produced in such a reaction does not need to be mentioned.

TABLE 3
DENSITY REGIONS NEEDED TO DESCRIBE THE NEUTRON STAR SURFACE (I AND II) AND THE STAR INTERIOR (III)

Density
Region (g cm™3) Character of Matter Reference
I 2x103<p<1x 10! crystalline; light metals, Harrison and Wheeler 1965
electron gas
| O 1x10" <p<2x10t3 crystalline; heavy metals, Negele and Vautherin 1973
relativistic electron gas
HI............ 2x 10" <p<5x10'*  relativistic hyperons, pions,  This work

leptons
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5) n,pepu;

6) like (5)butg, = 0;

7) n,pe,u ,m

8) n,g,=0;

9) symmetric nuclear matter.

Comparison between case 1 and case 2 will illustrate the
effect of a 7~ condensate, while case 3 tests the dependence on
the coupling of the hyperons, as discussed in § VII. We are not
aware of any previous calculations of neutron-star structure
that employ nuclear forces that are known to yield the empiri-
cal symmetry energy of ordinary nuclei as the present theory
does. Case 4 will illustrate the effect of underestimating the
isospin symmetry energy when compared with case 3. Case 5
corresponds to a theory for which the p-meson coupling yields
the correct symmetry energy in nuclear matter but in which the
possible presence of pions, isobars, and hyperons is ignored.
This case in comparison with cases 1 and 2 illustrates the
effects of these particles.

The usual scenario for neutron stars envisages that they
contain neutrons in - equilibrium with a small number of
protons, electrons, and u~. Cases 5 and 6 are versions of this
scenario, the former for which the symmetry energy possesses
the correct value in nuclear matter, and the latter for which
g, = 0 and the symmetry energy is too small. Case 7 is like case
5 but free pions are allowed to condense.

Finally, case 8 is pure neutron matter with g, = 0, and case 9
is symmetric nuclear matter. The binding energy for both these
cases are shown in Figure 1.

We discuss in detail some of these cases below.

a) Case I (The Present Theory)

The simultaneous nonlinear equations (21)30) must be
solved for the (8 + N) unknown meson field strengths, chemi-
cal potentials, and Fermi momenta. However, the complete
solution can be presented, once it is found, by showing the
dependence on baryon number density n only of the field
strengths and the two chemical potentials. The Fermi
momenta for the leptons can be calculated from equations (28)
and (29) and for the hadrons from equation (27) using the
above quantities. Figure 3 shows the solution for case 1, which
corresponds to our complete theory. We now discuss the solu-
tion. The vector field g, w, is roughly proportional to the
baryon density n, and exactly proportional in the case of uni-
versal coupling (cf. eq. [44]). The saturation of u, occurs, as
discussed in § III, because of the condensation of free 7~. The
p-field and electron chemical potential behave in roughly the
same way as a function of density. At low density, below the
u~, n~, and hyperon thresholds, charge neutrality can be
achieved only among protons and an equal number of elec-
trons. The latter being relativistic, the charge neutrality of a
star forces a high isospin asymmetry. In fact, from the approx-
imate relations p, = k,*/2m, p, ~ k,?/2m, u, ~ k, and the con-
ditions of charge neutrality (k, = k,) and chemical equilibrium
(s = u, + ), we find for low density, where n, is the neutron
density and m the nuclear mass,

He & 0.06m(n,/ng)**[1 — 0.03(n,/no)*] ,
13 X _%nn[l - O.OOS(nn/nO)] * (61)

The p-field is driven by the isospin density so both y, and po;
grow as n, grows at low density. However, as the thresholds for
pions and hyperons are reached, more energetically favorable
options for charge neutrality become available. In this regime
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Fi1G. 3.—The g, w,, and p field strengths and the two chemical potentials as
a function of baryon number density for our theory (case 1). The coupling
constants refer to the nucleon. For hyperon coupling, refer to eq. (58). The
electron chemical potential saturates at m, because of a free 7~ Bose conden-
sate.

the role of the p-field is to select those options with low isospin
density. Consequently, 1, and py; grow less rapidly or saturate
as density increases.

The binding energy per nucleon is compared in Figure 1
with symmetric nuclear matter, with pure neutron matter, and
with case 5. The latter comparison illustrates the softening
effect of the hyperons. We see also that while pure neutron
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FiG. 4—Equation of state p vs. p for case 1 with nucleons, hyperons,
isobars, and n~ condensate (solid line) is compared with case 5, for which
hyperons, isobars, and condensate are absent (dotted line). In both, the charge
symmetry energy is correct for nuclear matter. Other curves show the causal
limit (p = p), the ideal ultrarelativistic gas (p = p/3), and an ideal neutron gas.
The density of ordinary nuclear matter is marked. At ultrahigh density our
theory approaches the casual limit.
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matter, in the absence of coupling to the p-meson, is slightly
bound, our theory for neutron-star matter (stable charge-
neutral matter) is not. This is due to the isospin symmetry
energy arising from the coupling of the isospin density to the
neutral p-meson.

The equation of state p versus p is shown in Figure 4 (see
also Table 4) and compared with the causality limit p = p, with
an ultrarelativistic gas p = p/3, and with an ideal neutron gas,
which for high density approaches p = p/3. The units adopted
for this figure are related to the nuclear units by

197.32 MeV fm ™3 = fm ™% = 3.518 10'* g cm ™3
= 3.162 10%° dyne cm 2,
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and 15 correspond to the onset of pion condensation and to
hyperon populations. Neither produces an effect as dramatic
as has occasionally been speculated on (Pandharipande 1971;
Migdal 1978; Irvine and Rogers 1977; Brown and Wise 1976).
The dotted curve corresponds to the situation when 7~ and
hyperons are rejected (case 5). Asymptotically, our equation of
state approaches p— p because the repulsion arises from the
exchange of a vector meson. Such a behavior of vector meson
interactions has been remarked on by Zel’dovich (1962). It can
be seen explicitly by examining equation (54) for p and p in the
limit of large density. As kz— oo, the mass terms in the integ-
rals can be ignored. The g-field is bounded by the order of the
baryon masses. Then it follows that

For normal nuclear matter the energy density is 1 | 2 205 + 1 kg*
gy y _,_<ZQ_@,,B> +_<Z§£}2138n5) T o Ly’ My
po~ 248 10" gem™3 2\ m, 2\ m, 5 20 4
Below nuclear density our equation of state is softer than an (62)
1d§a1 neutron gas because of phe attractive interaction but it 1 gos V1 9op 2 12+ 1kgt
stiffens around nuclear density because of the increasing p—5 2= ng) + 5 Y Igng | + 3 > oz 4
importance of the short-range repulsion. The structures in the B Mo B My B &
equation of state in the form of slight softenings at log p = 14.6 (63)
TABLE 4
EQUATION OF STATE FOR CASE 1
n p P n p P

(fm%) (g/cm®) (dynes/cm?) (fm?) (g/cm?) (dynes/cm?)

.04 6.7232 +13  1.6213+32 84 17197 +15  3.4950 +35

.06 1.0101 +14  4.8916 +32 .86 1.7702 +15  3.6644 +35

.08 1.3495 +14 1.1390 +33 .88 1.8211 +15 3.8384 +35

.10 1.6914 +14  2.2044 +33 .90 1.8724 +15  4.0135 +35

12 2.0361 +14 3.7258 +33 92 1.9241 +15 4.1855 +35

.14 2.3840 +14 5.6872 +33 94 1.9763 +15 4.3594 +35

.16 2.7354 +14  8.1769 +33 .96 2.0289 +15  4.5353 +35

18 3.0903 +14 1.0528 +34 98 2.0819 +15 4.7120 +35

.20 3.4482 +14 1.2910 +34 1.00 2.1353 +15 4.8907 +35

22 3.8086 +14 1.5867 +34 1.02 2.1891 +15 5.0725 +35

24 41727 +14 19456 +34 1.04 2.2433 +15  5.2575 +35

.26 4.5403 +14 2.3708 +34 1.06 2.2979 +15 5.4459 +35

.28 49122 +14  2.8650 +34 1.08 2.3529 +15  5.6382 +35

.30 5.2879 +14 3.4314 +34 1.10 2.4083 +15 5.8339 +35

32 5.6682 +14  4.0714 +34 112 2.4641 +15  6.0334 +35

34 6.0531 +14 4.7866 +34 1.14 2.5203 +15 6.2374 +35

.36 6.4429 +14  5.5793 +34 1.16 2.5769 +15  6.4442 +35

.38 6.8379 +14  6.4505 +34 1.18 2.6339 +15  6.6525 +35

.40 7.2383 +14  7.3893 +34 1.20 2.6913 +15  6.8638 +35

42 7.6439 +14 8.2933 +34 1.22 2.7491 +15 7.0781 +35

44 8.0541 +14  9.1960 +34 1.24 2.8108 +15  7.2957 +35

.46 8.4689 +14 1.0082 +35 1.26 2.8733 +15 7.5177 +35

.48 8.8882 +14  1.0998 +35 1.28 2.9361 +15  7.7431 435

.50 9.3118 +14  1.1952 +35 1.30 2.9994 +15  7.9730 +35

.52 9.7399 +14  1.2948 +35 1.32 3.0631 +15  8.2067 +35

.54 1.0172 +15  1.3989 +35 1.34 3.1272 +15  8.4448 +35

.56 1.0609 +15 1.5076 +35 1.36 3.1918 +15 8.6870 +35

.58 1.1050 +15 1.6212 +35 1.38 3.2568 +15 8.9333 +35

.60 1.1495 +15  1.7396 +35 1.40 3.3221 +15  9.1840 +35

.62 1.1945 +15  1.8630 +35 1.42 3.3879 +15  9.4395 +35

.64 1.2400 +15 19915 +35 1.44 3.4541 +15  9.6991 +35

.66 1.2859 +15 2.1251 +35 1.46 3.5208 +15 9.9635 +35

.68 13323 +15  2.2638 +35 1.48 3.5877 +15  1.0232 +36

.70 1.3791 +15 24078 +35 1.50 3.6552 +15  1.0505 +36

72 1.4264 +15 2.5570 +35 1.52 3.7227 +15 1.0783 +36

74 1.4742 +15  2.7065 +35 1.54 3.7910 +15  1.1066 +36

.76 1.5224 +15 2.8572 +35 1.56 3.8596 +15 1.1353 +36

78 15711 +15  3.0111 +35 1.58 3.9286 +15  1.1645 +36

.80 1.6202 +15 3.1683 +35 1.60 3.9982 +15 1.1941 +36

.82 1.6697 +15 3.3296 +35 1.62 4.0679 +15 1.2242 +36
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Since ny oc kp®, we find that p approaches p from below. [The
speed of sound, (dp/dp)*'?, approaches but is less than that of
light.]

It is well known that as a star becomes more dense, the
process of neutronization occurs. The range of densities
describable by our Lagrangian and our assumption of uniform
matter is from the density of a neutron gas upward. We study
the solutions from n=0.04 fm~3 to 1.2 fm~3 (ie, 028 <
n/ng < 8, where ny=0.145 fm~3 is the normal nuclear
density). The evolution of particle populations with increasing
baryon density n is shown in Figure 5. At low density (on the
nuclear scale), charge-neutral matter is almost purely neutron.
As the density rises, high-momentum neutrons f-decay into
protons and electrons or muons. The u~ threshold occurs at
n =~ 0.12 fm ™3, just below normal nuclear density, and the 7~
threshold occurs at n = 0.18 fm ™3, just above nuclear density.
The =™, as already discussed, arrests the growth of the lepton
fraction. The n~ fraction grows very rapidly with increasing
baryon density to n ~ 0.4 fm ™3, and then it decreases slowly
until n ~ 1 fm 2 and then it falls precipitously. This occurs as
the thresholds for hyperons are reached. These thresholds
depend not only on the mass but on the charge and on the
interactions with the meson fields o, @y, and py;, as seen
through equations (25), (27), and (41), which we combine to
form the threshold equation,

Bo — dBMe = 9B Wo + gppPo3l3p + Mp — g0 . (64)

When the left side equals or exceeds the right, the baryon
species B will be populated. From equation (23) we infer that
the sign of g5 po; is fixed by the net isospin density of the star,
which is of course that of the neutron. Therefore baryons
having the same sign of isospin projection as the neutron are
isospin-unfavored. Those having the same sign of charge as the
proton are charge-unfavored because they must appear with
another particle of opposite charge to maintain charge neutral-
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F1G. 5—Relative populations as a function of baryon density for our
theory (case 1). In the pion condensate region, 0.18 < n < 1.22 fm™~3, the
lepton number densities are constant (decreasing relative populations). The =
condensate is ultimately quenched by the hyperon populations. Hyperons

appear in the order A, X7, X% X%, 7 Z° The A’s do not appear in this density
range.
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F1G. 6.—Field strengths and chemical potentials for case 2. The electron-
chemical potential is quenched by the hyperons in this case where the pion is
assumed to have a repulsive self-energy which prevents its condensation.

ity. Those with the same charge as the electron, however, are
charge-favored because such a baryon can replace a neutral
baryon and an electron at the top of the Fermi sea. As a case in
point, the £~ is charge-favored but isospin-unfavored, while
the A, having zero charge and isospin, is neutral with respect to
both of these effects. The precise way in which these factors
balance out depends on the solution of equations (20)+30),
which was shown for this case in Figure 3. The A is found to
have a somewhat lower threshold than the X ~. Nowhere in the
density range shown are the A’s populated. The most favored
charge state is the A~, but it is unfavored by its isospin. These
two factors contribute an attractive energy in the threshold
condition (64) amounting to —pu, — (3)g,pe3 = —20 MeV
over the density range 0.2 < n fm® < 1.2. However this is insuf-
ficient to overcome its large mass. The A* * is isospin-favored
but doubly unfavored by its charge. Together these contribute
a repulsive energy 24, + ()9, po3 = +70 MeV over the same
density range, which assures its absence. Equation (64) together
with the chemical potentials and field strengths shown in
Figure 3 can be used to check that no other baryons than those
shown in Figure 5 can be populated in the density range of that
figure. In applying equation (64) with the field strengths shown
in Figure 3 as g, 6, g, W, g, Po3, recall that the hyperon coup-
ling is modified by the factor xj of equation (58).

b) Case 2(No Pion Condensation)

In this case pions do not condense because of an assumed
repulsion in their interaction. The behavior of the field
strengths and chemical potentials in the absence of pion con-
densation is shown in Figure 6. As discussed in § III, the elec-
tron chemical potential will saturate either by reason of
increasing charged-hyperon populations or because of pion
condensation, whichever effect sets in first. Here it occurs
through the growth of the hyperon populations. Figure 7
shows the particle populations. Comparison with Figure 5
shows that 7~ condensation shifts the threshold for the hyper-
ons to somewhat higher density. This is easily understood. If
the electron pressure cannot be relieved by n~ condensation,
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Fi1G. 7.—Relative populations for case 2, where pions do not condense. Lepton populations reach higher levels than case 1 but nevertheless are quenched by

hyperons. The hyperons have lower thresholds when pions do not condense.

Fi1G. 8.—Field strengths o, p, and chemical potentials for case 3 where nucleons, hyperons, and isobars are universally coupled. In this case of universal coupling,

, is proportional to n.

then neutron and electron presures will be relieved by X, for
example. Figures 5 and 7 illustrate the point emphasized
earlier, that admitting the condensation of free pions will yield
a conservative estimate of hyperon populations. The equation
of state is presented in Table 5.

¢) Case 3 (Universal Coupling)

In the preceding two cases, the hyperon couplings were
reduced in comparison with the nucleon and isobar couplings,

as discussed in § VII. This case, by comparison, shows the
results for universal coupling. Figure 8 shows the field
strengths and chemical potentials, while Figure 9 shows the
populations. In comparison with Figure 7, to which this case is
otherwise similar, we see that the populations are not exces-
sively affected by the variation of x; between 1 and %. The
equation of state is presented in Table 6. In Table 7 the equa-
tion of state for a case like 1 but with universal coupling is
given for completeness.

TABLE 5
EQUATION OF STATE FOR CASE 2

n P p n p p
(fm3) (g/cm3) (dynes/cm?) (fm3) (g/cm3) (dynes/cm?)
.04 6.7232 +13 1.6213 +32 .58 1.1113 +15 1.5348 +35
.06 1.0101 +14 4.8916 +32 .60 1.1557 +15 1.6496 +35
.08 1.3495 +14 1.1390 +33 .62 1.2006 +15 1.7699 +35
.10 1.6914 +14 2.2044 +33 .64 1.2459 +15 1.8956 +35
12 2.0360 +14 3.7261 +33 .66 1.2916 +15 2.0267 +35
.14 2.3840 +14 5.6872 +33 .68 1.3378 +15 2.1632 +35
.16 2.7354 +14 8.1772 +33 .70 1.3845 +15 2.3023 +35
.18 3.0906 +14 1.1248 +34 72 1.4316 +15 2.4415 +35
.20 3.4501 +14 1.4940 +34 .74 1.4791 +15 2.5837 +35
22 3.8139 +14 1.9290 +34 .76 1.5271 +15 2.7298 +35
24 41826 +14 2.4327 +34 .78 1.5755 +15 2.8801 +35
.26 4.5562 +14 3.0074 +34 .80 1.6243 +15 3.0348 +35
.28 4.9351 +14 3.6556 +34 .82 1.6736 +15 3.1939 +35
.30 5.3192 +14 4.2700 +34 .84 1.7233 +15 3.3580 +35
.32 5.7076 +14 48473 +34 .86 1.7735 +15 3.5269 +35
.34 6.1002 +14 5.4507 +34 .88 1.8241 +15 3.7005 +35
.36 6.4967 +14 6.0394 +34 .90 1.8751 +15 3.8791 +35
.38 6.8967 +14 6.6576 +34 .92 1.9266 +15 4.0549 +35
.40 7.3009 +14 7.3140 +34 .94 1.9785 +15 4.2304 +35
42 7.7086 +14 8.0131 +34 .96 2.0308 +15 4.4088 +35
44 8.1199 +14 8.7572 +34 1.00 2.1367 +15 4.7718 +35
.46 8.5354 +14 9.5483 +34 1.04 2.2443 +15 5.1537 +35
.48 8.9547 +14 1.0388 +35 1.08 2.3535 +15 5.5518 +35
.50 9.3779 +14 1.1277 +35 1.12 2.4645 +15 5.9670 +35
.52 9.8054 +14 1.2217 +35 1.16 2.5770 +15 6.3974 +35
.54 1.0237 +15 1.3208 +35 1.20 2.6913 +15 6.8448 +35
.56 1.0673 +15 1.4251 +35 1.24 2.8073 +15 7.3105 +35
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F1G. 9.—Populations in case all baryons are universally coupled, and pions

1.5

do not condense by reason of an assumed repulsive self-energy (case 3).

d) Case 4 (Symmetry Energy)

Next we demonstrate the extreme importance of the isospin
symmetry energy of the system as regards the hyperon popu-
lations. Of course, such a symmetry energy always exists for
Fermions through their kinetic energies. However, this
accounts for only a part of the observed symmetry-energy coef-
ficient of normal nuclei. The coupling of nucleons to the
neutral p-field (23) provides the rest. By setting the coupling
constant of the p-field to zero we can see the important role
played by the isospin symmetry energy. The field strength o
and the chemical potentials are shown in Figure 10. In this case
u. is saturated at about 120 MeV by the hyperons, so that
pions are unable to condense. The populations are shown in
Figure 11 and contrast sharply with Figure 5. In particular, the
X~ now has the lowest threshold of the hyperons. It is charge-
favored as discussed above, and with vanishing p-coupling its
isospin is not a liability. This case, for which the nucleons,
isobars, and hyperons are universally coupled, corresponds
rather closely to the results of Pandharipande (1971) and of
Bethe and Johnson (1974). (Compare, for example, Fig. 8 of
Pandharipande.) The A~ has a low threshold because of the
low symmetry energy (g, = 0). Since universal coupling of all

TABLE 6
EQUATION OF STATE FOR CASE 3

n P n P p
(fm) (g/cm3) (dynes/cm?) (fm) (g/cm?3) (dynes/cm?)
.04 6.7232 +13 1.6219 +32 .84 1.7689 +15 4.3885 +35
.06 1.0101 +14 4.8894 +32 .86 1.8230 +15 4.6317 +35
.08 1.3495 +14 1.1392 +33 .88 1.8776 +15 4.8749 +35
.10 1.6914 +14 2.2042 +33 .90 1.9330 +15 5.1224 +35
12 2.0361 +14 3.7261 +33 .92 1.9889 +15 5.3760 +35
.14 2.3840 +14 5.6869 +33 .94 2.0454 +15 5.6366 +35
.16 2.7354 +14 8.1763 +33 .96 2.1026 +15 5.9038 +35
.18 3.0906 +14 1.1248 +34 .98 2.1604 +15 6.1779 +35
.20 3.4501 +14 1.4940 +34 1.00 2.2188 +15 6.4596 +35
22 3.8139 +14 1.9290 +34 1.02 2.2779 +15 6.7487 +35
.24 4.1826 +14 2.4327 +34 1.04 2.3376 +15 7.0449 +35
.26 4.5562 +14 3.0074 +34 1.06 2.3979 +15 7.3485 +35
.28 4.9351 +14 3.6556 +34 1.08 2.4589 +15 7.6599 +35
.30 5.3196 +14 4.3791 +34 1.10 2.5206 +15 7.9790 +35
.32 5.7094 +14 5.1338 +34 1.12 2.5829 +15 8.3053 +35
.34 6.1044 +14 5.8042 +34 1.14 2.6459 +15 8.6392 +35
.36 6.5034 +14 6.5083 +34 1.16 2.7095 +15 8.9810 +35
.38 6.9072 +14 7.2675 +34 1.18 2.7737 +15 9.3301 +35
.40 7.3157 +14 8.0890 +34 1.20 2.8387 +15 9.6874 +35
42 7.7290 +14 8.9772 +34 1.22 2.9043 +15 1.0052 +36
.44 8.1470 +14 9.9344 +34 1.24 2.9706 +15 1.0424 +36
.46 8.5702 +14 1.0963 +35 1.26 3.0375 +15 1.0804 +36
48 8.9983 +14 1.2064 +35 1.28 3.1052 +15 1.1192 +36
.50 9.4318 +14 1.3239 +35 1.30 3.1735 +15 1.1587 +36
.52 9.8708 +14 1.4491 +35 1.32 3.2425 +15 1.1990 +36
54 1.0315 +15 1.5819 +35 1.34 3.3122 +15 1.2401 +36
.56 1.0765 +15 1.7225 +35 1.36 3.3825 +15 1.2820 +36
.58 1.1221 +15 1.8709 +35 1.38 3.4536 +15 1.3246 +36
.60 1.1683 +15 2.0268 +35 1.40 3.5254 +15 1.3680 +36
.62 1.2150 +15 2.1874 +35 1.42 3.5979 +15 1.4122 +36
.64 1.2624 +15 2.3544 +35 1.44 3.6710 +15 1.4571 +36
.66 1.3103 +15 2.5287 +35 1.46 3.7449 +15 1.5029 +36
.68 1.3588 +15 2.7083 +35 1.48 3.8195 +15 1.5493 +36
.70 1.4079 +15 2.8934 +35 1.50 3.8948 +15 1.5966 +36
12 1.4577 +15 3.0852 +35 1.52 3.9704 +15 1.6445 +36
.74 1.5080 +15 3.2841 +35 1.54 4.0471 +15 1.6930 +36
.76 1.5589 +15 3.4899 +35 1.56 4.1245 +15 1.7422 +36
.78 1.6105 +15 3.7033 +35 1.58 4.2026 +15 1.7921 +36
.80 1.6627 +15 3.9244 +35 1.60 4.2814 +15 1.8427 +36
.82 1.7154 +15 4.1527 +35 1.62 4.3609 +15 1.8941 +36
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TABLE 7
EQUATION OF STATE SIMILAR TO CASE 1 BUT WITH UNIVERSAL COUPLING OF ALL BARYONS
(xg=1)
n p P n P p
(fm) (g/cm®) (dynes/cm?) (fm™) (g/cm?) (dynes/cm?)
.04 6.7232 +13 1.6219 +32 .82 1.6983 +15 4.2542 +35
.06 1.0101 +14  4.8894 +32 84 17516 +15  4.4992 +35
.08 1.3495 +14 1.1392 +33 .86 1.8055 +15  4.7512 +35
.10 1.6913 +14  2.2041 +33 .88 1.8601 +15 5.0111 +35
12 2.0361 +14 3.7261 +33 .90 1.9154 +15 5.2780 +35
.14 2.3840 +14 5.6869 +33 92 1.9714 +15 5.5528 +35
.16 2.7354 +14 8.1760 +33 .94 2.0280 +15 5.8301 +35
.18 3.0905 +14 1.0530 +34 .96 2.0853 +15 6.1118 +35
.20 3.4482 +14 1.2909 +34 .98 2.1432 +15 6.4005 +35
22 3.8089 +14 1.5867 +34 1.00 2.2018 +15 6.6949 +35
24 4.1727 +14 1.9458 +34 1.02 22612 +15  6.9975 +35
.26 4.5403 +14  2.3702 +34 1.04 23210 415 7.3064 +35
28 49122 +14  2.8654 +34 1.06 2.3816 +15  7.6226 +35
.30 5.2879 +14 3.4314 +34 1.08 2.4429 +15 7.9458 +35
32 5.6682 +14  4.0711 +34 1.10 2.5048 +15  8.2740 +35
34 6.0531 +14  4.7863 +34 112 2.5676 +15  8.6098 +35
.36 6.4429 +14 5.5790 +34 1.14 2.6307 +15 8.9504 +35
.38 6.8379 +14 6.4502 +34 1.16 2.6947 +15 9.2991 +35
.40 7.2386 +14 7.4016 +34 1.18 2.7593 +15 9.6549 +35
42 7.6439 +14  8.4021 +34 1.20 2.8247 +15 1.0018 +36
44 8.0555 +14 9.4477 +34 1.22 2.8907 +15 1.0388 +36
46 8.4720 +14 1.0554 +35 1.24 2.9574 +15 1.0763 +36
.48 8.8942 +14 1.1729 +35 1.26 3.0246 +15 1.1143 +36
.50 9.3220 +14 1.2975 +35 1.28 3.0927 +15 1.1531 +36
.52 9.7551 +14 1.4293 +35 1.30 3.1614 +15 1.1925 +36
.54 1.0195 +15 1.5678 +35 1.32 3.2310 +15 1.2328 +36
.56 1.0640 +15 17110 +35 1.34 3.3009 +15 1.2735 +36
.58 1.1090 +15 1.8608 +35 1.36 3.3716 +15 1.3151 +36
.60 1.1547 +15  2.0183 +35 1.38 3.4433 +15 1.3576 +36
62 1.2010 +15  2.1830 +35 1.40 3.5153 +15 1.4005 +36
.64 1.2479 +15 2.3555 +35 1.42 3.5880 +15 1.4441 +36
.66 1.2954 +15 2.5356 +35 1.44 3.6615 +15 1.4884 +36
.68 1.3435 +15 2.7237 +35 1.46 3.7358 +15 1.5334 +36
.70 1.3923 +15 2.9195 +35 1.48 3.8110 +15 1.5792 +36
72 1.4417 +15 3.1234 +35 1.50 3.8863 +15 1.6254 +36
74 1.4917 +15 3.3350 +35 1.52 3.9623 +15 1.6725 +36
76 1.5423 +15 3.5544 +35 1.54 4.0390 +15 1.7201 +36
78 1.5937 +15 3.7824 +35 1.56 4.1171 +15 1.7689 +36
.80 1.6457 +15 4.0154 +35 1.58 4.1956 +15 1.8180 +36
700 — . . . .
] baryons is assumed for this case, some terms in equation (64)
are common to A~ and A. Their thresholds are otherwise
600 n determined by (—pu, + m,) and m, respectively, which are
1 equal at n ~ 0.508 fm ~3. This is the only case for which we find
500 - the presence of an isobar, and this occurs because of the artifi-
) cially low symmetry energy.
> 400 7] e) Case 5 (No Hyperons, A or n~ Condensate)
g 1 Figure 12 shows how the electron-chemical potential is a
300 . monotonic increasing function of density in the absence of
. hyperons or a pion condensate. The particle populations are
200 4 shown in Figure 13. Note that in this, as with the preceding
) cases, the proton density reaches 10%—-30% in contrast with
the usual scenario below, in which the correct charge symmetry
100 is not enforced.
0 A f) Case 6 (Usual Scenario)
1.5 Frequently neutron stars are thought of as being composed
-3 of neutrons in f equilibrium with a very small proton popu-
n (fm™) lation. This would be the case if the symmetry energy were not
FiG. 10.—Field strengths and chemical potentials for case 4. Here the p lgrge enough Compared_ to 1ts emplrlca] value, an hyperons
coupling, g, = 0, and all baryons are universally coupled. did not exist. The chemical potentials are shown in Figure 14,
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F1G. 11.—Relative populations for case 4, where all baryons are universally coupled, and g, = 0. In this case the charge-symmetry energy derives only from the
difference in neutron and proton kinetic energies and is too small compared to the empirical value. Populations are radically different from preceding cases. The
protons are less populous because of the smaller symmetry energy, and for the same reason the £~ makes an early appearance, quenching the leptons.

FI1G. 12.—Field strengths and chemical potentials for case 5, where hyperons, isobars, and pions are absent in the theory. Charge-symmetry energy for nuclear

matter is correct.

and the particle populations are shown in Figure 15. The
proton population never exceeds 10% in the relevant density
range. Compare this with case 5 (Fig. 13), where the symmetry
energy for normal matter is correct.

XI. PHYSICAL CHARACTERISTICS OF NEUTRON STAR

The physical characteristics of a neutron star, such as mass,
radius, energy density profile, and critical mass, can be found
by solving the Oppenheimer-Volkoff equations, which are the
form that Finstein’s equations for the gravitational field

LA
3
L4 11Ltl

10~

LILBLILAAAL
L

102

Relative populations n./n

10-3

n (fm™3)

F1G. 13.—Relative populations in the absence of hyperons, isobars, and
pions in the theory (case 5), but with correct symmetry energy.

assume for static spherically symmetric geometries (Weinberg
1972). For a given equation of state, these equations determine
the way in which matter will arrange itself. For neutron stars
the density of matter spans an enormous range, from super-
nuclear densities of ~5 x 10'3 g cm ™3 in the core down to
zero at the edge. However, the atmosphere is so thin, indeed so
is the crust of all but the least massive stars, that these regions
contribute negligibly to the mass, radius, and moment of
inertia. Most of the mass of the star is contributed by highly
compressed matter at nuclear and super-nuclear densities. In
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F1G. 14—Field strength ¢ and chemical potentials for case 6 where hyper-
ons, isobars, and pions are absent and g, = 0.
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FiG. 15—Relative populations for case 6 where hyperons, isobars, and pions are absent from the theory and g, = 0. Therefore charge symmetry energy is too

small, and proton population is consequently smaller than for case 5.

FI1G. 16.—Equation of state over wide density range appearing in neutron stars from the crust to the inner core. Region III (p > 2 x 10'3 g cm ~3) is the hadronic
gas region of the core (this work), II is the neutron-rich metallic lattice region (Negele and Vautherin 1973), and I(p < 10** g cm™3) is the Coulomb lattice region

(Harrison and Wheeler 1965).

Table 3 we show three density ranges and the source of the
equation of state in each. The interior exists in the form of a
dense gas of hadrons and leptons and is calculated in this work.
The inner surface is believed to consist of a lattice of extremely
neutron-rich heavy metals immersed in a neutron and a rela-
tivistic electron gas. The equation of state in this region is
taken from the work of Negele and Vautherin (1973). The outer
surface consists of a lattice of lighter metals immersed in an
electron gas, and the equation of state in this region is taken
from Harrison and Wheeler (1965). The equation of state over
all three regions is shown in Figure 16. The detail of the baryon
gas region in which the bulk of all but the least massive stars
lies was shown in Figure 4, and is tabulated in Table 4.

For a given equation of state of matter, the Oppenheimer-
Volkoff equations have a unique solution that depends on a
single parameter characterizing the conditions of matter at the
center. This can be chosen as the baryon density, or energy
density for example. The mass of neutrons stars in our theory
(case 1) as a function of the central density of the star is shown
in Figure 17 together with the moment of inertia. The effect on
the mass and moment of inertia of the suppressing the 7~
condensate and hyperons are each shown for comparison. The
hyperons have the larger effect. The mass is an increasing func-
tion of central density up to a critical maximum value, known
as the Oppenheimer-Volkoff limit. Beyond this mass the star is
unstable to gravitational collapse. The maximum mass in our
theory is M ~ 1.81 M, which occurs for a central density of
2.4 x 10*> g cm ™, or a baryon number density of 1.088 fm 3,
about 8 times nuclear density. The radius of this star is about
11.3 km. With the suppression of the pion condensate and
hyperons, this limit increases to M = 2.15 M, corresponding
to a central density of 2.13 x 10*® g cm ™3 or baryon density of
0.943 fm 3. Stars with larger central density than the one with
maximum mass are unstable to gravitational collapse. Both the
maximum mass and the moment of inertia in our theory exceed

the observational lower bounds (Manchester and Taylor 1977).
Some of the characteristics of stars in our theory for various
central densities can be found in Tables 8-11.

The minimum mass of a neutron star in our theory is 0.094
M, and it has a central density of 1.09 x 10'* gcm ™3 or 0.065
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FiG. 17—Mass in M, and moment of inertia of neutron stars as a function
of central density for case 1 (solid lines) with hyperons and n~ condensate, for
case 2 (dashed lines) where condensate is absent, and case 5 (dots) where both
hyperons and condensate are absent. Charge-symmetry energy is correct in all
cases for nuclear matter. Beyond the maximum in the mass, the star is unstable
to gravitational collapse. The lower mass limit in the theory is about 0.09 M.
Below the corresponding central density until the white dwarf region, hydro-
static equilibrium is lost.
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TABLE 8

STAR PROPERTIES FOR CASE 1

z M/Me

ng R A Y/A Pc
(fm™%  (km) (g km?) (g/cm?)
.060 >.338 >1.066 +56 1.010 +14
065 294.84 0005 094 3.857+44  7.749 +55 0. 1.095 +14
070 7463 0020 103 L113+44  7.533+55 0. 1.180 +14
075 4573 .0037 115 1107 +44  9.157 +55 0. 1.265 +14
080 3523  .0053 126 1.193+44 1036 +56 0. 1.350 +14
085  27.52 0079 145 1379 +44 1298 +56 0. 1.435 +14
09 2370 .0104 164 1.590 +44  1.545+56 0. 1.521 +14
095 2150 .0127 182  1.809 +44  1.805+56 O. 1.606 +14
100 2009 .0149 199 2,026 +44  2.025+56 O. 1.692 +14
105 1877 .0180 223 2.337+44  2.303+56 O. 1.778 +14
110 17.89  .0209 245 2651 +44 2589 +56 0. 1.864 +14
d15 17.28 0237 267 2963 +44 2878 +56 O. 1.950 +14
120 16.83 0263 288 3.267+44  3.170+56 O. 2.036 +14
125 1641 0295 314 3.650+44  3513+56 O. 2.123 +14
130 1609 0326 338 4028 +44 3793 +56 0. 2.210 +14
135 1585 0355 362 4397 +44  4.139+56 0. 2.297 +14
140 15.66 .0383 384  4752+44 4413456 0. 2.384 +14
145 1549 0417 411 5189 +44 4720 +56 O. 2472 +14
181 1488 0617 569  7.836 +44  6.813+56 0. 3.113 +14
218 1460 .0775 685  9.736 +44 8340 +56 0. 3.764 +14
254 1433 0954  .808 1.1S9+45  1.001 +57 0. 4.426 +14
290 1409 1154 936  1.342+45  1.177+57 0. 5.101 +14
326 13.88 1371  1.065 1.521 +45 1.355 +57 0. 5.789 +14
363 13.69 1599  1.190 1.688 +45  1.528 +57 O. 6.493 +14
399 1351 1832 1.307 1.837+45  1.697 +57 1.280-05 7.214 +14
435 1337 2032 1.400 1.946 +45  1.835+57 4.964-04 7.952 +14
471 1324 2200 1471 2.019 +45 1.945 +57  2.349 03  8.706 +14
508 1311 2352 1.529 2,067 +45  2.032+57 5.962-03 9.473 +14
544 1298 2492 1.579  2.096 +45  2.106 +57 1.126 -02  1.026 +15
580  12.85 2625  1.621 2.109 +45  2.172+57 1.800-02 1.105 +15
616 1271 2751  1.657 2.109 +45 2229 +57 2.594 02  1.186 +15
653 1258 2869  1.688  2.100 +45 2280 +57 3.480-02 1.269 +15
689 1245 2982 1714 2.083 +45  2.316+57 4.449-02 1.353 +15
725 1232 3089 1737 2.060 +45 2355 +57 5.448-02 1.439 +15
761 1219 3187 1755 2033 +45  2.386+57 6.438-02  1.526 +15
798 1207 3278 1769 2.004 +45 2412 +57 7.428-02 1.614 +15
834 1196 .3362  1.782  1.972+45 2433 +57 8.425-02 1.704 +15
870  11.85 3442 1791 1.939 +45 2444 +57 9.454-02 1.796 +15
906 1174 3516  1.799  1.904 +45  2.459 +57 1.044-01 1.889 +15
943 11.64 3582  1.805 1.871+45 2469 +57 1.138-01 1.983 +15
979 1154 3642  1.809 1.837+45 2476 +57 1.230-01 2.079 +15
1.015 1145 3698  1.811 1.804 +45  2.481 +57 1.319-01 2.176 +15
1.051 1136 .3750  1.813 1.771 +45  2.484 +57 1.408-01 2274 +15
1.088 1128 .3799  1.813 1.737+45  2.485+57 1.497-01 2.374 +15
1124 1119 3844  1.813 1704 +45  2.485+57 1.585-01 2.475 +15
1.160  11.11 .3887  1.812 1.670 +45  2.483+57 1.672-01 2577 +15
1196 11.03 .3927  1.810 1.638 +45  2.479 +57 1.758-01 2.681 +15

Note.—The central baryon density n_, star radius R, fractional red shift z, mass in
solar masses M/M o, moment of inertia I, total number of baryons 4, fraction of baryons
that are hyperons Y/A, and central energy density p,.

baryons fm~3. All neutron stars therefore have central den-
sities lying in the hadron-gas region, and for all but the least
massive, 95% or more of the mass of the star is composed of
matter that lies at densities in this range (region III of Table 3),
as we shall show below. For central densities less than the
above minimum value down to the white dwarf region of
p < 10° g cm ™3, there are no stable stellar objects. The first
entry in Table 8 lies at the upper end of this unstable region,
and its contrast with the next entry shows the sudden tran-
sition to stability.

The dependence of radius on mass (and therefore central
density) shown in Figure 18 reflects the vanishing of stability at
the lower limit of the neutron-star region by the rapid growth
in size as the lower limit is approached from above. Over the
greatest range, however, the neutron star is composed of highly

compacted matter with a radius of 13 +2 km. The com-
pactness is illustrated also in Figure 19, which shows the
density profile as a function of radius for four neutron stars
ranging from our most massive one to the least massive one.
Only for stars with central densities near the lower limit does
the star possess a thick crust. The dot on each curve shows the
radius interior to which 95% of the star’s mass is contained.
The three density regimes marked on this figure correspond to
those of Table 3. The break in the slope of density profile
visible in Figure 19 for the lighter stars that occurs at 4 x 10!
g cm ™3 corresponds to the end point of the neutron drip
region. This point is clearly visible in the equation of state
shown in Figure 16. The atomic number over the range of
stable neutron star masses can be seen in Figure 18.

In the presence of the strong gravitational field of a neutron
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TABLE 9
STAR PROPERTIES FOR CASE 2

n R z  M/Me I A Y/A pe

(fn™)  (km) (g km?) (g/cm’)
145 1549 0417 411 5190 +44 4.720+56 0. 2.472 +14
181 1483 0656  .599 8377 +44 7.177+56 0. 3.113 +14
218 1457 0916  .793  1.184+45 9.749+56 O. 3.769 +14
254 1443 1186 982  1.524+45 1.234+57 0. 4.440 +14

290 1432 1449 1150 1.820+45 1.470 +57 3.476-05 5.128 +14
326 1423 1647  1.266  2.011 +45 1.634 +57 1.163-03  5.831 +14
363 1412 1806  1.351  2.131 +45 1.755+57 4.377-03  6.547 +14
399 1400 1944 1418 2.205+45 1.855+57 9.863-03  7.276 +14
435 13.87 .2073 1.474 2249 +45 1.936 +57 1.768-02  8.0i8 +14
471 13.72 2195 1522  2.268 +45 2.008 +57 2.742-02  8.772 +14
508 13.57 2313 1.564  2.270 +45 2.072 +57 3.863-02 . 9.539 +i4
.544 1341 2427 1600  2.258 +45  2.131 +57 5.093-02  1.032 +15
.580 1324 2538  1.632  2.237+45 2.175+57 6.417-02 1111 +15
.616 13.08 .2646 1.659  2.208 +45 2223 +57 7.770-02  1.192 +15
653 1291 2752 1.684  2.174+45 2258 +57 9.173-02  1.275 +15
689 12,75 .2854  1.705  2.136 +45 2.296 +57 1.054 -01 1.358 +15
725 12,60 2949 1723  2.098 +45  2.321 +57  1.188 -0l 1.444 +15
761 1246 3038 1.737  2.059 +45 2.348 +57 1.313 -0l 1.530 +15
798 1232 3122 1750 2.019 +45  2.365+57 1.438 -01 1.618 +15
834 1219 3203 1.760 1978 +45  2.385 +57  1.557 -01 1.708 +15
870  12.06 .3280 1.768  1.936 +45 2.401 +57 1.674 -01 1.799 +15
906 1193 3353 1775  1.895+45 2408 +57 1.792-01 1.891 +15
943 11.82 .3420 1,780  1.855+45 2419 +57 1.896 -01 1.985 +15
979 1171 .3482  1.783  1.817+45 2427 +57 1.997-01  2.081 +15
1.015  11.60 .3539 1.786  1.780 +45 2.432+57 2.093-01  2.177 +15
1.051  11.50 .3595  1.787 1.742 +45  2.429 +57  2.195-01  2.275 +15
1.088 11.40 3646  1.788  1.705+45 2.431 +57 2.288-01 2.375+15
1.124 1130 .3696  1.787  1.669 +45 2.432+57 2379-01  2.475 +15
1.160  11.21 .3743 1786  1.633 +45 2.431 +57 2.467-01  2.577 +15
1.196  11.12 .3787 1784  1.598 +45 2429 +57 2.555-01  2.681 +15

TABLE 10
STAR PROPERTIES FOR CASE 3

ne R z M/Mg I A Y/A Pe
(fm™»  (km) (g km?) (g/cm?®)
145 1549 .0417 411 5.189 +44  4.720 +56 0. 2,472 +14
181  14.83 .0656 .599 8377 +44 7.177+56 0. 3.113 +14
218 1457  .0916 793 1.184 +45  9.749 +56 0. 3.769 +14
254 1443 1186 982  1.524 +45 1.234+57 0. 4.440 +14
290 1432 .1461 1.157 1.833 +45 1.480 +57 0. 5.128 +14

326 1421 1713 1304  2.078 +45 1.685+57 1.772-04 5.833 +14
363 14.10 .1905 1.406 2231 +45 1.838 +57 2.018-03 6.555 +14
399 1398 .2084  1.492 2339 +45 1958 +57 6.665-03 7.291 +14
435  13.84 2257 1.567 2410+45 2.075+57 1.391-02 8.043+14
471 13.68 2426  1.632  2.454 +45 2.175+57 2.323-02 8.812+14
508 13.51 .2591 1.689  2.476 +45 2.265+57 3.398-02 9.598 +14
544 1334 2752 1.740 2480 +45 2.339 +57 4.581-02 1.040 +15
580  13.17 2909  1.784 2470 +45 2413 +57 5.796-02 1.122 +15
616  13.00 .3061 1.822  2.451 +45 2471 +57 7.041-02 1.206 +15
653  12.84 3204  1.854 2423 +45 2.527+57 8232-02 1.292+15
689 12.68 .3340 1.880  2.390 +45 2.568 +57 9.409 -02  1.380 +15
725 1252 3468 1.903 2352 +45 2.602 +57 1.055-01 1.470 +15
761 1237 3589 1.921  2310+45 2638 +57 1.162-01  1.562 +15
798 1223 3704 1.936 2266 +45 2.660 +57 1.270-01  1.656 +15
.834 12,09 3814 1.948 2219 +45 2.685+57 1.370-01 1.752 +15
.870 1195 .3917  1.958  2.172+45 2.697 +57 1.471-01 1.850 +15
906 11.83 .4011 1.965  2.125+45 2713 +57 1.561-01 1.951 +15
943 11.71 4100 1.970  2.079 +45 2.725+57 1.648 -01  2.053 +15
979 1159 4182 1973  2.032+45 2.726 +57 1.736 -01  2.157 +15
1.015 11.48 4260 1.975 1.986 +45 2732 +57 1.818-01 2.263 +15
1.051 11.36 .4334 1975 1.940 +45  2.735+57 1.897-01 2.372 +15
1.088 11.26 .4403 1974 1.894 +45 2.735+57 1.974-01 2.482 +15
1.124  11.15 .4468 1.973 1.849 +45  2.734 +57 2.049 -01  2.595 +15
1.160 11.05 .4529 1970 1.806 +45 2.724 +57 2.126-01 2.710 +15
1.196 1096 4586 1.966  1.763 +45 2.719 +57 2.197-01 2.827 +15
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TABLE 11
STAR PROPERTIES FOR A CASE LIKE 1 WITH UNIVERSAL COUPLING FOR BARYONS

G =1

Y n R z  M/Mo I A Y/A pe

& (fm™3)  (km) (8 km?) (g/cm?)

!

o 145 1549 0417 411 5.189+44 4.720+56 O. 2472 +14
81 1488 0618  .569  7.837+44 6813+56 O. 3.113 +14
218 1460 0775  .685 9.736+44 8339 +56 O. 3.764 +14
254 1433 0954  .808  1.159+45 1000 +57 O. 4.426 +14
290 1409 1154 936 1.342+45 1177+57 O 5.101 +14
326 1388 .1371  1.065 1.521+45 1355457 0. 5.789 +14
363 13.69 .1599 1190  1.688+45 1.528+57 0. 6.493 +14
399 1351 .1834 1308  1.838+45 1.698+57 0. 7.214 +14

435 1335 2060 1.412  1.962 +45 1.854 +57 1.657-04 7.953 +14
471 13.19 2275 1.503  2.058 +45 1.986 +57 1.089-03 8.710 +14
508  13.04 2481 1.581  2.130 +45 2.112+57 3.005-03 9.486 +14
.544 12,89 2678  1.649  2.181 +45 2.217 +57 5.842-03 1.028 +15
.580 12,75 2862 1.707  2.213+45 2309 +57 9.470-03 1.109 +15
616 12,60 .3039  1.757 2229 +45 2382 +57 1.393-02 1.192 +15
.653 1246 3207 1.800  2.233 +45 2.454 +57 1.900-02 1.278 +15
689 1231 .3367 1.836  2.225+45 2.515+57 2455-02 1.365+15
725 12,18 3518 1.867  2.210+45 2.561 +57 3.052-02 1.454 +15
761 12.04 3661 1.892 2187 +45 2.608 +57 3.661-02 1.546 +15
798 1191 3798 1.914 2159 +45  2.647 +57 4.279-02 1.639 +15
834 11.78 3924  1.931  2.127+45 2.672+57 4.905-02 1.735+15
870 11.66 .4042  1.945  2.092 +45 2.699 +57 5.517-02 1.833 +15
906 11.54 4152 1.956  2.055+45 2.721 +57 6.127-02 1.933 +15
943 1142 4255 1.965 2.017+45 2.738 457 6.727-02 2.035 +15
979 1131 4351 1.971 1.979 +45  2.743 +57 7.333-02  2.140 +15
1.015  11.21 4438 1.975 1939 +45 2.752+57 7.918-02 2.247 +15
1.051 1111 .4521 1.977  1.900 +45 2.758 +57 8.499-02  2.355 +15
1.088  11.01 4597 1.978 1.860 +45 2.761 +57 9.074-02 2.466 +15
1.124 1092 4668  1.978  1.821 +45 2.762 +57 9.642-02 2.580 +15
1.160 10.82 .4734 1977 1.782 +45 2760 +57 1.020-01 2.695 +15
1.196  10.74 4795 1.975  1.744 +45 2.757 +57 1.076 -01  2.813 +15
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FiG. 18—Neutron-star radius as a function of its mass. Stars near the lower limit of stability have very large radii. The atomic number A (total baryon number) is
also shown.

F1G. 19.—Neutron-star density as a function of the Schwarzschild radial coordinate for the two limiting neutron-star configurations in our theory and two
intermediate ones. The edge is very sharp for all stars except those very close to the lower stability limit of the central density. The three density ranges are those of
Table 3 and Fig. 16. The circle on each curve marks the point interior to which 95% of the star’s mass is contained.
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star, the metric is altered from the locally flat metric g,, = J,,
(1, —1, —1, —1) in which the equation of state of matter was
solved. In spherically symmetric geometry it has the
Schwarzchild form

Gop = 05", —&*®, —r?, —r?sin? 6) . (65)

The radial metric function is given by

e " =1—(8n/r) J r p(r)rdr . (66)
0

At the surface of the star e’® = ¢~ *®_ The fractional redshift
in the wavelength of light emitted from the surface is
z = ¢*®/2 _ 1 and reaches a value of about 40% for the star of
case 1 (see Fig. 20 and Table 8). This redshift is fairly close to
the upper limit of 61.5% obtained by Bondi (1964) for stable
compact objects. If the hyperons and pion condensate are arti-
ficially suppressed (case 5), then the fractional redshift, shown
by the dotted line in Figure 24, almost reaches Bondi’s limit.

XII. HYPERON POPULATIONS

The populations of various hadrons as a function of position
in the star can be inferred by noting the unique connection
between population and baryon density, or equivalently
energy density, and in turn the connection for a particular star
that exists between epergy density and position in the star that
is provided by the solution to the Oppenheimer-Volkoff equa-
tions. This connection provides the proper number density
ny(r) for particle species B as would be measured in a locally
inertial reference frame at a distance r from the center. The
total number of species B in a particular star is given by

R
Np=dn J ng(r)e*™2r2dr (67)
o

where R is the radius and e*™'2 is the radial metric function for

the star in question. For two stars of our theory, the one at the
upper limit in mass, 1.81 M, and one of mass, 1.53 My, we
show in an “onionskin” depiction the proper number densities
of the various particles as a function of position in the star in
Figures 20 and 21. Of particular note is the paucity of leptons.
Charge neutrality is achieved in this theory by a balance of
charges on relatively large populations of charged hadrons.
The star’s interior is dominated by hyperons. However, the
total hyperon fraction, depicted in Figure 22, as a function of
star mass reaches a maximum value of 15% for the most
massive neutron star. Here we see that the hyperon fraction,
which is zero for stars whose central density is below a critical
value (n =~ 0.4 fm 3, cf. Fig. 5), grows extremely rapidly above
the threshold. The terminal point corresponds to the most
massive neutron star in stable hydrostatic equilibrium. The
situation is only slightly altered if pions do not condense (for
example, by virtue of a large repulsive self-energy in the
medium). This is our case 2, for which Figure 23 shows the
populations in a heavy neutron star. In this case the hyperon
fraction reaches a maximum value of 22% (see Fig. 22) and
confirms our assertion in § IX that allowing free pions to con-
dense will provide a conservative estimate of the hyperon
content of neutron stars.

It is interesting to contrast all the cases where hyperons are
present to a case where they are eliminated from the calcu-
lation. Then if pions do not condense, a large population of
leptons appears in the star, Figure 24, while in the case that
pions are free to condense, they do so with a very large popu-
lation, and quench the lepton populations, Figure 25.

XIII. DISCUSSION AND CONCLUSION

We have described a theory of dense stable charge-neutral
matter that has a number of attractive properties. Based on
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F1G. 20.—Onionskin depiction for case 1 of the composition of the most massive star in our theory (1.82 M) as a function of Schwarzchild radial coordinate.
Central baryon-number density is 1.088 fm~3. Baryons are plotted (cumulatively) above the axis, and pions and leptons below. The core is dominated by hyperons.
Leptons have a small constant density through the region where pions are condensed. The dashed line shows the Schwarzchild radial metric function, which relates
the proper number densities at different radii (cf. eq. [67]).
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FiG. 21.—As in Fig. 20 but for a star having central baryon-number density 0.508 fm ~3 and a mass 1.53 Mg

this theory we investigated the structure of neutron stars and
elucidated the role of various features.

The description employs a Lagrangian field theory of inter-
acting nucleons, hyperons, and the relevant mesons, which is
solved in the mean field approximation. The completeness of
the theory with respect to the number of meson fields was
discussed. The o, w, and p° mesons are coupled to nucleon
currents which have a nonzero expectation value in the normal
ground state of isospin asymmetric matter, and consequently

30 T

201~

10+

Hyperons / Baryons (%)

M/M,,

Fi1G. 22—Hyperon fraction of neutron stars as a function of mass. The
fraction rises very rapidly as the limit of gravitational stability is reached. Solid
line is for case 1 where free pions condense, dashed line is for case 2 where
pions are not admitted, and dotted line is for case 3 where the baryons are
universally coupled and pion condensate is not admitted.

these mesons have finite amplitudes in the medium. Mesons
with other quantum numbers, such as the n, p*, K, K*, are
coupled to currents which have vanishing expectation value in
the normal ground state, by virtue of the quantum numbers
that they carry. Therefore, they are absent in the ground state
of the star because they can decay freely, unless a phase tran-
sition occurs which endows the current to which they are
coupled with a finite value. We pointed out that phase tran-
sitions involving mesons more massive than the pion are pre-
cluded by either #~ condensation or by the growth of hyperon
populations, whichever sets in first. Consequently, such mesons
can play no role in the ground state of a neutron star.

Neutron stars have usually been studied in the nonrelativis-
tic Schrodinger theory. Such a theory can yield an equation of
state for matter at high density in which the sound velocity
exceeds that of light. Since relativistic covariance of the present
theory was retained throughout, our equation of state auto-
matically respects causality.

The present theory correctly describes the bulk properties of
normal nuclear matter. Of special importance for neutron
stars, it yields the empirical value of the symmetry energy coef-
ficient in nuclear matter. In principle the nonrelativistic
Schrodinger theory, employing nuclear forces that agree with
observed two-nucleon scattering parameters, may also yield
the correct symmetry energy coefficient. In practice, the theory
has not yet converged on the correct saturation density and
binding energy, and the symmetry energy is therefore uncon-
trolled and frequently not calculated. Aside from the contribu-
tion of kinetic energies to the symmetry energy, it is the
coupling of the neutral p-meson to the 3-component of the
isospin density that favors isospin symmetry in our theory.
Therefore, in addition to the obvious role of the symmetry
energy in raising the energy of neutron-star matter compared
to symmetric matter, the p-meson plays a very important part
in determining the particle populations by favoring an admix-
ture with small isospin density.

We find that in the cores of the heaviest neutron stars, hyper-
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FiG. 23.—Composition of star having central baryon number of 1.088 fm ~2 as in Fig. 21 and mass 1.79 M  but for case 2, in which pions are not admitted

ons are more numerous than nucleons and that in the star as a
whole, 15%-20% of all baryons are hyperons. The lower figure
corresponds to the case where a pion condensate is allowed to
develop, and the higher figure to the case where it does not.
The presence or absence of a pion condensate therefore is not
crucial to our conclusion concerning the presence of a signifi-
cant hyperon population.

It is interesting that, independent of pion condensation, the

lepton population is strongly suppressed by hyperons. This
may have a strong effect on the electrical conductivity; it will
be lower if hyperons are present than if they are absent. The
electrical conductivity in turn determines the decay rate of the
strong magnetic field needed to produce the pulsar beam effect.
Consequently the presence of hyperons in a pulsar may register
itself in the active lifetime of the pulsar. This is estimated from
astrophysical data to be less than several million years
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FIG. 24 —Composition of star having central baryon density of 1.088 fm ™ as in Fig. 21 and mass 2.14 M, in which hyperons, isobars, and pion condensate are
omitted from the theory (case 5). In contrast to Figs. 20 and 23, there are large lepton populations.
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FiG. 25—Composition as in Fig. 20 of star having central baryon density of 1.088 fm ™2 and mass 2.04 M, in which hyperons and isobars are omitted from the

theory, but in which free pions condense (case 7).

(Manchester and Taylor 1977). In a subsequent work, the con-
ductivity and decay constant of the magnetic field in pulsars
will be calculated.

It has long been known that the maximum neutron-star
mass (Oppenheimer-Volkoff limit) of a theory is of interest for
two reasons. The first is that some neutron-star masses are
known, and the largest of these imposes a lower bound on the
maximum mass of theoretical models. The current lower
bound is about 1.5 + 0.1 M. The other reason is that the
maximum mass can be useful in identifying black-hole candi-
dates (Ruffini 1978). Thus if the mass of a compact companion
of an optical star is determined to exceed the maximum mass of
a neutron star, it must be a black hole. The maximum mass of
stable neutron stars in our theory lies in a narrow range of
1.79-1.98 M, (see Fig. 22), with 1.81 corresponding to case 1,

which we consider to be our best estimate. The variation about
this figure corresponds to the presence or absence of a pion
condensate and the assumption of universal baryon coupling
or to a reduced coupling for hyperons as motivated by quark-
counting arguments. For comparison, if hyperons, isobars, and
pion condensate are suppressed, the limiting mass increases to
2.15 M. On the other hand, Pandharipande’s (1971) equation
of state for hyperon matter is much softer than ours and leads
to a limiting mass of 1.41 M. Most theoretical models yield
limiting masses in the range 1.3 to 1.8 (Canuto 1978). All these
are considerably lower than a variational upper bound
(Rhoades and Ruffini 1974) of 3.2 and therefore appear to
provide a useful consensus on the limiting mass as being some-
what less than 2 M.
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