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Abstract

Neutron stars are valuable laboratories for the study of dense matter. Re-
cent observations have uncovered both massive and low-mass neutron stars
and have also set constraints on neutron star radii. The largest mass mea-
surements are powerfully influencing the high-density equation of state be-
cause of the existence of the neutron star maximum mass. The smallest mass
measurements, and the distributions of masses, have implications for the
progenitors and formation mechanisms of neutron stars. The ensemble of
mass and radius observations can realistically restrict the properties of dense
matter and, in particular, the behavior of the nuclear symmetry energy near
the nuclear saturation density. Simultaneously, various nuclear experiments
are progressively restricting the ranges of parameters describing the symme-
try properties of the nuclear equation of state. In addition, new theoretical
studies of pure neutron matter are providing insights. These observational,
experimental, and theoretical constraints of dense matter, when combined,
are now revealing a remarkable convergence.
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1. INTRODUCTION

Neutron stars contain matter with the highest densities in the observable universe. As such, they
are valuable laboratories for the study of dense matter. They are so compact that general relativity
is essential to their structures; indeed, the existence of a maximum neutron star mass is a manifes-
tation of general relativity. Their compactness, however, makes them challenging to study. The
vast majority of neutron stars are observed as pulsars (1), and nearly 2,000 have been detected
(see http://www.atnf.csiro.au/research/pulsar/psrcat and http://www3.mpifr-bonn.mpg.de/
old_pifr/div/pulsar/data/archive.html for pulsar databases). Currently, however, only a few as-
pects of neutron stars can be inferred from pulsar observations, such as masses, spin rates, rough
ages, and magnetic field strengths, although outstanding accuracy in mass measurements (<0.1%)
is sometimes achieved (2, 3).

Other crucial properties that are important for understanding the structure and evolution of
neutron stars, such as radii and surface temperatures, can be estimated in a few cases from optical
and X-ray observations of cooling neutron stars as well as from X-ray bursts and flares occurring on
neutron star surfaces (see Section 4). One newly formed neutron star was observed in neutrinos (4)
in the aftermath of the supernova SN 1987A, but only the roughest estimates for its mass, binding
energy, and radius were revealed (5). A galactic supernova today would result in the detection
of perhaps hundreds of times more neutrinos, which should allow for more precise estimates. In
the near future, observations of gravitational waves containing mass and radius information (6)
from merging binaries containing neutron stars are expected. Unfortunately, at present, precise
measurements of both the mass and the radius of individual neutron stars do not exist. Current
goals are to combine available observations to deduce the underlying equation of state (EOS) of
dense matter, the subject of this review, and to infer their internal composition from their cooling
histories (7, 8).
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At the same time, ongoing laboratory measurements of nuclear properties and theoretical
studies of pure neutron matter are limiting the properties of neutron star matter near the saturation
density (usually expressed as baryon density, ns � 0.16 baryons fm−3; mass density, ρs � 2.7 ×
1014 g cm−3; or energy density, εs � 150 MeV fm−3). In this review, we show that estimates of
the EOS from astrophysical observations are converging with those from laboratory studies. This
development is important because it means that the range of EOS properties that needs to be
explored during simulations of supernovae and neutron star mergers is shrinking.

In Section 2, we present the basics of neutron star structure, and we explore the limits with the
aid of the maximally compact EOS. In Section 3, we present techniques for extracting the masses
of neutron stars in binary systems and tabulate the mass measurements. We summarize the results
for the maximum and minimum neutron star masses and the distribution of neutron star masses.
In Section 4, we describe other observations in which simultaneous mass and radius information
can be obtained, and in Section 5 we discuss the computation of the universal mass-radius and
pressure-density relations from observations. Finally, in Section 6 we summarize the available
laboratory nuclear physics constraints, as well as recent theoretical studies of pure neutron matter.

2. NEUTRON STAR STRUCTURE AND THE MAXIMALLY COMPACT
EQUATION OF STATE

2.1. The Mass-Radius Relation

At very low temperatures, and for matter in weak-interaction equilibrium, the only aspect of
the EOS that is relevant for the global structure of neutron stars is the pressure–energy density
relation. The composition of matter, usually parameterized by the number of electrons per baryon
Ye, is implicitly determined at each density n by minimizing the energy density ε, which results in
the condition of β equilibrium, (

∂ε/n
∂Y e

)
n

= μe + μp − μn = 0, 1.

where the chemical potentials of neutrons, protons and electrons are μn, μp , and μe , respectively.
In this case, the general relativistic equations of hydrostatic equilibrium (9) are expressed by

d p
dr

= − G
c 2

(p + ε)(m + 4πr3 p/c 2)
r(r − 2Gm/c 2)

,

dm
dr

= 4πr2 ε

c 2
,

2.

where p is the pressure, m is the enclosed mass, and r is the radius; n is related to ε and p by
ndε/dn = ε + p . Beginning from the center, where m = r = 0, p = pc , and ε = εc , these
equations are integrated to the surface, where p = psurf = 0, r = R, and m = M. For hadronic
EOSs, εsurf = 0, but this is not the case for pure strange quark matter (SQM) stars, for which the
energy density remains finite. Figure 1 shows these features for schematic hadronic and pure SQM
EOSs. The hadronic EOS consists of two polytropes (i.e., p = K nγ ); the exponents γ1 = 4/3 and
γ2 = 3 are joined at the transition pressure pt = ps /8, where ps = 2.5 MeV fm−3. The transition
occurs at baryon density ns/2. The SQM EOS is the simple MIT bag model, ε = 4B + 3p (10),
where the bag constant is chosen to be B = 3εs /8.

In the Newtonian limit, the equations of hydrostatic equilibrium are d p/dr = −Gρm/r2 and
dm/dr = 4πρr2, where ρ = nmb . Dimensional analysis for a polytropic EOS results in scalings
between the radius R and total mass M:

R ∝ K 1/(3γ−4) M (γ−2)/(3γ−4); M ∝ K 1/(2−γ ) R(3γ−4)/(γ−2). 3.
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Figure 1
(a) Schematic hadronic (solid curves) and pure strange quark matter (dashed curves) equations of state. (b) The
corresponding M−R relations. Arrows connect specific central energy density and pressure values with their
corresponding (M, R) points. The numbers labeling hadronic arrows denote central baryon densities nc /ns ,
and those labeling strange quark matter arrows indicate εc /εs . The uppermost arrows in each case mark the
maximum mass configurations.

For the case in which γ ∼ 4/3, valid for hadronic matter at densities below ρs /3 (where the
pressure is dominated by relativistic degenerate electrons), M ∝ K 3/2 R0, which is independent
of radius. At extremely large radii (R � 300 km), the mass starts to increase as configurations
approach the white dwarf (WD) range (such configurations have much larger proton concentra-
tions). Thus, there is a minimum stable mass for neutron stars, which is approximately 0.09 M �
(11), when R ∼ 200–300 km.

For higher densities, in the range εs − 3εs , the typical behavior of hadronic EOSs is γ ∼ 2
(Figure 2). In this case, the scaling becomes R ∝ K 1/2 M 0, and the radii are nearly independent
of mass.

In the hadronic case, both asymptotic behaviors are apparent in Figure 1, and the transition
between them occurs near nc ∼ ns . At high densities, general relativity becomes dominant and
causes the formation of a maximum mass. In the case of SQM stars at low densities, the large value
of B essentially results in γ → ∞ so that R ∝ K 0 M 1/3, a behavior also shown in Figure 1.

An interesting feature of Figure 1 is that the SQM and hadronic EOSs predict very similar
M−R trajectories in the range 1.5 < M /M � < 2. It would clearly be difficult, on the basis of
observational M−R data alone, to distinguish these trajectories. This observation suggests that
other data, such as neutron star cooling information (12), will be necessary to confirm the existence
of SQM stars.

It is useful to display M−R curves for various realistic EOSs, as demonstrated in Figure 3 for
several of the EOSs plotted in Figure 2. Those hadronic EOSs with extreme softening (due to
a kaon or pion condensate, high abundances of hyperons, or a low-density quark-hadron phase
transition) do not have pronounced vertical segments, but they also do not allow the existence of a
2-M � neutron star (see Section 3) and, therefore, cannot be physical. The M−R curves that have
attained sufficient mass have vertical segments with radii varying from 10 to 16 km (the extreme
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Figure 2
Representative hadronic and strange quark matter equations of state (EOSs). The mean exponent
γ = d ln p/d ln n � 2 holds for hadronic EOSs in the vicinity of ns = 0.16 fm−3. The range of pressures at ns
is approximately a factor of six. This figure is taken from and the EOS names are identified in Reference 13.

cases are not shown in Figure 3). However, in contrast to the expectation that R ∝ K 1/2 when
γ ∼ 2, it has been shown phenomenologically (13) that the scaling is approximately R ∝ p1/4

s ; the
reduced exponent is due to general relativistic effects. Note that the ordering of radii for 1.4-M �
neutron stars in Figure 3 is commensurate with the ordering of ps values in Figure 2.

In contrast, at low central densities where the pressure is dominated by degenerate relativistic
electrons and γ ∼ 4/3, we should expect M at a given R to scale as M ∝ K 3/2. Indeed, two
families of hadronic stars are evident (EOSs AP4, ENG, AP3, and MPA1 constitute one family
in Figure 3) due to each family’s relative values of ps (Figure 2). Thus, M for a given R on the
horizontal part and R for a given M on the vertical part increase with ps.

The pressure in the vicinity of ns for neutron star matter is an important property of the nuclear
EOS. It is traditional to express the energy per baryon of hadronic matter near ns as a double Taylor
expansion in n − ns and neutron excess 1 − 2x, where x is the proton fraction:

e(u, x) = −B + Ko

18
(u − 1)2 + K ′

o

162
(u − 1)3 + S2(u)(1 − 2x)2 + e	 + · · · . 4.

Here, B � 16 MeV is the bulk binding energy of symmetric matter at ns; Ko and K ′
o are the

standard incompressibility and skewness parameters, respectively; S2(u) is the symmetry energy to
quadratic order in 1−2x; e	 is the lepton energy; and u = n/ns . For bulk matter in β equilibrium,
when u � 0.01 and x 	 1, the leptonic contributions are small. If higher-order rather than
quadratic terms in the neutron excess are unimportant, then S2(u) � S(u), where S(u), the total
symmetry energy, is the difference between pure neutron (x = 0) and symmetric (x = 1/2) matter

www.annualreviews.org • Nuclear EOS and Neutron Star Masses 489

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
01

2.
62

:4
85

-5
15

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i R

om
a 

L
a 

Sa
pi

en
za

 o
n 

04
/0

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NS62CH19-Lattimer ARI 18 September 2012 8:10

M
as

s 
(M

◉)

Radius (km)

2.5 MS0

MS2

PAL1 20

18

16

14

12

8

MPA1
AP3

ENGAP4

PAL6

FSU

GM3

MS1

SQM1

SQM3

GS1

2.0

1.5

1.0

0.5

0.0
8 10 12 14 16

GR

P <
 ∞

Causality

Rotation
J1748-2446J 716 Hz

R∞ km–1 = 10

Figure 3
Typical M−R curves for hadronic equations of state (EOSs) (black curves) and strange quark matter (SQM)
EOSs ( green curves). The EOS names are given in Reference 13, and their P−n relations are displayed in
Figure 2. Regions of the M−R plane excluded by general relativity (GR), finite pressure, and causality are
indicated. The orange curves show contours of R∞ = R(1 − 2 GM /Rc 2)−1/2. The region marked rotation is
bounded by the realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz, for PSR
J1748-2446J (14). Figure adapted from Reference 15.

energies. The pressure is

p(u, x) = u2ns

(
∂e
∂u

)
x

� u2ns

[
Ko

9
(u − 1) + K ′

o

54
(u − 1)2 + d S2

du
(1 − 2x)2

]
+ p	 + · · · , 5.

where p	 is the lepton pressure. In the vicinity of u � 1, with x 	 1, p	 is small and the pressure is
almost completely determined by dS2/du. Laboratory constraints on the nuclear symmetry energy
are discussed in Section 6.

2.2. The Maximally Compact Equation of State

Koranda et al. (16) suggested that absolute limits to neutron star structure could be found by
considering a soft low-density EOS coupled with a stiff high-density EOS, which would maximize
the compactness M/R. The limiting case of a soft EOS is p = 0. The limiting case of a stiff EOS is
d p/dε = (c s /c )2 = 1, where cs is the adiabatic speed of sound that should not exceed the speed of
light; otherwise, causality would be violated. The maximally compact EOS is therefore defined by

p = 0 for ε < ε0; p = ε − ε0 for ε > ε0. 6.

This EOS has a single parameter, ε0, and therefore the structure equations (Equation 2) can be
expressed in a scale-free way:

dw

d x
= − (y + 4πx3w)(2w − 1)

x(x − 2y)
;

d y
d x

= 4πx2w. 7.

Here, w = ε/ε0, x = r
√

Gε0/c 2, and y = m
√

G3ε0/c 4. Varying the value of w at the origin
(w0) gives rise to a family of solutions described by dimensionless radius X and total mass Y. The

490 Lattimer
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maximally compact solution has the largest value of Y, which occurs when w0 = 3.034, X c =
0.2404, and Y c = 0.08513. Because X c /Y c = 2.824 for this case, stable configurations satisfy

R ≥ 2.824
GM

c 2
, z =

(
1 − 2GM

Rc 2

)−1/2

− 1 ≤ 0.8512, 8.

where z is the redshift. This limiting redshift is close to the result obtained by Lindblom (17). It
is also clear that the neutron star maximum mass is

M max = Y c
c 4√
G3ε0

� 4.09
√

εs

ε0
M �. 9.

This result is similar to that found by Rhoades & Ruffini (18): If the low-density EOS is known
up to ≈2εs , causality limits the neutron star maximum mass to approximately 3 M �.

The maximally compact solution also implies that

εc ≤ 0.02199 ε0Y −2
c � 50.8 εs (M �/M max)2. 10.

This relation (Figure 4) states that the largest measured neutron star mass, given that it is lower
than the true neutron star maximum mass, must set an upper limit on the central density of any
neutron star (19) and, by extension, that it must also limit the central pressure to values lower than
34.0εs (M �/M max)2.

The scale-free character of the maximally compact solution can be extended to axial symmetry
in general relativity with no additional parameters (16), and the minimum spin period, limited by

3.0
0 1 2 3 4 5 6
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7 8

Tolman VII
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Maximally compact
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Figure 4
The relation between the maximum mass and the central density predicted by the maximally compact
equation of state (EOS) (Equation 10) is shown by the curve s = 1. Results for different classes of EOSs are
indicated: nonrelativistic (NR) potential or Skyrme-like EOSs (open circles), relativistic (R) field-theoretical
EOSs (diamonds), EOSs containing significant amounts of quarks (triangles), and EOSs with significant
meson condensates or hyperons (squares). The M max − εc relations predicted by causality coupled with the
Tolman VII solution (20) and the EOS p = (ε − ε0)/3 are also indicated. The latter effectively bounds stars
containing quarks. Adapted from Reference 19.
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mass shedding at the equator, occurs for the maximum mass configuration and scales with 1/
√

ε0.
The result can be expressed as

Pmin = 0.74
(

M �
M max

)1/2 (
Rmax

10 km

)3/2

ms = 0.20
(

M max

M �

)
ms, 11.

where Mmax and Rmax correspond to values for the nonrotating star. This equation represents the
formal limit imposed by causality on the spin period, but a more realistic limit for an arbitrary
neutron star with nonrotating values M and R, which has been phenomenologically determined
(21), replaces the coefficient 0.74 ms in Equation 11 with 0.96 ms, and Mmax and Rmax with M and R
(Figure 3). Also, Lattimer & Prakash (22) have shown that the maximum fractional binding energy
and the baryon chemical potential are 25.2% and μB,max = 2.093 GeV, respectively, independent
of εc and Mmax.

The MIT bag model EOS can be expressed as p = (ε − ε0)/3, where ε0 = 4B, so the sound
speed is c s = c /

√
3 everywhere. The solution of Equation 2 with this EOS may also be expressed

in a scale-free manner, with maximum mass eigenvalues w0 = 4.826, X c = 0.1910, Y c = 0.05169,
and X c /Y c = 3.696. Thus, the M max − εc relation mirrors that of Equation 10 but is a factor
of 0.05169/0.08513 = 0.607 lower (Figure 4). Interestingly, this curve apparently bounds the
central densities of not only pure SQM stars but also stars containing significant amounts of quarks
in a pure or mixed state with hadrons, even though the quark matter EOSs that are used can be
more complex than the MIT bag model. This observation has important consequences for the
quark-hadron phase transition density if deconfined quarks appear in neutron stars, as we discuss
further below.

Obviously, the largest precisely known neutron star mass sets a lower bound to Mmax. A lower
bound to Mmax also further restricts the allowed M−R region beyond the area excluded by causality,
R ≤ 2.824 GM/c2 (Figure 3). Conversely, the precise measurements of any neutron star’s mass
and radius establish an upper bound to Mmax. Figure 5 depicts these model-independent features
and shows M−R contours for the maximally compact EOS with various values of ε0. Each contour

M
as

s 
(M

◉)

R (km)

3

2

1

0

s = 1
s = 1/3

6 8 10 12 14 16

Figure 5
Mass-radius contours with various values of Mmax for the maximally compact equation of state (EOS)
p = ε − ε0 are shown as solid lines. Contours for the EOS p = (ε − ε0)/3 are shown as dashed lines. A
precise (M, R) measurement ( filled circle) sets an upper limit on Mmax (open circle) (2.69 M �).
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represents the minimum radius possible for a given mass, given the contour’s value of Mmax. For
example, if M max � 2 M �, a 1.4-M � neutron or quark star necessarily has R � 8.25 km. It also
follows that any M−R curve passing through a given (M, R) point has a smaller value of Mmax than
that of the maximally compact EOS passing through the same (M, R) point. This hypothesis can
be easily demonstrated by overlaying M−R trajectories for an alternate EOS, such as the MIT
bag-like model, p = (ε − ε0)/3 (Figure 3). For the indicated point (1.4 M �, 10 km), this alternate
EOS has a maximum mass of only 1.79 M �, whereas the maximum mass of the maximally compact
EOS is 2.69 M �.

3. NEUTRON STAR MASSES

3.1. Mass Measurements

The most accurate measurements concerning neutron stars are mass determinations from pul-
sar timing. To date, approximately 33 relatively precise masses have become available. In these
systems, five Keplerian parameters can be precisely measured (23); these parameters include the
binary period P, the projection of the pulsar’s semimajor axis on the line of sight a p sin i (where i
is the orbit’s inclination angle), the eccentricity e, and the time T0 and longitude ω of periastron.
Two of these observables yield a mass function,

f p =
(

2π

P

)2 (
a p sin i

)3

G
= (M c sin i )3

M 2
, 12.

where M = M p + M c is the total mass, Mp is the pulsar mass, and Mc is the companion mass.
The minimum possible companion mass Mc is equal to fp.

The inclination angle i is often the most difficult parameter to infer, but even if it were known
a priori, the above equation would specify a relation between only Mp and Mc, unless the mass
function fc of the companion were also measurable. The mass function of the companion is mea-
surable in the rare case when the companion itself is a detectable pulsar or a star with an observable
spectrum, as in an X-ray binary. Fortunately, binary pulsars are compact systems, and general rel-
ativistic effects can often be observed. These effects include the advance of the periastron of the
orbit,

ω̇ = 3
(

2π

P

)5/3 (
GM

c 3

)2/3

(1 − e2)−1; 13.

the combined effect of variations in the transverse Doppler shift and gravitational redshift (time
dilation) around an elliptical orbit,

γ = e
(

P
2π

)1/3 M c (M + M c )
M 4/3

(
G
c 3

)2/3

; 14.

the orbital period decay due to the emission of gravitational radiation,

Ṗ = −192π

5

(
2πG

c 3

)5/3 (
1 + 73

24
e2 + 37

96
e4

)
(1 − e2)−7/2 M p M c

M 1/3
; 15.

and the Shapiro time delay (24), caused by the propagation of the pulsar signal through the
gravitational field of its companion. The relativistic Shapiro delay produces a delay in pulse arrival
time (25),

δS(φ) = 2
GM c

c 3
ln

[
1 + e cos φ

1 − sin(ω + φ) sin i

]
, 16.
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Figure 6
Shapiro delay for various values of eccentricity e and periastron longitude ω, assuming an orbital inclination
of i = 0.495π radians.

where φ is the true anomaly, the angular parameter defining the position of the pulsar in its orbit
relative to the periastron. δS is a periodic function of φ with an amplitude

S = 2
GM c

c 3

∣∣∣∣ln
[(

1 + e sin ω

1 − e

)(
1 + sin ω sin i

1 − sin i

)]∣∣∣∣ , 17.

which is very large for extremely eccentric (e ∼ 1) and/or nearly edge-on (sin i ∼ 1) binaries. For
a circular orbit with i � π/2,

S � 4
GM c

c 3
ln

(
2

cos i

)
. 18.

The scale of the Shapiro delay is set by the constant GM �/c 2 = 4.9255 μs, and both the amplitude
and the shape of the Shapiro delay constrain i, ω, and e (Figure 6).

The inclination angle, and the individual masses, can be constrained by measurements of two
or more of these effects, which is possible only in extremely compact systems. Observation of a
single relativistic effect is not sufficient to constrain both masses. Only a small fraction of pulsars
in binaries have two or more well-measured relativistic effects that enable precise measurements
of the pulsar mass. In some cases (Table 1), an empirical relation (26) between the binary period
and the WD companion mass proves useful. In cases in which the companion is optically detected,
spectral observations can provide the WD mass and the radial velocity amplitude, which can be
used to establish the system’s mass ratio. In some cases (e.g., References 27 and 28), the inclination
angle can be restricted by the detection of changes in the projected semimajor axis x = a p sin i
caused by the system’s proper motion (29),

tan i = xμ sin θ

d x/dt
, 19.
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Table 1 Neutron star mass measurements, 1-σ uncertainties, M > 0.9 M� assumed

Object Mass (M�) Reference Object Mass (M�) Reference
X-ray/optical binaries (mean, 1.568 M �; error-weighted mean, 1.368M �)
4U 1700-377a 2.44+0.27

−0.27 32 Vela X-1 1.770+0.083
−0.083 33

Cyg X-2 1.71+0.21
−0.21 34 4U 1538-52 1.00+0.10

−0.10 33

SMC X-1 1.037+0.085
−0.085 33 LMC X-4 1.285+0.051

−0.051 33

Cen X-3 1.486+0.082
−0.082 33 Her X-1 1.073+0.358

−0.173 33

XTE J2123-058 1.53+0.30
−0.42 35; J. Tomsick,

private
communication

2S 0921-630 1.4+0.1
−0.1 36

4U 1822-371 1.96+0.36
−0.35 37 EXO 1722-363 1.545+0.465

−0.465 38

B1957+20 2.39+0.36
−0.29 39 IGR J18027-2016 1.47+0.38

−0.32 40

OAO 1657-415 1.42+0.26
−0.26 41 — — —

Neutron star–neutron star binaries (mean, 1.322 M �; error-weighted mean, 1.402 M �)
J1829+2456b 1.25+0.11

−0.35 42 Companion 1.34+0.37
−0.10 42

J1811-1736b 1.53+0.22
−0.63 43 Companion 1.04+0.73

−0.12 43

J1906+0746 1.248+0.018
−0.018 44 Companion 1.365+0.018

−0.018 44

J1518+4904 1.23+0.00
−0.33 27 Companion 1.49+0.33

−0.00 27

B1534+12 1.3332+0.0010
−0.0010 45 Companion 1.3452+0.0010

−0.0010 45

B1913+16 1.4398+0.0002
−0.0002 46 Companion 1.3886+0.0002

−0.0002 46

B2127+11Cd 1.358+0.010
−0.010 47 Companion 1.354+0.010

−0.010 47

J0737-3039A 1.3381+0.0007
−0.0007 48 J0737-3039B 1.2489+0.0007

−0.0007 48

J1756-2251 1.312+0.017
−0.017 49 Companion 1.258+0.017

−0.017 49

J1807-2500Bd 1.3655+0.0020
−0.0020 30 Companion? 1.2064+0.0020

−0.0020 30

Neutron star–white dwarf binaries (mean, 1.543 M �; error-weighted mean, 1.369 M �)
B2303+46 1.38+0.06

−0.10 31 J1012+5307 1.64+0.22
−0.22 50

J1713+0747b 1.53+0.08
−0.06 51 B1802-07d 1.26+0.08

−0.17 31

B1855+09b 1.57+0.12
−0.11 52 J0621+1002 1.70+0.10

−0.17 53

J0751+1807 1.26+0.14
−0.14 53 J0437-4715 1.76+0.20

−0.20 54

J1141-6545 1.27+0.01
−0.01 55 J1748-2446Id 1.91+0.02

−0.10 56

J1748-2446Jd 1.79+0.02
−0.10 56 J1909-3744d 1.47+0.03

−0.02 57

J0024-7204Hd 1.48+0.03
−0.06 56 B1802-2124 1.24+0.11

−0.11 58

J0514-4002Ad 1.49+0.04
−0.27 56 B1516+02Bd 2.08+0.19

−0.19 59

J1748-2021Bd 2.74+0.21
−0.21 60 J1750-37Ad 1.26+0.39

−0.36 60

J1738+0333 1.55+0.55
−0.55 62 B1911-5958Ad 1.34+0.08

−0.08 63

J1614-2230 1.97+0.04
−0.04 64 J2043+1711c 1.85+0.15

−0.15 65

J1910+1256c 1.6+0.6
−0.6 28 J2106+1948c 1.0+0.5

−0.1 28

J1853+1303c 1.4+0.7
−0.5 28 J1045-4509 1.19+0.29

−0.29 31

J1804-2718 1.3+0.4
−0.4 31 J2019+2425 1.205+0.305

−0.305 66

Neutron star–main sequence binaries
J0045-7319 1.58+0.34

−0.34 31 J1903+0327e 1.667+0.021
−0.021 67

aBlack hole due to lack of pulsations?
bCompanion masses are from Reference 31.
cBinary period–white dwarf masses are from Reference 26.
dGlobular cluster binary.
e3-σ error.

www.annualreviews.org • Nuclear EOS and Neutron Star Masses 495

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
01

2.
62

:4
85

-5
15

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i R

om
a 

L
a 

Sa
pi

en
za

 o
n 

04
/0

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NS62CH19-Lattimer ARI 18 September 2012 8:10

where θ is the unknown angle between the directions of the proper motion and the ascending
node of the pulsar’s orbit. Use of sin θ < 1 results in an upper limit to i if μ, dx/dt, and x are
measured, assuming it is known that dx/dt is not due to gravitational radiation or perturbations
caused by a third component.

In eclipsing X-ray binaries containing pulsars, the combination of radio timing data and X-ray
observations yields the orbital period, the eccentricity, the longitude of periastron, the pulsar’s
orbital semimajor axis, and the eclipse duration. Optical data can also provide the radial velocity
amplitude of the companion and geometric information about the companion’s shape. WD masses
or surface gravities can be estimated from spectral measurements and effective temperatures, if the
distances are known. Less accurate measurements of neutron star masses can be achieved for X-ray
binaries, in which X-rays are emitted by matter accreting onto a neutron star from a companion
star that is filling its Roche lobe. Both X-ray and optical observations can yield both mass functions,
fp and fc, but fc can be subject to large uncertainties due to the faintness of optical radiation. In
some cases, the neutron star is a pulsar that establishes fp. Limits to inclination can also be set
according to the presence or absence of eclipses, given that companions in X-ray binaries are not
compact objects.

Figure 7 and Table 1 summarize the available mass information from pulsars in binaries.
These summaries represent an update of those found in Reference 22; I maintain a contemporary
table, figure, and references at http://www.stellarcollapse.org. Cases in which the standard
millisecond pulsar-formation model (26) has been used to constrain the neutron star mass are
explicitly indicated in Table 1. Also, it has not yet been confirmed that the companion of PSR
J1807-2500B (30) is a neutron star. This system has the highest companion mass of any recycled
pulsar.

3.2. The Neutron Star Maximum Mass

From the perspective of EOS constraints, the most massive neutron stars are key. There is now
ample observational support from pulsars for neutron stars with masses significantly greater than
1.5 M �. These include PSR J1903+0327 (67), which has a main-sequence companion; the glob-
ular cluster pulsars PSR 1748-2446 I and PSR 1748-2446 J (56), PSR J1748-2021B (59), PSR
B1516+02B (60), PSR J2043+1711 (65), and PSR J1614-2230 (64), all of which have WD com-
panions; and the black widow pulsar PSR B1957+20 (39). The inclination angles of the two binaries
containing pulsars I and J in the globular cluster Ter 5 are unconstrained by observation, but if
their inclinations are random, there is a 95% chance that at least one of these pulsars is greater
than 1.68 M � (68). The WD binary period–mass relation (26) was used to restrict the inclination
of PSR J2043+1711. Inclinations are unknown for PSR J1748-2021B and PSR B1516+02B and
are assumed to be random, but this assumption is dangerous because the systems are not randomly
selected.

The largest well-measured mass is 1.97 ± 0.04 M � for PSR J1614-2230 (64), for which i
has been determined by detection of the Shapiro time delay. This 3.15-ms pulsar has an 8.7-day,
nearly circular orbit with a 0.5-M � companion. For this binary, a p sin i = 11.3 light seconds
and sin i = 0.99989; in other words, it is virtually edge-on. The Shapiro time delay amplitude
(from Equation 18), is 48.8 μs. By virtue of its accuracy, this mass has become the standard for
the minimum value of the neutron star maximum mass.

In addition, a few X-ray binaries seem to contain high-mass neutron stars: approximately
1.8 M � in the case of Vela X-1 (33), 2 M � for 4U 1822-371 (37), and 2.4 M � for 4U 1700-377
and PSR B1957+20 (39). Nonetheless, the large systematic errors inherent in X-ray binary mass
measurements warrant caution.
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Figure 7
Measured neutron star masses with 1-σ errors. References in parentheses following source names are identified in Table 1.
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The case of the black widow pulsar, PSR B1957+20, represents an intriguing case. This system
has both pulsar timing and optical light-curve information that yield both a mass function and an
estimate of the inclination i from the shape of the light curve (69). The binary consists of a 1.6-ms
pulsar in a 9.17-h, nearly circular orbit around an extremely low mass companion: M c � 0.03 M �.
The pulsar is eclipsed for approximately 10% of each orbit, but considering that a p sin i = 0.089
light seconds = 0.038 R� and that ac sin i ∼ 3 R� is M p/M c � 80 times larger, the eclipsing
object has to be approximately 0.1ac sin i ∼ 0.3 R�—much larger than the size of the companion
star. Irradiation of the companion by the pulsar strongly heats its near side to the point of ablation,
which leads to a comet-like tail and a large cloud of plasma that is believed to be responsible for
the eclipses. The pulsar is literally consuming its companion, hence the name black widow; it has
reduced its companion’s mass to a small fraction of its original mass. (In fact, several black widow
systems are known.) The irradiation also produces an enormous (factor-of-100) variation in the
brightness of the companion during its orbit. The companion is bloated and nearly fills its Roche
lobe. The companion’s optical light curve allows one to estimate the mass ratio M p/M c and the
inclination angle i. However, the large size of the companion means that the “center of light” of
the system is not equivalent to its center of mass: The optical light curve depends on the projected
semimajor axis of the irradiated near side of the companion, rather than the projected semimajor
axis of the center of mass of the companion. The extreme case is either that the companion has
zero radius or that it completely fills its Roche lobe, leading to a range 1.7 < M p/M � < 3.2,
but estimates based on modeling have reduced the probable range to 2.4 ± 0.4 M �. It will be
valuable to extend observations and modeling of this system because a 2.4-M � neutron star would
have profound implications.

3.3. The Minimum Neutron Star Mass

In addition to large measured masses, there is increasing evidence for small neutron stars. Three
X-ray binaries (33) and two neutron stars in double–neutron star binaries have best estimates of
less than approximately 1.1 M �, although in all cases the error bars are substantial. The most
interesting low-mass candidates are SMC X-1 and 4U 1538-52, which have 1-σ upper limits to
mass of 1.122 M � and 1.10 M �, respectively. Özel et al. (70) reanalyzed these systems without
the effects of the ellipsoidal shapes of the companion stars on the optical light curves and found
masses of 0.93 ± 0.12 M � and 1.18 ± 0.25 M �, respectively. According to either analysis, at
least one of these systems has a very low neutron star mass.

Neutron star masses lower than 1.2 M � would challenge the paradigm of gravitational-collapse
neutron star formation. The iron cores of 8–10-M � progenitor stars are approximately the Chan-
drasekhar baryon mass, which, corrected for electron fractions Ye of less than 0.5 and for finite
temperatures, are approximately 1.25 M �. The lowest-mass neutron stars may form from such
progenitor stars in so-called electron-capture supernovae, in which an oxygen-neon-magnesium
(O-Ne-Mg) core collapses as pressure support is lost due to electron captures on Ne and/or
Mg nuclei (71). Electron captures are triggered by density increases due to accretion in binaries.
Correcting for binding, the lowest-gravitational-mass neutron star could be 1.15–1.2 M �.

A low-mass limit is also suggested by thermodynamics. All gravitational-collapse supernova
models, including O-Ne-Mg accretion-induced collapses, produce hot, lepton-rich proto–
neutron stars due to neutrino trapping during infall. Lepton fractions Y 	 = Y e + Y ν (where Y ν

is the net number of electron neutrinos per baryon) of order 0.3–0.35, and entropies per baryon
s ∼ 1, exist in the centers of neutron stars at birth, according to current simulations. Within 10 s,
Y ν within the star drops to zero through diffusion, but the bulk of the neutrino energy remains in
the remnant as thermal energy (72). Compared with cold, catalyzed stars in β equilibrium without
neutrinos (Y ν = 0), which have a minimum mass of order 0.09 M � (as discussed in Section 2.1),
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proto–neutron stars have a minimum gravitational mass of order 0.9–1.2 M �, depending on
the entropy profile within the star (73). Masses at the higher end of this range are suggested
for configurations with strongly shocked outer cores. Masses smaller than the minimum are
dynamically unstable and cannot lead to stable neutron stars.

In summary, the current gravitational-collapse paradigm for cores of massive stars that lead to
hot, lepton-rich proto–neutron stars and successful supernova explosions imposes a lower limit on
neutron star masses at birth. Neutron star masses can increase due to fallback after the explosion and
accretion from binary companions, but they cannot further decrease except during a catastrophic
merger. Given the observational errors, the lowest observed masses are not currently incompatible
with this paradigm, but this remains an interesting problem.

3.4. The Distribution of Neutron Star Masses

Most neutron stars have masses close to 1.3 to 1.4 M �, but lower and higher masses exist. Evo-
lution probably plays many roles in the distribution of neutron star masses: To name only two
considerations, the neutron star birth mass seems to depend on progenitor mass, and accretion can
lead to the accumulation of several tenths of a solar mass over a star’s life. The observed masses
(Table 1) may be separated into four groups that could have different evolutionary histories:
X-ray binaries, double–neutron star binaries, WD–neutron star binaries, and WD–neutron star
binaries found in globular clusters. Figure 8 shows histograms of masses for these four groups,
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Figure 8
Histograms of neutron star masses for four groups: X-ray binaries, double–neutron star binaries, white
dwarf–pulsar binaries, and white dwarf–pulsar binaries in globular clusters (GCs). Bins are taken to be
0.08333 M � in width.
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Figure 9
The density of neutron star masses, namely the number of stars per mass interval, is shown for the four groups of neutron stars
displayed in Figure 8. The weighted average mass is indicated by the arrow in each plot.

but they are of limited utility given that individual stars can have significant mass errors (1-σ
errors are provided in Table 1). Interestingly, the first three groups in Table 1 have the same
error-weighted average masses to within 0.03 M �.

To account for errors, one can approximate each star with a Gaussian probability distribution
whose integral over mass is unity. The histograms are thereby transformed into a plot of the
number of stars in a small mass interval, or a density, as a function of mass. Those stars with large
errors have a relatively small contribution at any mass; those with small errors contribute only
over a very narrow range of masses. Figure 9 shows these densities.

The most significant feature of the distribution of X-ray binaries is a broad maximum. However,
the distribution of double neutron stars is very narrow and peaks at 1.33 M �. The distribution
of WD–neutron star binaries is more complex; there is evidence for three groups with peaks at
1.25 M �, 1.45 M �, and ∼1.9 M �. The last two peaks are also prominent in the distribution of
pulsar masses with WD companions in globular clusters. Zhang et al. (74) noted the existence of the
first two groups. They identified the first group with periods greater than 20 ms as nonrecycled
pulsars and the second group with smaller periods as recycled pulsars that have experienced
extended mass-accretion episodes. An analysis by Özel et al. (70) concluded that there are three
groups: the first with a mean of 1.28 M � and a dispersion of 0.24 M � in nonrecycled high-mass
binaries; the second (representing stars in double–neutron star systems) with a mean of 1.33 M �
and a dispersion of 0.06 M �; and a third containing recycled pulsars with a mean of 1.48 M �.

However, Schwab et al. (75) argued for two peaks at low masses: 1.25 M � and 1.35 M �.
The first peak represents neutron star production via O-Ne-Mg supernovae, and the second
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peak represents neutron star production through conventional iron core collapse. The existence
of two types of supernovae—iron core-collapse supernovae from high-mass progenitors and
electron-capture supernovae from low-mass O-Ne-Mg cores—is supported by statistics of
neutron star–hosting X-ray binaries. Knigge et al. (76) show that these binaries are composed
of two subpopulations differentiated by spin periods, orbital periods, and orbital eccentricities.
Those with short spin and orbital periods and low eccentricities probably originate from
O-Ne-Mg accretion–induced collapses.

The study by Podsiadlowski et al. (77) demonstrates that the pulsar and companion stars
in double–neutron star binaries appear to be drawn from the same distribution. Their small
dispersions could be attributed to their birth in O-Ne-Mg supernovae, whose helium (He) cores
are expected to have a small mass range (1.36–1.38 M �) prior to collapse. Özel et al.’s study also
indicates that although the mean mass of the lowest group of WD–neutron star binaries is nearly
the same as that of the double–neutron star binaries, the dispersion of the former appears greater.
How significant this finding is, however, depends on the details of fitting the optical light curves
in these systems.

In contrast, Kiziltan et al. (56) claimed that there is significant evidence for only two groups
centered at 1.35 M � and 1.5 M �. Presumably only the higher-mass group has experienced con-
siderable accretion.

4. SIMULTANEOUS MASS AND RADIUS MEASUREMENTS

In contrast to mass determinations, there are no high-accuracy radius measurements. Moreover,
there are no radius measurements for any neutron star with a precise mass determination. Many
astrophysical observations that could lead to the extraction of neutron star radii, or combined mass
and radius constraints, have been proposed. These observations include the following.

1. Thermal X-ray and optical fluxes from isolated and quiescent neutron stars (78).
2. Type I X-ray bursts on neutron star surfaces (79).
3. Quasi-periodic oscillations from accreting neutron stars (80).
4. Spin-orbit coupling, observable through pulsar timing in extremely compact binaries, lead-

ing to moments of inertia (81).
5. Pulsar glitches, which constrain properties of neutron star crusts (82).
6. Cooling following accretion episodes in quiescent neutron stars that also constrain crusts

(83).
7. Neutron star seismology from X-rays observed from flares from soft γ -ray repeaters (84).
8. Pulse profiles in X-ray pulsars, which constrain M/R ratios due to gravitational light bending

(85).
9. Gravitational radiation from tidal disruption of merging neutron stars (7).

10. Neutrino signals from proto–neutron stars formed in Galactic supernovae (72).

Of these proposed observations, thermal emission and X-ray bursts from neutron star surfaces
have dominated recent attempts to infer neutron star radii.

4.1. Thermal Emission from Quiescent and Isolated Sources

Until a million years after a star’s birth, neutrino emission dominates thermal emission from
the surface, but the star is observable as an X-ray source (and, if it is near enough, as an optical
source). Several thermally emitting neutron stars have been observed, some from nearby isolated
sources and others from binaries in globular clusters. To a zeroth approximation, thermal emission
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from neutron stars is blackbody, so measures of their integrated fluxes and temperatures yield
estimates of their angular diameters through Kirchhoff ’s laws. However, because the observed
flux is redshifted twice and the temperature once, the inferred radius is not the geometric radius R
but rather the so-called radiation radius: R∞ = R/

√
1 − 2GM /Rc 2. A significant complication,

however, is that the emissions are modulated by a star’s atmosphere and magnetic field; a neutron
star is not a perfect blackbody.

The principal uncertainties in extracting radii from thermal emissions include the following.

1. The distance D (because the inferred R∞ ∝ D).
2. The magnitude of interstellar hydrogen (H) absorption, given that most hard UV radiation

and an appreciable fraction of X-rays are absorbed between the star and the Earth.
3. The atmospheric composition and magnetic field strength and distribution.

The best chances of an accurate measurement are from either (a) nearby isolated neutron stars
for which parallax distances are available (but have unknown atmospheric compositions and field
strengths) or (b) quiescent X-ray binaries in globular clusters with reliable distances. Due to recent
accretion episodes, these sources are believed to have low magnetic fields and, almost certainly,
H-dominated atmospheres, which are the most reliably modeled (86).

The best-studied isolated neutron star is RX J1856-3754 (87), which is the only one close
enough to have an accurate parallactic distance: D = 120 ± 8 pc (88). Fitting both ROSAT X-ray
and optical spectra with nonmagnetic heavy-element atmospheres (89) yields R∞ = 16.1±1.8 km
and redshift z = 0.37 ± 0.03 for this distance. These values lead to M = 1.86 ± 0.23 M � and
R = 11.7 ± 1.3 km. A later analysis with Chandra data found z � 0.3 and R∞ � 15.8 km (90).
However, these models predict spectral features that are not observed, and other observations
indicate a substantial magnetic field of order 5 × 1012 G. Burwitz et al. (91) and Ho et al. (92)
proposed models with a highly magnetized, condensed surface, yielding R∞ > 13 km in the first
case and R∞ � 14.6 ± 1.0 km and z � 0.22 in the second, for D = 120 pc. Such models require
a trace H atmosphere with a finely tuned mass, whose origin is unclear. Ho et al.’s values imply
M = 1.33 ± 0.09 M � and R = 11.9 ± 0.8 km (errors include only the distance uncertainty).
Although the predicted masses of these two approaches differ, the predicted radii are nearly
identical.

Many neutron stars are transients in which accretion proceeds intermittently; the accretion
episodes are separated by long periods of quiescence. During accretion, compression of matter in
the crust induces nuclear reactions (93) that release heat. When the accretion ceases, the heated
crust cools and radiates an observable thermal spectrum (94). Accretion is also believed to suppress
the surface magnetic field, which seems to be confirmed by the lack of evidence, such as pulsations
or cyclotron spectral features, for a magnetic field significant enough to distort the star’s spectrum.
Because the timescale for heavier nuclei to sink below the photosphere is short, the spectra can
be fitted with well-understood unmagnetized H atmosphere models. Modeling can be used to
reliably infer the apparent angular emitting area and, possibly, the surface gravity (95), both of
which are functions of R and M. Figure 10 summarizes the probability distributions of M and R
for sources in four globular clusters (95, 96).

4.2. Photospheric Radius Expansion Bursts

Type I X-ray bursts are the result of thermally unstable He (or, in some cases, H) ignition in the
accreted envelope of a neutron star (97). The ignition generates a thermonuclear explosion that
is observed as an X-ray burst with a rapid rise time (∼1 s) followed by cooling decay (∼10–100 s).
If the burst is sufficiently luminous, radiation pressure drives surface layers and the photosphere
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outward to larger radii, and the flux at the photosphere approaches (to within a few percent) the
Eddington value,

FEdd = c GM
κ D2

√
1 − 2βph, 20.

for which radiation pressure balances gravity; the flux then decreases. The opacity of the lifted
material is κ , and βph = GM /(Rphc 2), where Rph is the radius of the photosphere. The blackbody
temperature Tbb,∞ also reaches a maximum, marking touchdown as the lifted material falls to the
surface. At that time, the observed angular area of the photosphere is

A = F∞
σ T 4

bb,∞
= f −4

c

(
Rbb,∞

D

)2

, 21.

where fc is the color-correction factor approximating the effects of the atmosphere in distorting
the observed temperature from the effective blackbody temperature. After touchdown, Rbb,∞ =
Rph/

√
1 − 2βph stabilizes even as the observed flux and temperature decrease. The standard view

is that Rph = R; that is, the photosphere lies very close to the surface.
The observed parameters are FEdd, A, and D. Atmosphere models for different compositions

and effective temperatures provide κ and fc. We define

α ≡ FEdd√
A

κ D
c 3 f 2

c
= β

√
1 − 2β

√
1 − 2βph 22.

and

γ ≡ Ac 3 f 4
c

FEddκ
= R

β(1 − 2β)
√

1 − 2βph
. 23.

Note that αγ = R∞. M and R can therefore be determined if α and γ are measured, assuming
knowledge of D, κ , and fc. If Rph = R, then α = β(1 − 2β), which has two real-valued solutions if
α ≤ 1/8 and none otherwise. The range of γ values for the observed sources is not large.

Özel and collaborators (98, 99) have studied the bursters EXO 1745-248, 4U 1608-522, 4U
1820-30, and KS 1731 and have estimated FEdd and A. Coupled with estimates for D, these authors
found α � 0.13 ± 0.02, 0.18 ± 0.06, 0.17 ± 0.02, and 0.21 ± 0.06 respectively. Thus, assuming
that Rph = R, no real-valued solutions exist for the centroids of the data. However, real solutions
exist in the tails of the error distributions for FEdd, A, and D if one also takes into account theoretical
uncertainties in fc and κ , which are not negligible. Monte Carlo sampling of FEdd, A, D, fc , and κ

within their estimated errors, accepting only trials with real solutions, allows for the generation
of probability distributions for M and R. Because requiring real solutions severely restricts the
allowed values of input variables, the probability distributions in M and R have smaller errors (of
order 5%) than the observational inputs. Another consequence is that the mean values of M and R
do not greatly vary from source to source. Relatively small values for the radius (R � 8 − 10 km)
are found.

The Monte Carlo sampling has extremely small fractional acceptance rates: 0.13, 0.0002, and
2 × 10−8 for the first three of the above sources, for example. This finding casts doubt on the
model’s validity. Accepted trials are forced into a small region where α � 1/8, which, coupled
with the fact that γ has an intrinsically small variation among sources, explains the small errors
and overlap of M and R values for different sources.

It is likely that this model has systematic uncertainties that have not been considered. One
possibility, suggested by Steiner et al. (100), is that the photospheric radius at the point where
the Eddington flux is measured might not coincide with the stellar surface. In the extreme case
in which Rph = ∞, one has α = β

√
1 − 2β, which has one physical real-valued solution if

α ≤ 3−3/2 � 0.192 and none otherwise. If one allows for the possibility that Rph ≥ R, Monte
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Carlo acceptance rates increase dramatically (100). Predicted errors for M and R also increase,
which leads to 1-σ errors of order 15% (Figure 10). Another consequence is that estimated radii
are, in each case, approximately 2 km larger than what Özel et al. obtained.

It has been proposed (101), conversely, that the short X-ray bursts used in References 100 and
98 have color-correction factors that change significantly during the burst, which could explain
inconsistencies such as the lack of real solutions. By using only long bursts and different model
atmospheres, Suleimanov et al. (101) found distinctly larger radii: R > 14 km. However, this result
is incompatible with studies of nuclei and neutron matter, as discussed in Section 6. This result
is also inconsistent with studies of sub-Eddington X-ray bursts from GS 1826-24 (102). Further
modeling of X-ray bursts is obviously warranted.

5. FROM OBSERVATIONS TO THE EQUATION OF STATE

With several M−R probability distributions, one can investigate constraints on the overall M−R
relation, and the EOS (p − ε relation) can be inferred by inversion of Equation 2. Steiner et al.
(100) assumed a parameterized form for the EOS and determined the most likely parameter values
from a Bayesian analysis of the M−R probability distributions by using Markov chain Monte Carlo
integration techniques. Below the transition density between the core and crust of a neutron star,
ntrans � ns /4, the EOS was assumed to be known because it is dominated by electronic and lattice
pressures. In the vicinity of ns, a standard expansion of the nucleon energy in powers of n − ns and
1 − 2x was assumed, as in Equation 4. The symmetry energy was parameterized as

S2(u) = Sku2/3 + Sp uγ . 24.

The kinetic part of the symmetry energy, Sk � 13 MeV, was held fixed, but the compressibility
and skewness coefficients, Ko and K ′

o , and the terms describing the potential part of the symmetry
energy, Sp and γ , were taken as parameters.

Above the density ε1, two polytropic relations with exponents γ 1 and γ 2, separated at the
density ε2, were assumed. Although nuclear masses can establish strong correlations among some
parameters, such as those between Sv and γ , these were ignored. The ranges of parameters were
constrained to satisfy causality and M max > 1.66 M �, although raising this limit to M max >

1.93 M � in order to comply with observations of J1614-2230 only slightly affects the results (103).
The Bayesian analysis determines the most likely M−R relations (Figure 11b) and the most

likely values for the EOS parameters. Figure 11a displays the most likely ranges for the EOS.
1.4-M � neutron stars are most likely to have radii of order 11.8 ± 0.7 km. These small radii are
a consequence of rather soft nuclear symmetry energies: γ = 0.3 ± 0.1. Note that the results
(89, 92) from spectral modeling of RX J1856-3754 are consistent with the derived M−R relation
(Figure 11). Although the EOS is relatively soft in the vicinity of ρs , the high-density
EOS must stiffen: The Bayesian analysis indicates that the neutron star maximum mass is
M max = 2.05 ± 0.11 M �.

Interestingly, the predicted most-likely values of the three nuclear matter parameters (190 MeV
< K < 260 MeV, 26 MeV < Sv < 34 MeV, and 0.2 < γ < 0.4) are compatible with experimental
information. (The skewness K′ is neither experimentally nor observationally well constrained.) K
is well constrained by monopole resonances to the range 230 MeV < K < 250 MeV (see Reference
104 for a review). The symmetry parameters are also consistent with experimental information (see
Section 6). There appears to be a remarkable convergence between experimental and astrophysical
estimates for the neutron star EOS.

These estimates were made on the basis of relatively poor radius-mass information from only
seven to eight neutron stars. These results are somewhat sensitive to how photospheric radius
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(a) Probability distributions for pressure as a function of energy density using the M−R probability distributions from Figure 10.
(b) Probability distributions for the M−R curve. The diagonal dashed line is the causality limit, and the dotted curve is the 716-Hz
rotation constraint. 1-σ and 2-σ contours are shown as dashed and solid lines, respectively. Also shown is the estimated mass and radius
error region, including only distance errors, for RX J1856-3754 (92). Figure adapted from Reference 100.

expansion bursts are modeled. On the one hand, if one assumes Rph = R, the predicted radii from
burst sources would become ∼2 km smaller (99); however, in this case, the Mmax constraint from
PSR J1614-2230 can barely be satisfied (100). On the other hand, if the burst data are excluded, the
inferred M−R relation is essentially unaltered from the baseline results achieved by incorporating
the burst sources with the possibility that Rph ≥ R (A.W. Steiner, private communication). In this
case, the observed M−R results are largely a consequence of the wide range of observed R∞ values
of the quiescent globular cluster sources (Figure 10), which forces the M−R trajectory to enter
its vertical trajectory at relatively small radii (∼12 km). Otherwise, the existence of both small and
large observed values of R∞ would not be compatible with realistic masses.

M−R information has also been inferred from pulse-shape modeling of X-ray bursts. Although
predictions from observations of individual sources have large errors, Leahy et al. (105) conclude
that only an M−R curve with a constant radius of 12 km for 1 M � < M < 2.3M � would be
consistent with observations of all sources studied, namely XTE J1807-294, SAX J1808-3658, and
XTE J1814-334. Such a result is remarkably similar to the conclusions drawn in Reference 100
(Figure 11).

Nevertheless, Suleimanov et al.’s (101) study of longer X-ray bursts implies considerably
larger radii: R � 14 km. Those results are further supported by spin-phase-resolved spectroscopy
of isolated neutron stars (106) that yield small neutron star redshifts: z � 0.16. This value for z,
coupled with M > 1.2 M �, implies that R > 14 km. Because these results are also incompatible
with available experimental information discussed in the next section, it is important to resolve
these differences. More sophisticated modeling of photospheric radius expansion bursts and
neutron star atmospheres, together with refinements of distances, will be required for additional
progress.
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6. LABORATORY CONSTRAINTS

The most significant aspects of neutron star structure impacted by the EOS are the maximum mass
and the typical radius of intermediate stars. The former is mostly sensitive to the EOS beyond
three times the saturation density. Figure 3 shows that this density is the minimum central density
of stars greater than approximately 1.5 M �, whereas the central densities at the maximum mass
can approach 7 − 8 ns . However, the radii of stars with mass �1.5 M � are completely determined
by the EOS below 3ns and, in particular, by dS/du in the vicinity of ns .

6.1. Nuclear Symmetry Energy

The nuclear symmetry energy S(u) is often described by the liquid droplet parameters,

Sv = S2(1),

L = 3
8

u
(

∂3e
∂u∂2x

)
u=1,x=1/2

= 3u
(

d S2

du

)
u=1

,

Ksym = 9
8

u2
(

∂4e
∂u2∂2x

)
u=1,x=1/2

= 9u2
(

d 2S2

du2

)
u=1

.

25.

For example, in the parameterization of Equation 24, L = 2Sk + 3γ (Sv − Sk) and Ksym =
−2Sk +9γ (γ −1)(Sv − Sk). There are limited constraints from measurements of the giant isoscalar
monopole resonance (107), isotopic transport ratios in medium-energy heavy-ion collisions (108),
and neutron skin data from antiprotonic atoms (109). However, extraction of the symmetry con-
tribution to the total incompressibility of nuclei and its separation into bulk (Ksym) and surface
contributions is still problematic.

In contrast, there are several methods of experimentally determining Sv and L, including
(a) nuclear mass fitting, (b) neutron skin thickness, (c) dipole polarizabilities, (d ) dynamics in
heavy-ion collisions, (e) giant and pygmy dipole resonances, and ( f ) isobaric analog states. The
most accurate data are obtained from fitting nuclear masses. However, optimizing the symmetry
parameters of nuclear models to experimental masses cannot uniquely constrain them. Rather,
the parameters are highly correlated (110–114).

It is straightforward to demonstrate the existence of this correlation by use of the liquid drop
model (115). Although the specific results are sensitive to the inclusion of shell and pairing terms,
Coulomb diffusion and exchange terms, a Wigner term, and the neutron skin, these effects are
inconsequential for this demonstration. Neglecting these contributions, the symmetry energy of
a nucleus to lowest order is Emod,A = I 2(Sv A− Ss A2/3), where I = (N − Z)/(N + Z), and consists
of a volume term and a surface term. The volume parameter Sv is the same as the bulk parameter
in Equation 26. Ss is the surface symmetry energy parameter, which is sensitive to the density
dependences of both e and S and thus depends on both Sv and L. Minimizing the difference
between the model and experimental symmetry energies for nuclei with measured masses—that
is, χ2 = ∑

i (Eexp,i − Emod,i )2/(Nσ 2), where N is the total number of nuclei and σ is a nominal
error—establishes a correlation between Sv and Ss. This correlation can be visualized as a 1-σ
confidence ellipse: a χ2 contour that is one unit larger than the minimum value of χ2. The shape
and orientation of this ellipse are determined by the second derivatives of χ2 at the minimum,

[χvv, χvs , χs s ]σ 2 = 2
N

∑
i

I 4
i [A2

i , −A5/3
i , A4/3

i ] � [61.6,−10.7, 1.87], 26.

where χvs = ∂2χ2/∂Sv∂Ss , and so on. In the simple liquid drop case, these derivatives do
not depend on the location of the minimum. The confidence ellipse has an orientation
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α = (1/2) tan−1 |2χvs /(χvv − χs s )| � 9.8◦ with respect to the Ss axis; the ellipse’s semimajor axes
are the error widths, σv =

√
(χ−1)vv � 2.3 MeV and σs =

√
(χ−1)s s � 13.2 MeV, where (χ−1) is

the matrix inverse and we use σ = 1 MeV.
To convert the correlation between Ss and Sv into a correlation between L and Sv , one needs

to estimate how Ss depends on Sv and L. Treating the nuclear surface as a plane-parallel interface,
Ss can be expressed simply as the ratio of two integrals over the nuclear density u = n/ns of a
symmetric system (112, 113, 116):

Ss = Es Sv

2

∫ 1
0 u1/2[Sv/S2(u) − 1][e(u, 1/2) + B]−1/2du∫ 1

0 u1/2[e(u, 1/2) + B]1/2du
. 27.

Here, Es � 19 MeV is the liquid drop surface energy parameter (also found from fitting nuclear
masses). The solution depends on the functional forms of S and e and is generally nontrivial, but
an analytical result is found if we approximate S2(u) � Sv + L(u − 1)/3 and e(u, 1/2) + B �
K (u − 1)2/18:

Ss

Sv

� 135Es

2K

[
1 −

[
3Sv

L
− 1

]1/2

tan−1

([
3Sv

L
− 1

]−1/2
)]

. 28.

For example, for L/(3Sv) � 1/3, 1/2, or 2/3, one finds Ss /Sv � 0.7, 1.2, or 1.8, which shows the
basic trend. For various interactions constrained to broadly reproduce nuclear masses in Hartree–
Fock or Thomas–Fermi calculations, an approximate relation can be found (117):

Ss

Sv

� 0.646 + Sv

97.9 MeV
+ 0.436

L
Sv

+ 0.0873
(

L
Sv

)2

. 29.

By transforming to Sv − L space, one finds that the confidence ellipse in Sv − L space has σv �
2.3 MeV and σL � 20 MeV.

In practice, the liquid droplet model (118), which accounts for varying neutron-to-proton
ratios within the nucleus, provides an improved fit to nuclear masses. Its symmetry energy is
Emod,A = I 2

i Sv A(1 + Ss A−1/3/Sv)−1, and the above methodology can be used to determine the
confidence ellipse. One finds σv � 3.1 MeV and σL � 47 MeV (these values now depend on the
location of the minimum, Sv0 � 30.5 MeV, and L0 � 62 MeV).

Modern microscopic models of nuclei are a vast improvement over liquid drop and droplet
models. Nevertheless, they predict an Sv − L correlation in substantial agreement with the liquid
droplet model or Thomas–Fermi calculations (111, 117). The correlation was recently studied by
Kortelainen et al. (114), who used the universal nuclear energy density functional (119). Fitting
nuclear masses and charge radii and arbitrarily assuming σ = 2 MeV resulted in a confidence
ellipse with the properties Sv0 � 30.5 MeV, L0 � 45 MeV, σv = 3.1 MeV, and σL = 40 MeV,
and an orientation that is indistinguishable from that predicted by the liquid droplet model and
Thomas–Fermi calculations. The correlation of these parameters was more than 97%, which
is illustrated in Figure 12 for the 90%-confidence contour. Also, the latest microscopic finite-
range droplet model (120), when optimized to nuclear masses, predicted best-fit values of Sv0 �
32.5 MeV and L0 � 70 MeV. This result lies precisely on the Kortelainen et al. correlation
line with their confidence ellipse (Figure 12). This correlation is therefore robust and model
independent.

This correlation has been used to constrain nuclear parameters in supernova simulations that
explored the effects of variations in the nuclear symmetry energy (121). Coupled with other
nuclear observables, this correlation can become even more effective. One possibility concerns
the neutron skin thickness of neutron-rich nuclei. Neglecting Coulomb effects, the difference
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H = Hebeler et al. (2010)
G = Gandolphi et al. (2010)
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Figure 12
Summary of constraints on symmetry energy parameters. The filled ellipsoid indicates joint Sv − L
constraints from nuclear masses (114). The finite-range droplet model fit (120) is indicated with a diamond.
The filled bands show constraints from neutron skin thickness of tin (Sn) isotopes (122), isotope diffusion in
heavy-ion collisions (HIC) (124), the dipole polarizability of 208Pb (126), and giant dipole resonances (GDR)
(128). The hatched rectangle shows constraints from astrophysical modeling of M−R observations (100).
The two closed curves show neutron matter constraints (H is from Reference 134, and G is from Reference
135.) The white area is the experimentally allowed overlap region. Adapted from Reference 117.

between the mean neutron and proton surfaces in the liquid droplet model (118) is

tnp = 2ro

3
Ss I

Sv + Ss A−1/3
. 30.

Therefore, neglecting Coulomb effects, the neutron skin thickness of any particular isotope is
predicted to be primarily a function of Ss /Sv , and hence, through Equation 29, L/Sv . Values of
tnp have been measured, typically with 30–50% errors, for approximately two dozen isotopes.
A recent study (122) fitting the neutron skin thicknesses of tin isotopes, in which differential
measurements reduce errors, found a correlation between Sv and L that is nearly orthogonal to
the mass-fit correlation (Figure 12). Additionally, neutron skin measurements of antiprotonic
atoms yield a range between 25 MeV and 70 MeV (109) for L (which is consistent with the tin
study but for clarity is not shown in Figure 12). The first results (123) from the PREX experiment
to measure the neutron skin of 208Pb have indicated a limit of 35 MeV < L < 262 MeV. The
mean value is discrepant with other results for neutron skins, but the errors are still very large.

Figure 12 shows an additional constraint from isospin diffusion in heavy-ion collisions (124).
Tamii et al. (125) established a constraint from measurements of the dipole polarizability of 208Pb,
and a later study by Piekarewicz et al. (126), who attempted a more model-independent analysis,
obtained the constraint shown in Figure 12. A related experimental constraint originates from
measurements of the centroids of giant dipole resonances in spherical nuclei. The hydrodynamical
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model from Reference 127 showed that both the dipole polarizability and the giant dipole centroid
energy are closely connected to liquid droplet parameters. For example, the centroid energy is

E−1 �
√

3�2

m < r2 >
Sv

(
1 + 5

3
Ss

Sv

A−1/3

)−1

(1 + κ), 31.

where κ is an enhancement factor arising from the velocity dependence of the interaction and
<r2> is the mean-square radius. The factor m<r2>(1 + κ) does not significantly vary among
interactions for a given nucleus. By using various Skyrme functions to fit the centroid energy in
208Pb, Trippa et al. (128) showed that Equation 31 is approximately equivalent to evaluating S(u)
at the subnuclear density 0.1 fm−3, which leads to a small range 23.3 MeV < S0.1 < 24.9 MeV.
Although the relation among S0.1, Sv , and L is model dependent, bounds (117) for a range of
parameterizations are indicated with the constraint band shown in Figure 12.

A study of pygmy dipole resonances (129) in 68Ni and 132Sn imply that 31 MeV < Sv < 33.6 MeV
and 49.1 MeV < L < 80 MeV. However, Daoutidis & Goriely (130) claim that both theoretical
and experimental uncertainties prevent them from being effective constraints, which is supported
by the results from Reinhard & Nazarewicz (131) that show a lack of correlation with L. This
constraint is not shown in Figure 12.

Danielewicz & Lee (132) proposed isobaric analog states as constraints on symmetry param-
eters, leading to Sv � 32.9 MeV and Ss � 96 MeV, which are equivalent to L � 113 MeV.
However, the data suggest that there could be a significant curvature contribution; refitting with
curvature yields Sv ∼ 30 MeV and Ss ∼ 45 MeV, which are equivalent to L ∼ 50 MeV, but
with considerable errors. A more detailed analysis will be necessary to produce better constraints.
Further constraints on L alone were suggested from multifragmentation in intermediate-energy
heavy-ion collisions (126), leading to 40 MeV < L < 125 MeV. Although consistent with other
constraints, neither result is useful for further restricting parameter space.

Most of the experimental studies discussed above have a remarkable consistency. The white
overlap region in Figure 12 shows the common predictions of the experimental studies (note
that the finite-range droplet model would also predict a confidence ellipse similar in extent and
orientation to that of Reference 114, but this was not calculated). It is remarkable that the overlap
is fully consistent with the observational inferences made in Reference 100.

6.2. Neutron Matter and High-Density Constraints

The symmetry parameters are also related to properties of pure neutron matter at the saturation
density. If quartic and higher terms in the symmetry energy expansion can be neglected, the
energy and pressure of pure neutron matter at ns are given by Equations 4 and 5 as ens = Sv − B
and pns = Lns /3, respectively. However, depending on the nuclear interaction, this might not
be a good approximation. Considering only the nonrelativistic, noninteracting kinetic energy
contributions, the errors made using the quadratic approximation are

ens ,k − Sk + B =
(

3
5

22/3 − 1
3

)
�

2

2mb

(
3π2ns

2

)2/3

≡ Q � 0.72 MeV,

pn,k

ns
− Lk

3
= 2

3
Q � 0.96 MeV.

32.

Although these differences are not large, contributions from the effective mass and potential energy
contributions can be considerably larger, and the errors amplify at high densities (133). Therefore,
one should take care in relating Sv and L to neutron matter properties.

Two recent independent studies (134, 135) have estimated properties of neutron matter based
on chiral Lagrangian and quantum Monte Carlo techniques with realistic two- and three-nucleon
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Figure 13
Representative hadronic and strange quark matter (SQM) equations of state, as in Figure 2 but with
astrophysical results (100), neutron matter calculations (134, 135), and heavy-ion studies (136) overlaid.

interactions. Employing realistic ranges of the magnitudes of these interactions, and neglecting
quartic and higher symmetry contributions, the neutron matter studies lead to the ranges shown
in Figure 12 (128, 129). The close agreement between neutron matter studies and laboratory
constraints is encouraging, although the caveat regarding the neglect of quartic and higher terms
in the symmetry expansion should be kept in mind. However, given that neutron star matter
and pure neutron matter differ by relatively minor amounts because x 	 1, the comparison
between the neutron matter and astrophysics results does not have the ambiguity inherent in the
comparisons with laboratory data. In fact, the agreement with astrophysical data is very good,
not only for the derived symmetry parameters but also for the overall pressure-density relation at
moderate densities (Figure 13).

There is a paucity of experimental information concerning the EOS at densities modestly
exceeding ns. Danielewicz et al. (136) analyzed the elliptic and transverse flows of matter in heavy-
ion (Au-Au) collisions to estimate the pressure as a function of density in the range from 2 to 5 ns.
However, the conditions of interest involve large excitation energies and nearly symmetric matter.
The inferred pressures and energy densities must therefore be extrapolated to zero temperature
and to large neutron excesses that are characteristic of neutron star matter. Doing so introduces
considerable systematic errors. Nevertheless, the results (Figure 13) also compare favorably with
the astrophysical constraints (100).

7. CONCLUSIONS

An ever-increasing set of astrophysical data concerning neutron star masses and radii has placed
severe constraints on the nuclear EOS. The available data suggest that neutron stars of canonical
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mass 1.4 M � have radii near 11.5 km, which strongly implies that the EOS near the nuclear
saturation density is relatively soft—in other words, that the pressure there is relatively low. At
the same time, the EOS must stiffen at densities exceeding 2 to 3ns to permit the existence of
2-M � neutron stars. Although the existence of exotic matter such as deconfined quarks, kaon
condensates, and hyperons in neutron star interiors are not excluded by these considerations,
their role in the pressure-density relation must not be great. There are hints that even more
massive neutron star masses are waiting to be discovered. The detection of neutron stars with
approximately 2.4 M � would be exciting because of the potential to rule out the existence of some
types of exotic matter. Even if the existence of such massive neutron stars is not confirmed, the
presence of exotic matter may yet be revealed by observations of cooling neutron stars (8).

The detection of gravitational radiation from mergers involving neutron stars will present
additional opportunities. With an expected detection rate of 0.4 to 40 neutron stars per year with
Advanced LIGO (137), many new mass and radius estimates will become available. Given the
observed narrow mass range of double–neutron star binaries, observations of the peak frequency
may also yield radius measurements with an accuracy of 0.1 km (138). Furthermore, if the events
are nearby enough, observations of postmerger gravitational waves could set interesting upper
limits to the neutron star maximum mass.

The conclusions regarding the mass-radius relation and the nuclear symmetry energy from
astrophysical observations of quiescent neutron stars in globular clusters and from type I X-ray
bursts are strongly supported by the convergence in the predicted properties of dense matter, as
revealed by nuclear experiments and theoretical neutron matter calculations. Although the sym-
metry parameters Sv and L do not completely describe the extrapolation from symmetric matter to
neutron-rich matter, it is gratifying that their permissible ranges are now reasonably restricted, as
shown in Figure 12: 29.0 MeV < Sv < 32.5 MeV, and 41 MeV < L < 60 MeV. Continuing astro-
physical observations combined with experimental studies of giant dipole resonances and dipole
polarizabilities, as well as neutron skins, have great potential to further improve these constraints.
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Roca-Maza X, Centelles M. Phys. Rev. C 80:024316 (2009)
110. Lattimer JM. In The Structure and Evolution of Neutron Stars, ed. D Pines, R Tamagaki, S Tsuruta, p. 50.

New York: Addison-Wesley (1992); Lattimer JM. In Nuclear Equation of State, ed. A Ansari, L Satpathy,
p. 83. Singapore: World Sci. (1996)

111. Oyamatsu K, Iida K. Nucl. Phys. A 718:38 (2003)
112. Danielewicz P. Nucl. Phys. A 727:233 (2003)
113. Steiner AW, Prakash M, Lattimer JM, Ellis PJ. Phys. Rep. 411:325 (2005)
114. Kortelainen M, et al. Phys. Rev. C 82:4313 (2010)
115. von Weizsäcker CF. Z. Phys. 96:431 (1935)
116. Krivine H, Treiner J. Phys. Lett. B 124:127 (1983)
117. Lim Y, Lattimer JM. arXiv:1203.4286 [nucl-th] (2012)
118. Myers WD, Swiatecki WJ. Ann. Phys. 55:395 (1969)
119. Bertsch DF, Dean DJ, Nazarewicz W. SciDAC Rev. 6:42 (2007)
120. Moller P, Myers WD, Sagawa H, Yoshida S. Phys. Rev. Lett. 108:052501 (2012)
121. Swesty FD, Lattimer JM, Myra ES. Astrophys. J. 425:195 (1994)
122. Chen L-W, Ko CM, Li B-A, Xu J. Phys. Rev. C 82:024321 (2010)
123. Abrahamyan S, et al. Phys. Rev. Lett. 108:112502 (2012)
124. Tsang MB, et al. Phys. Rev. Lett. 102:122701 (2009)
125. Tamii A, et al. Phys. Rev. Lett. 107:062502 (2008)
126. Piekarewicz J, et al. Phys. Rev. C 85:041302 (2012)
127. Lipparini E, Stringari S. Phys. Rev. C 175:103 (1989)
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