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The general structure of strange stars is reviewed, paying particular attention to their
similarities to and differences from neutron stars.

1 . INTRODUCTION

The advent of theoretical discussion of
stab'.e three flavor quark matter, now known as
strange rhaiter, that came with Witten's seminal
papers, has proved very interesting for the
discussion of compact stars in astrophysics . This
review discusses the properties of strange stars
that have made them so interesting, and pays
particular attention to the possibility of
dist'.nguishing neutron and strange stars
observationally.

2.

	

STnUCTURE - A CRUDE APPROACH

Much can be learned about the structure of
a strange star using an extremely simple model
for the equation of state. This simplified approach
will be described here; the extra information that
is gained by taking a more rigorous approach is
summarized in Section 3. The basic results
described here were obtained in the early papers
on strange stars' , 2, 3.

The equation of state for quark matter in a
simplified version of the MIT bag model4 may be
thought of as adegenerate Fermi sea of massless
quarks which exist only in a region of space
endowed with a vacuum energy density B. The
equation of state for massless particles is :
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where Pq is the pressure due to the quarks, and
Pq is the density of mass-energy. The total
pressure P= Pq - B, and the total density p _pq +
B. whence line model equation of state becomes:

P=3(p-4B),	(2.2)
(Note that we have not yet specified the number
of quark flavors, or for that matter any of the
statistics of the Fermions . This will be discussed
further in Section 3.)

A "typical" value of the bag constant B =
(145 MgV)4 = 57 MeV fm-3 . Looking at equation
(2) we see that there is a minimum density 4B at
which P= 0: in conventional units 4B = 4 x 1014 g
cm-3 for B= (145 McV)4.

To obtain a model of a strange star one
must integrate the Tolman-Oppenheimer-Volkoff
equations5:

_dp =- G[(M(r)+41rr3P)[p+ P]J

dr

	

r[r-2GM(r)] (2.3)

dM
= 4xr2p,

	

(2.4)

where M(r) is the mass interior to radius r, and G

is Newton's constant . The boundary conditions
are that M-+0 as r-+0 and P-+0 at the
surface. Sequences of models are constructed
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by choosing central pressures (or equivalently,
centrai densities) and integrating outwards until
P --> 0 .

The radial variation of density is shown for
four different models in Figure 1 . Those familiar
with neutron stars will notice one important
distinguishing feature : there is only modest
variation of density with radius . In particular, the
dm-ify variation from center to edge for the
astrophysically relevant 1 .4 Me model is less than
a factor of twol This is markedly different from the
situation that is normally encountered in stars,
and results from the very high minimum density .

Euwa
ô

20

16

12

2 4 6 e 10 12
R (km)

FIGURE 1

Density versus radius for strange stars of mass :
(a) 0.53 Mo ; (b) 1 .4 Mo; (c) 1 .95 Mo; (d) 1 .99 Mo.

Stability against gravitational collapse
plays a significant role in the theory of compact
starss. This complex theory will not be discussed
here ; instead we will abstract from the theory only
a necessary condition for stability against
gravitational collapse :

dM
>0,

dpc (2.5)
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where M here refers to the total mass of the star
and pc is the central density . Figure 2 shows M
versus pc, for the case 4B= 4x1014 g cm-3 . Only
the stable models are plotted ; unstable equilibria
may be found for higher central densities, but for
lower total masses than the peak at 2M.. Note
the vertical asymptote at the minimum density 4B
4x1014 g cm -3 ; for this equation of astate there i;

no minimum mass. (Of course, for extremely low
masses the effects described by Jaffe in this
volume begin to play an important role.)
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Total mass versus central density for stable
strange stars.

The total mass is plotted versus the total
radius for the same sequence of models in Figure
3 . Also plotted are mass radius curves for
neutron stars computed with a variety of model
equations of states . The difference between the
two types of models are striking . The mass of a
strange star is, except near the maximum, as
increasing function of radius ; the reverse is the
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Mass versus radius foi° strange stars (dots) and
neutron stars (adapted from Alcock and Olinto) .

case for neutron stars . There is no minimum
mass for the strange star, while neutron stars
have clearly a minimum mass (for dynamical
stability) . In general the radius of a neutron star is
larger than that of a strange star of the same
mass, if the mass is 51 Mr.

The substantial differences between the
global properties of the strange stars and the
neutron stars might lead one to suppose that
straight forward obr~ervable distinctions between
the two pictures might emerge . This has not
proved to be the case, however, because all
estimates of the masses of candidate objects
have been -1 .4MO . The list of candidates
includes the famous binary radio pulsar PSR
1913 + 167 , for which careful analysis yields
masses of the two objects of 1 .4 Mo for the
emitting pulsar and for the unseen companion . A
survey of mass determinations for other
candidates shows that all masses are close to 1 .4
Mo. It is clear from Figure 3 that for a mass of this
magnitude, the overall structures of strange stars
and neutron stars are indistinguishable .

There is a simple scaling law governing
the simple models of strange stars that are
described here . This scaling law can be used to
estimate the range of uncertainty within the
sequence of models shown in Figures 1, 2, and 3 .
The equation of state given in equation (2.2)
depends on only one parameter, B. The
magnitude of B is quite uncertain . Suppose that
instead a different value B'= aB were of interest.
One may obtain the new sequence of models by
taking each model from the original sequence
end applying the homology transformation :

p'=app

P'=aq P

r'=as r
(2 .o)

95

M'=a' M

The transformed model will still satisfy
equations (2.2), (2.3) and (2.4) if p = :,- 1, and s =
t = -1/2 .

	

The new models resemble the original
models in all respects except that, if B is
increased (decreased) they are more (less)
ompact . Taking the limiting (i .e. marginally

Taking the strong evidence cited above
that the mats of the compact stars in PSR 1913 +
16 is 1 AMo, we may derive an upper limit to the
magnNude of B (in this model) of B < (173 McV)4.

stable) model, one can write :

Mmax = 2Mo (Bl(145 MeV]4) -1/2 (2 .7)

Rmax = 11 km ;4/(145 MeV14)-112 (2 .8)
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3.

	

AMORERIGOROUS APPROACH

The elementary model for a strange star
that was %'.3C-.ribed above contains much of the
physics of these objects . It turns out that the more
rigorous approach described here does not lead
to any significant (quantitative or qualitative)
modification . What is added by the more rigorous
approach is some understanding of the
microscopic constituents of the star, and one new
(and important) global parameter, the binding
energy of the whole star.

The model equation of state described
here is not fully rigorous (i .e . derived from QCD).
Fully rigorous calculations of the kind one needs
are not available . Rather, in the spirit of Farhi and
Jaffe4, the model takes into account what is
known about the microscopic constituents of
strongly interacting matter and their known
interactions, but retains the Bag Model for its
description of confinement. The description given
here is adapted from Farhi and Jaffe, together
with the straight forward extension to finite
pressure given in Alcock, Farhi and Olinto3 .

The first, and most obvious, gain from this
more rigorous approach is that the relationship of
the macroscopic physics to the microscopic
physics becomes apparent. The equation of state
given by equation (2.2) makes no reference to the
number of distinguishable Fermions, their
statistics, or any other property ôt,ier than their
low (or zero) mass .

Specifically, strange matter is modelled as
a Fermi gas of up, down and strange quarks, with
overall charge neutrality preserved by a small
number of electrons. The quarks exist only in an
extended MIT "bag" . The important physical
parameters describing the equation of state are B.
the mass of the strange quark, ms, and the strong
interaction coupling constant ac. In addition,

some derived properties depend upon the
adopted val!!,9 of the ranûrmalization point.

C. Alcock/Strange stars

The calculations described here are
carried out at zero temperature . This is a good
approximation for most purpo8as, since the
temperatures of the stars are likely to be smali
compared to the chemical potentials of the quarks
and electrons . The impact of finite temperature
has been discussed by Heiselberg, Madsen, and
Riisager9 and Chmaj and Slominskiio .

The equation of state is determined by the
thermodynamic potentials of the quarks and
electrons, and by chemical equilibrium reactions .
These reactions are :

The neutrinos which appear in reactions
(3.1) - (3.4) do not appear in the thermodynamic
description of the equation of state because they
are lost by the star (i .e . their chemical potential is
zero) . These are the reactions which lead to the
cooling of strange matter at finite temperature .

The weak interactions yield the following
relations between the chemical potentials for the
up, down, and strange quarks (pu,,ud, pu s ) and the
electrons (pe) :

Pd =Ps =uu +Ae.

In addition, electric charge neutrality
requires :

3nu -3nd -J ns
-n62"0'

(3.6)

d-4 u+e+ve, (3 .1)

u+ e --+ d+ve, (3.2)

s -> u+e+ve, (3.3)

u+e-4 s+ve, (3 .4)

and

s+H d+u. (3.5)



where nu is the numbar density of up quarks, and
so on. Equations (3.6) to (3 .7) show that there is
only one independent chemical potential .

The physics of strange matter is
determined by equations (3.1) to (3.7) together
with the thermodynamic potentials S2i (i = u, d, s,
e) for "he elementary particles. These potentials
are given by Farhi and Jaffe, and will not be
written out here.

Armed with this formalism, we may
calculate number densities using:

nj =- d"'
ayl

=

	

(3.8)

whence the baryon number density is :

nB= 13(nu +nd+ns).

	

(3.9)

The total energy density is given by :

p= ;(S2l+plnj)+B,

	

(3.10)

and the pressure by :

P=nB
ap

	

-P.
anB

	

(3.11)

The Gibbs potential per baryon, I'= (P +p) Ine is :

a
I' =-!

BB
=pu+pd+us

	

(3.12)

In the limit ms -+ 0 and ac -+ 0, equation
(2 .2) is recovered. This also happens for ms -3
-, ac -+ 0, since equation (2 .2) depends only
upon the assumption that the Fermions are
massless. It turns out that for intermediate values
of ms, the deviation from equation (2.2) is less
than 4%3. This is because, as the strange quark
mass increases from zero, the abundance of
strange quarks decreases, and they play a
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smaller role in determining the equation of state.

Thus, it turns out that the new physical
realism added by equations (3.1) through 3.12)
modify the results given in Section 2 by a very
small amount! One might ask, then, what has
been gained by this extra work? As we will now
see, one important piece of global information is
obtained, and many interesting local properties
may be discerned.

Whereas the relationship between
pressure and density is nearly independent of the
model equation of state, the relationship between
energy density and baryon number density is
sensitively dependent on the details. in
particular, the defining requirement for strange
matter, that it be stable at zero pressure, requires
that the strange quark mass be comfortably less

than the typical values of the chemical potentials
(-300 MeV) . In our notation, this is expressed as
l' <930 MeV at P= 0, where 930 MeV is the mass

per baryon of 56Fe at zero pressure . It is only

meaningful to discuss models of strange stars
which are derived from equations of state which

have this property.
It is now possible to compute a meaningful

binding energy for the model strange star . A

reasonable definition is the difference between
the mass of the star and the mass of a widely

dispersed cloud of hydrogen which has the same

total baryon number. Example curves of binding

energy versus baryon number are shown by

Alcock, Farhi and Olinto3.

4.

	

SURFACE OF A STRANGE STAR

4.1 .

	

The Emission of Photons

The most remarkable property of strange

matter is that it is stable at zero pressure . This

means that the "surface" of a strange star is very

different from the surface of a neutron star, or any

other type of star. At the surface of a strange star

the density changes abruptly from zero to

-4 x 1014 g cm-3 ! This abrupt change occurs

because the material at the surface is bound to
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the star by the strong interaction, not by gravity.
An immediate consequence of this strongly

bound surface is that the conventional upper limit
to the luminosity of a star, the Eddington limit 3 ,
does not apply . The Eddington limit is reached
when the outgoing radiation exerts an outward
directed force on the surface material that
exceeds the attraction due to gravity . For objects
of mass -1 .4Mo this limit is

	

1038 erg s-1 , the
precise value depending on the opacity of the
matter. Since the surface of a strange star is
bound by the strong force, it can support outgoing
radiant fluxes greatly in excess of the Eddington
limit . This may play a role in the physics of
energetic gamma ray events (discussed below) .

There is another important effect on the
photon emissivity of strange matter. The density
of electric charge in strange matter is high, and
the propagation of electromagnetic waves is
morSified as in any other plasma3. The dispersion
relation for photons in strange matter is the
familiar plasma dispersion relation :

w2 = w2 +k2
'	(4.1)

where k is the wavenumber and w the angular
frequency, and wp is the "plasma frequency",
which turns out to be -20MeV3,11.

The conventional interpretation of equation
(4.1) applies to this situation . Propagating modes
exist only for w > wp .

	

In the limit w - 4

	

- t r,
dispersion relation for photons propagating in a
vacuum is recovered . For intermediate cases
there is substantial dispersion, the group velocity
increasing with frequency .

A surface of strange matter has the
following interesting property . An incoming
photon with w < wp canna penetrate the surface ;
instead the photon is reflected . The reflectivity of
strange matter is very close to unity for photons of
energy much less than 20 MeV (i.e. the star is like
a "silver sphere" in the x-ray) . Correspondingly,
the emissivity of the surface is very low for
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photons of energy much less than 20 MeV . This
emissivity has been estimated by Chmaj,
Flaensel, and Slominskill .

There is a related consequence of the
sturdiness of the strange matter surface that has
implications for models of the magnetospheres of
radio pulsars. A rotating, magnetized neutron star
generates electric fields at its surface that are
strong enough to draw ions or electrons out from
the surface . These charges can have very
serious consequences for the electromagnetic
structure of the region immediately outside tho
starl2, 13 . The same proves will not occur
around a strange star, because the electrostatic
forces are not able to remove particles from the
surface . For this reason, the magnetosphere
surrounding a bare strange star might be very
different from that surrounding a neutron star.

4.2.

	

Crusts of Normal Matter
The dramatic, unusue! surface properties

described above result from the exposure of a
bare surface of strange matter. It is far from clear
that such a surface can be realized in a real
astrophysical environment, for reasons now
discussed. It turns out that a strange star is likely
to be covered by a thin crust of "normal" material .

This crust of normal material can exist in
close proximity to the strange matter, even though
the total energy of the star would be reduced if the
crust were converted to strange matter, because a
coulomb barrier develops between the strange
matter and the ions in the crust . (It is for this
reason that small lumps of strange matter can co-
exist with normal matter, without reacting
strongly .) The origin of the coulomb barrier is
interesting .

As described in Section 3, the bulk strange
matter contains a small number of electrons.
These electrons are needed to ensure hulk
charge neutrality . Bulk charge neutrality does not
naturally occur among the quarks by themselves,
because the strange quark mass slightly
suppresses the number of strange quarks below



the number of up and down quarks. Typically, the
chemical potential of the electrons is -20MeV.

The electrons are bound electrostatically to
the quarks . This means that, deep inside the
strange matter, there is an electrostatic potential
of -20MV. The behavior of the electrostatic
potential at the surface is very interesting . The

surface of the quark matter is of order 1 Fermi (a
strong interaction length scale) ; the electrons are

able to move freely across this surface, but clearly
cannot move to infinity because of the bulk

electrostatic attraction of the quarks ; the electron
surface" is much thicker than the quark surfaca.

A model of the electron sunlace can be
made using a simple Thomas-Fermi approxi-
mation3. It is found that the electron distribution
extends up to 103 Fermi above the quark surface.
The electrostatic potential falls to 3/4 of the deep
interior value at the quark surface. The typical

magnitude of the electric field in this region is -5 x
1017 V cm-1, directed outward. The run of
electrostatic potential with height above the

surface is shown in Figure 4.
The very large electric field is clearly

capable of supporting an ion against the
gravitational attraction to the underlying star . It

turns out that this electric field can support a crust

of material that is identical to the "outer crust" of a

neutron star. There is a gap of a few hundred

Fermi between the surface of the strange matter
and the base of the crust. The structure of this

gap is shown in Figure 4.
A requirement for the survival of this crust

is that it not react with the underlying strange

matter. This requirement is met if two conditions

are satisfied . First, the gap described above must

not close because of the weight of the crust.

Second, the density at the base of the crust must

not grow so large that neutron drip occurs ; free

neutrons readily react with the strange matter. In

practice, it appears that the second requirement is

the more stringent, and hence the density at the

base of the crust may not exceed 4 x 1011 g cm-3.

C. Alcoci:/Strange stars

FIGURE 4
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STRANGE OR NEUTRON STARS ?
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Electrostatic potential versus height above the
surface of a strange star : (a) no crust; (b) crust
with V=10 MeV at base of crust.

Note that the discontinuity in density across the

gap is >103.
The existence of this crust modifies the

conclusions of Section 4.1 . This new surface is

subject to the Eddington limit; it can emit soft

photons (as though the silver sphere were

painted black) . However, the existence of the

crust is not a fundamental attribute of the star ;

whether or not the crust exits, and how thick it is

(up to the limit set by neutron drip) depends upon

the history of the object . It would seem likely that

at least some sort of crust would form, given the

large amount of ambient material surrounding a

newly made strange star following a supernova

explosion.

Perhaps the most exciting possibility in this

field of endeavor is that we might be able to use

astrophysical inferences to determine whether

very compact stars are strange stars or neutron

stars. A definitive answer in either direction

would tell us something fundamental about QCD

which may not be learned using direct techniques
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in the foreseeable future . The remarkable
similarity, however, between strange stars and
neutron stars of 1 .4 Me has made this hope
difficult to achieve .

5.1 .

	

Rapid Pulsars
Rotating stars cannot have arbitrarily high

angular rotation ; at some point material will be
ejected from the equator of a rapidly rotating
object. For compact stars such as strange or
neutron stars, there is an upper limit to the
angular rotation velocity set by the onset of bar
like dynamical instalai!°.tY. If the star is- set into
rotation at a higher angular frequency, the star
evolves rapidly into a rotating bar, which then
radiates away the excess angular momentum in
gravitational waves.

The limiting angular frequency îs14 :

S2<_a GM/R3

where a =

	

0.65.

	

The important feature of
equation (5.1) is that the limiting angular
frequency depends only upon the mean density
of the star.

Referring back to Figure 3 we see that, for
the most part, the strange stars have higher mean
density than the neutron stars . Recalling the
homology transformation at the end of Section 2,
we see that it is possible that (for a reasonable, if
iarge, choice of d) to make ir,odels of stëang-e
stars which can rotate faster than any model
neutron star.

This last observation caused a brief flurry
of intense excitement with the announcement of
the discovery of an optical pulsar with period 0:5
mSec in Sn1987A1 6 . A number of papers
pointed out the near impossibility of reconciling
this datum with the neutron star picture16, ». The
discoverers later retracted, and the brief time
during which strange stars were "looking like
winners" was over.

A number of papers 1 s. 19 . 20, 21 concluded
that even strange stars could not rotate so fast .

C. Alcock/Strange stars

The argument was made that if the choice of
physical parameters was restricted to values
which kept the energy per baryon of zero
pressure strange matter below 939 MeV, then the
stellar structure equations described in Section 2
did not admit model stars of high enough mean
density to rotate with period 0.5 mSec. While this
argument is both formally sound and highly
suggestive, it is not rigorous ; recall that the
models of the equation of state are only
approximate 4 . A more definitive treatment will he
possible only when precise, QCD based,
calculations become possiblel

It is worth noting that the potential for
finding a pulsar of very short period still exits, and
that such an object could determine whether or
nrit~ strange stars exist .

	

Furthermore, as
Glendenning points out22, present search
strategies include a bias against the detection of
-very short period radio pulsars ; hence, the
absence of such objects in the catalogs does not
mean they do not exist . Current searches, which
are focussing increasingly on globular clusters,
might yet discover a very rapid pulsar.

5.2.

	

Pulsar Glitches
An increasing number of radio pulsars

have exhibited the glitch phenomenon. In a
glitch, the pulsar period abruptly decreases by a
small fractional amount (in the range 10 --6 to 10 -8),
then . remarkably, over a period of 40 - 100 days
there is a relaxation back toward the pre-glitch
period versus time curve, with substantial
fractions of the change being lost.

A good model has been devised for this
phenomenon which involves the interaction
between superfluid neutrorws and a ârystal lattice
At ions in the inner crust of a neutron star23. No
equivalent model has been devised for the
strange stars . Reactions to this situation have
ranged from "this might be a failure of
imagination"3 to "this means that at least the
glitching pulsars must be neutron stars"23.

One very interesting development in this



area is that, if the glitching pulsars must be
neutron stars, very significant limits may be
placed on the abundance of small lumps of
strange matter in the universe. The argument
here is that if one such lump were to get into a
neutron star, either by direct capture or by capture
in the pre-supernova star, it would certainly
convert it to strange matter24 (Madsen, elsewhere
in this volume) .

6 .

	

HIGH ENERGY ASTROPHYSICS

There are a number of distinguishing
physical properties of strange matter that make
possible models of high energy phenomena that
are qualitatively different from models that may be
constructed using neutron stars . These
properties include the high density at zero
pressure, the ability to circumvent the Eddington
limit, the low photon emissivity of strange matter,
and the reactivity of normal matter with strange
matter. Some of these features apply to gamma
ray bursts .

Gamma ray bursts are truly mysterious
events. They are brief (typical durations 1 - 10
seconds) burst-. of gamma rays that came from
sources isotropically distributed ovar the sky. No
convincing counterparts have been identified in
any other spectral range, which has largely
confounded their interpretation . (One
controversial optical identification will be
discussed below.) This fascinating field has been
reviewed by several authors25 , 26 .

The most remarkable of the gamma ray
bursts occurred on 5 March 1979. This burst had
the highest peak intensity recorders before or
sinco, the shortest rise time (< 250 gs), a brief
(0.15 sec .) "high intensity phase", followed by a
much longer "low intensity phase". During the
low intensity phase the flux was modulated at a
period of a seconds ; 22 periods are discernable
in the data27 . 28. The error box on the sky
included a young supernova remnant in the
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Large Magellanic Cloud29. At that distance, the
peak luminosity of the burst was six orders of
magnitude greater than the Eddington limit for a
neutron star.

Alcock, Farhi and Olinto30 proposed a
model for this event in which a small (10 -8 Me)
projectile of strange matter impacts a strange star.
The short rise time is easily accommodated in the
model because of the high density of the
projectile . The high luminosity is not a problem
for a strange star. The ° second modulation is
attributed to rotation . This model is still viable in
broad outline, but should be revised in light of
some new physics (discussed below) . The key
difficulty is verification, the observational
interpretation remains vague.

Haensel, Paczynski and Amsterdamski3l
have proposed a more ambitious model in which
some gamma ray bursts have an extragalactic
origin . In their model two 1 .4 Me strange stars
collide and merge as a result of gravit-:°.cna!
radiation driving a binary iugether . In their model,
approximately 1050 ergs is released in gamma
rays over a period just less than a second. With
this enormous energy release, the typical gamma
ray burster is at a cosmic distance ; in contrast,
models involving neutron stars require that the
bursters be members of our own galaxy .

Haensel et al's model differs in a number
of interesting respects from the model of Alcock et
al .

	

First, the calculation by Sawyer32 of the
damping rate for oscillations of a strange star
yield a damping time of less than a second ; all of
the energy of impact is dissipated rapidly into
heat . Further, an interesting physical model of the
radiation process is employed : most of the
thermal energy is emitted into neutrinos. Pair
processes above the surface produce an
expanding cloud of electrons and positrons .
These charged particles produce the gamma
rays. This model serves to illustrate how the
strange matter picture can radically alter our
notions about high energy phenomena .
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7 . CONCLUSION

To summarize, strange stars differ in many
interesting ways from the more conventional
neutron stars . These differences have not
resulted in a definitive answer to the most
important question in this field : "Are compact stars
made of strange matter or neutron matter?" There
is more work to be done!
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