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ABSTRACT

Neutrino emissivities from the modified Urca process, considered previously by Bahcall and
Wolf, and neutrino pair bremsstrahlung from nucleon-nucleon scattering, considered previously
by Flowers et al., are recalculated using a nucleon-nucleon interaction that consists of a long-range,
one-pion-exchange tensor part and a short-range part parametrized with nuclear Fermi liquid
(Landau) parameters. Effects of short-range correlations on the tensor part are approximated
through insertion of a cutoff in the one-pion exchange potential. The resulting emissivities differ
dramatically from previous calculations: the emissivities from the Urca process and the neutron-
neutron neutrino pair bremsstrahlung exceed the results of Bahcall and Wolf and Flowers et al.,
respectively, by an order of magnitude. It is argued that these results are due to the one-pion-
exchange tensor force in the nucleon-nucleon interaction used here. The neutrino mean free path
arising from a reaction related to the Urca process is also calculated, and the influence of finite
neutrino mean free paths and nucleon superfluidity on neutrino emissivities is briefly discussed.

Subject headings: dense matter — neutrinos — nuclear reactions — stars: neutron

I. INTRODUCTION

With the recent establishment of an upper limit on the Crab pulsar blackbody flux (Wolff et al. 1975; Toor and
Seward 1977), the subject of neutron star cooling via neutrino emission has become of renewed interest. Among
the important processes contributing to this cooling are the modified Urca process,

n+n—>n+p+e +7,, ey
and its inverse, and, if pion condensates exist, quasi-particle S-decay,
u—>u-+e +v,. @
Here the u quasi-particles are linear combinations of proton and neutron states. Ordinary neutron decay,
n—p+e + 7, 3

is strongly suppressed in neutron stars in thermal equilibrium by a large energy-momentum mismatch.
Process (1) and a simplified version of (2),

n+7"—>n+e” + v, @

were first treated in connection with neutron star cooling by Bahcall and Wolf (1965), who found that the neutrino
emissivity from the pion decay process exceeds that from the Urca process by several orders of magnitude at interior
temperatures near 10° K. In obtaining the pion decay emissivity, these authors assumed a zero-momentum,
noninteracting condensate. When interactions are included, a condensate with finite momentum is preferred.
However, this does not substantially alter the result, as was demonstrated by Maxwell et al. (1977).

The discovery of weak neutral currents (Hasert et al. 1973 ; Benvenuti ef al. 1974; Barish et al. 1974) suggested
two other processes that might be important: neutrino pair bremsstrahlung from neutron-neutron and neutron-.
proton scattering,

n+n—->n+n+v+v, )
n+p—>n+p+v+ti, 6

which we hereafter refer to as the nnvi and npvi processes, respectively. Both processes may involve either electron-
type neutrinos or muon-type neutrinos. They were first treated in connection with neutron star cooling by Flowers,
Sutherland, and Bond (1975), who obtained for the npvi emissivity a result comparable with the Urca process and
for the nnvv emissivity a result roughly two orders of magnitude smaller.

1 Supported in part by USDOE under contract EY-76-S-02-3001.
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Other processes not involving nucleons, such as photoneutrino production, plasmon neutrino production, and
neutrino pair production through e~ e* annihilation, have been studied elsewhere (Dicus 1972) and found to be
unimportant at typical neutron star densities and temperatures.

The large discrepancy in neutrino emissivities calculated in the absence and presence of pion condensates
suggests that cooling observations may provide information concerning the existence of pion condensates in
neutron star interiors. In particular, if the emissivities calculated in the absence of a condensate are insufficient to
account for the upper limit on the Crab pulsar temperature, as deduced from the upper limit on the blackbody
ﬂlg( (ngff et al. 1975), then the existence of pion condensates in neutron star interiors would be strongly
indicated. '

The three noncondensate processes described above—processes (1), (5), and (6)—all involve a strong nucleon-
nucleon (NN) interaction as well as the weak interaction responsible for the neutrino production. To date this
strong interaction has been treated either by computing the overlap integrals associated with the initial and final
nucleon wave functions (Bahcall and Wolf 1965) or through the use of a Fermi liquid parametrization (Flowers,
Sutherland, and Bond 1975). In neither case was the best known part of the NN interaction—the one-pion-exchange
(OPE) piece—treated explicitly. However, for the purpose of obtaining neutrino emissivities in neutron star
interiors, this may be the most important part. In particular, the average interparticle separation in neutron matter
at nuclear matter density is 2.2 fm, which is large enough that the longest range part of the NN interaction (i.e.,
the OPE part) should dominate. Moreover, the tensor piece of the OPE interaction can conspire with the axial
part of the weak hadronic current to give much larger matrix elements than obtained with a central NN interaction.
Such is the case for the nnvi process, as will be shortly demonstrated.

Motivated by these considerations, we have recomputed the Urca and neutral current bremsstrahlung emissivities
with the OPE term included explicitly in the NN interaction. In the nonrelativistic approximation this term consists
of both tensor and spin-spin parts and depends upon the magnitude of the momentum transfer between the
interacting nucleons (k-dependence). To describe the short-range part of the interaction, which cannot be treated
in perturbation theory, we employ Fermi liquid parameters (Migdal 1967). Such a parametrization of the effective
interaction is especially suitable for calculating neutrino emissivities since the participating nucleons must all lie
near their Fermi surfaces. .

To obtain expressions for the various neutrino emissivities with this form for the NN interaction, we impose a
number of simplifying approximations. First, the nucleons are treated nonrelativistically in the NN interaction
and the hadronic part of the weak interaction. Second, we expand the nucleon propagator in powers of the inverse
nucleon mass and discard all but the lowest order term. This is equivalent to the neglect of nuclear recoil terms.
In the emissivities such terms are of order (py/m*)?, where pr and m* are the Fermi momentum and effective mass,
respectively. Thus, for neutrons at nuclear matter density they are at most 207, of the lowest order term with the
values used here for py(n) and m,*. The proton recoil terms are even less important.

Performance of the phase space integrals is facilitated by imposing three further approximations. In particular,
since the nucleons and electrons participating in neutrino-producing processes must all lie near their Fermi
surfaces, we can equate their momentum magnitudes with the corresponding Fermi momenta in all angular
integrals. Then the angular and energy parts of the phase space integrals separate. We can also neglect the neutrino
momenta in comparison with the electron and nucleon Fermi momenta since the neutrinos are thermal. This
simplifies the phase space integrals by eliminating the neutrino momenta from the momentum conserving delta
functions. Finally, in the Urca process we adopt a triangle approximation, in which only the neutron momenta are
retained in the momentum conserving delta function. Thus, we keep only the lowest order term in an expansion
of the Urca emissivity in powers of pg(e)/px(n). Since the terms of odd order in this expansion vanish, the error in
this approximation is at most of order [pg(e)/pr(n)]? times the leading term, and can hence be neglected.

Within these approximations and using the uncorrelated form of the OPE interaction, analytical expressions
can be obtained for the Urca and neutral-current bremsstrahlung emissivities if only the direct Born terms are
retained in the corresponding matrix elements. Such a calculation is outlined in some detail in § IV following a
brief summary of physical conditions in neutron star interiors in § II and a more explicit description of the NN
interaction in § ITI. The following section (V) contains numerical results and also treats the effects of short-range
correlations in the OPE interaction. In § VI the OPE exchange terms arising from the antisymmetry requirement
on the nucleon wave functions are considered (note that the Landau part of the NN interaction is antisymmetric
by construction). The influence of p exchange, which also contains a tensor piece not included in the Landau
interaction, is the subject of § VIL. Finally, in the concluding section we compare our results with those obtained
previously and briefly treat the effects of nucleon superfluidity and finite mean free paths on our emissivities.

II. NEUTRON STAR INTERIORS

Neutron stars probably originate in the aftermath of supernova explosions with densities a few times nuclear
matter density (0.17 fm~3) and interior temperatures near or somewhat above 10! K (~ 10 MeV). Very shortly
after formation the temperature drops to within the 10°~10%° K range, the interior matter occupies its ground state,
and the star as a whole is in thermal, B, and charge equilibrium (Tsuruta and Cameron 1965, 1966; Baym and
Pethick 1975). Because of the extremely high densities and relatively low temperatures involved (in comparison
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with the relevant Fermi energies), the electrons, protons, and neutrons in the interior are all degenerate. This has
the consequence that the interior is approximately isothermal (Tsuruta and Cameron 1966). The electrons are
also extremely relativistic, while the nucleons are approximately nonrelativistic.

These degeneracy and relativity characteristics, together with the equilibrium conditions, permit explicit expres-
sions to be obtained for the electron and nucleon Fermi momenta, which are required to derive numerical results
for the neutrino emissivities. In particular, the neutron Fermi momentum is given by (A = ¢ = 1)

pr(n) = (3n%p)*'® = 340(p/po)*"® MeV/c, ™

where p, is nuclear matter density. Charge equilibrium requires that the electron and proton Fermi momenta be
equal. Combining this with the B-equilibrium condition,

Mn = pp + Me, (8)

approximating the chemical potentials here by the corresponding Fermi energies, and neglecting the proton
Fermi energy in comparison with the electron Fermi energy, we find for the electron Fermi momentum

ps(e) = pri(n)[2my = 62(p/po)*® MeV/c. (%a)

This result assumes that the neutron and proton potential energies are equal in neutron star interiors. In actuality,
because the T' = 0 interaction is more attractive than the T = 1 interaction, the proton is more bound than the
neutron. To take this into account we choose a somewhat larger value for py(e)

pr(e) = 85(p/po)*® MeV]c, (9b)
which we will employ in what follows.

In addition to the neutron and electron Fermi momenta, numerical results for the neutrino emissivities require
values for the neutron and proton effective masses in high-density neutron matter. A number of studies of these
effective masses have been carried out, but to date the results are not conclusive. Using a Fermi liquid theory
approach, Biackman, Kédllman, and Sjoberg (1973) obtained the value 0.8 for the effective mass m,*/m, in neutron
matter at densities slightly above p,. A similar calculation by Sjoberg (1976) in neutron star matter (nuclear matter
in B-equilibrium) indicates that the proton effective mass m,*/m, might be lower than the neutron one. However,
Sjoberg’s calculation does not include the induced interaction, which might alter the effective masses appreciably
at high densities. In view of these uncertainties we simply set both m,*/n, and m,*/m, equal to 0.8.

Before concluding this section, it should be mentioned that neutron stars probably possess rather large magnetic
fields (Ruderman 1972) and that both neutron and proton superfluidity may occur over extensive regions in the
interior (Migdal 1959). Magnetic fields can affect neutron star cooling by altering the structure of the crust material,
but are probably insufficient to affect the emissivities themselves (Pethick 1978). On the other hand, nucleon
superfluidity will affect the emissivities qualitatively by restricting the phase space available to the participating
nucleons. We have not included such effects in the present calculations, but rather have assumed throughout that
the interior matter is normal. In the conclusion we will briefly treat the effects of superfluidity qualitatively.

III. THE NUCLEON-NUCLEON INTERACTION

As discussed in the Introduction, we employ an NN interaction consisting of an OPE part and a Fermi liquid, or
Landau, part. Nonrelativistically, the momentum-space representation of the OPE interaction in the absence of
correlations is

2 -1 v
Vops = (Ef—n) o). k(m)c(z), k(x®.x@) | ~ (10)

where the ¢’s and +’s are respectively the Pauli spin matrices and isospin matrices associated with the two nucleon
lines, k is the momentum transfer, and f is the p-wave =N coupling constant. Due to vertex renormalization
mechanisms which spread the mNN vertex over a finite region of space, the quantity f is actually not constant but
contains a momentum dependence typically parametrized by a monopole form factor. We have not included such
a form factor in the present calculations but have simply fixed f equal to its value at the pion pole:

f2=4dr x 008 ~ 1. 11)

At typical neutron star densities, the renormalized coupling constant is not very far from this value.

Equation (10) does not include short-range correlations induced by the hard core of the NN interaction, which
prevent nucleons from approaching each other too closely. To take account of such correlations, it is necessary to
multiply the position space representation of V,pg by a squared correlation function, f%(r). Fourier transforming
back to momentum space then gives

P = [ d°r exp (= iken) f30) Vonalr) (12)
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Various choices can be made for f(r), which result in different forms for the correlated potential. A particularly
simple choice is the unit step function

f@r) =60 —4d, (13)

which cuts off the uncorrelated potential within a distance d and leaves it unaltered outside of d. With this choice
for f(r), equation (12) yields (Dahlblom et al. 1964)

P = Lo Comsd) [ keos il L M S 5,0y + o-0) = 3 L i), [ s, (1)
where j; is the / = 1 spherical Bessel function, and the tensor operator S, is given by
S12(k) = 36Wke@.k — a6, (15)

An alternative choice for f(r) is
fAr) =1 = jo(ger) , (16)

where j, is the / = 0 spherical Bessel function, and ¢, is a cutoff momentum typically chosen equal to the mass
of the w meson, the exchange of which is supposed to be the origin of the hard core of the NN interaction. This
form for f(r) leads to a correlated potential of the form

" 2 1 1 1 e
V(k) = _(n_‘{;) I:(kz ¥ mn2 - k2 T qcz T m, )0(1) kc(z) k — gqu—,nz 6(1)'6(2)}1(1)'1'(2) (17)

with the zero momentum transfer value employed for the 7N coupling constant f.

The OPE interaction describes only the long-range part of the NN interaction. The short-range part arises
primarily from exchange of heavy mesons and is approximately constant for momentum transfers small compared
with the meson masses. We use the Landau Fermi liquid parameters to describe this part of the interaction.

In symmetric nuclear matter the particle-hole interaction can be expressed in the form (Migdal 1967)

F(ky, k) = f+ f'tVex® 4 goWeo® + gt xPeD. @ | (18)

For small momentum transfers we need consider only momenta k, and k, close to the Fermi surface. Then the
functions on the right-hand side of (18) depend only on the angle between &, and k,. Hence, they can be expanded
in Legendre polynomials:

f =2 fiP,(cos 6), (19)

with analogous expansions for f’, g, and g’. Since this expansion is expected to converge rapidly, one usually
retains only the first few terms of the series. Theoretical values for the parameters are in rough agreement with
empirical ones deduced from the properties of heavy nuclei.

In neutron star matter—i.e., neutron matter with a small fraction of protons—the isospin dependence of the
particle-hole interaction is not as simple as in (18). The relation between the scattering amplitude and the particle-
hole interaction, which is straightforward in symmetric nuclear matter (Bickman 1969), is also nontrivial in
neutron star matter. In addition there are no Landau parameters for neutron star matter available at present.
Therefore, as a first approximation we use the parameters for symmetric nuclear matter and neglect the difference
between the scattering amplitude and the particle-hole interaction. We also drop the higher (/ > 0) parameters
and assume that the short-range part of the interaction is independent of momentum transfer. This part of the
interaction is then local and of zero range in configuration space.

Explicit values for the parameters are (Sjoberg 1973; Anastasio and Brown 1977)

Fy =07, G, =Gy =11, (20)
where
= NQO)f' @1
with analogous expressions for the other parameters. Here
N(0) = 2m*pe(n)|=*H° (22)

is the density of states at the Fermi surface in symmetric nuclear matter, with py = 1.36 fm~! and m* = m. A
value for F, has not been given, since the spin-summed matrix elements are independent of this parameter, as will
shortly be demonstrated.
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IV. NEUTRINO EMISSIVITIES IN THE BORN APPROXIMATION
a) Matrix Elements

The direct diagrams contributing to the nnvv process, npv process, and Urca process matrix elements in the Born
approximation are illustrated in Figures 1, 2, and 3. In each of these figures, the 4-momentum imparted to the
lepton pair is denoted ¢, and the momentum transferred between the nucleons either k or k’. Momentum conserva-
tion requires that

K=k+gq, (23)

so that k and k' are not exactly equal. However, for all three processes |k| and |k’| are large compared with |g|
over most of the allowed phase space; thus k and k' can be equated without introducing significant errors into the
emissivities.

In Figure 2, the first four diagrams involve a different final state from the last four diagrams so that the matrix
element contributions from the two groups of diagrams must be added incoherently. In order to distinguish the
two matrix element contributions, we will hereafter denote the first set of diagrams (A-D) group I diagrams and
the second set (E-H) group II diagrams. Also, there are three diagrams in addition to those in Figure 3 which
contribute to the Urca matrix element. These additional diagrams are the analogs of the Figure 3 diagrams with
the neutron and proton labels on the outgoing nucleon lines interchanged (and with the location of the weak
interaction shifted accordingly). Since they involve a different final state from the diagrams in Figure 3, they must
be added incoherently with those diagrams. Moreover, after the phase space integrals are performed, they give a
contribution to the Urca emissivity that is identical to that of the Figure 3 diagrams. Hence, they may be included
in the calculation by merely doubling the emissivity obtained with the Figure 3 diagrams alone.

To describe the weak interaction, we employ the Weinberg-Salam model (Weinberg 1972), which yields the
usual nonrelativistic expression for the charged current interaction

G
£ = W Xp+(8u0 - gASuiat)anu s (24)

where x, and x,* are Pauli spinors representing the incoming neutron and outgoing proton respectively, G =
8.74 x 10-° MeV fm? is the weak Fermi coupling constant, g, = 1.26 is the axial vector renormalization, and
1,, the lepton current, is given by

L = a(q:)yu(1 — ys)u(q2) , (25)
n n v v n n
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FiG. 1.—Diagrams for the nmv process (5). The directed solid lines indicate neutrons or neutrinos as indicated, the directed
wavy line indicates the nucleon-nucleon interaction involving exchange of momentum & or k’, and the dashed line indicates the
weak interaction involving exchange of momentum gq.
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Fic. 3.—Diagrams for the Urca process (1). Labeling as in Fig. 1.
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with g, and g, equal to the lepton 4-momenta. The corresponding neutral current interactions are

G
%, =~ 75" Guo = 2aduo el (26e)
for neutrons and
G
%, = 575" @i — 2Bl (269)

for protons, where c, is related to the Weinberg angle, 0y, by
¢, =1—4sin? by. 27
For the nucleon propagator we have, nonrelativistically,
iG(p + ¢, Ey + ) = i[(Ep, £ @ — Epsg) s (282)

where E, is the energy associated with the external nucleon line, E, ., is the energy associated with the internal
nucleon line, and w is the total lepton energy. The sign is chosen positive if the weak interaction is attached to an
outgoing nucleon line; otherwise, negative. Expanding this propagator in powers of the inverse nucleon mass and
keeping only the lowest order term, as discussed in the Introduction yields

iGp £ q,E, t o) =tin™?, (28b)

with the sign as before.
If we now combine equations (26a) and (28b) with equation (10) for the uncorrelated OPE interaction, we
obtain for the OPE contribution of diagram A of Figure 1 to the nmvw matrix element

G 2
M®,, opg = m (mi,,) o M [xa* (840 — 848,010 kxa(K? + M%) 1xs* o ky1] (29)

where the numerical subscripts on the y’s denote the corresponding nucleon lines, and the isospin part of the
matrix element has been evaluated. The corresponding contribution from diagram B of Figure 1 differs from the
above only in the order of the interactions and the sign of the nucleon propagator. Consequently, when the two
diagrams are summed, the vector part of the weak interaction vanishes. A similar cancellation occurs between
diagrams C and D of Figure 1. Note that the axial part of the weak interaction does not cancel, because the Pauli
spin matrices do not commute. Summing the four diagrams in Figure 1, we obtain for the OPE contribution to
the nnvv matrix element

Mo o5 f a0~ 2(k2 + M)~ iempkn X [xe* O-kxaxa* oy + xa*ovkxixatoxsl,  (30)
hﬂ

where repeated indices are summed over the three spatial coordinates only.

The vanishing of the vector part of the weak interaction is a property not only of the OPE contribution to the
nnvi matrix element, but of the OPE contributions to the npvi and Urca matrix elements as well. It is also a property
of all the Landau contributions to the matrix elements.

Summing diagrams A-D of Figure 2, we obtain for the OPE contribution of group I diagrams to the npvy matrix
element

M®,, opr = 272 (f) gaw  (k? + my) U 2iempky X [xs* 6 kxixatouxe — XaT O kxaxsTouxa] .  (3la)

The corresponding contribution from group II diagrams is

G
M, opr = 72 (f) gaw 1 (k? + my?) T U2k;[xs " 6 kyoxstx1 — XsT O kxixatxz] - (31b)

For the OPE contribution to the Urca matrix element, we have
Myrcoa,ore = V2 (f) gaw (k% + m,2) U {2kixst o kyixatx2 + 2knlxao kxaxst (om0 — Sm)xal} . (32)

Concerning the Landau contributions to the various matrix elements, we first observe that the matrix element of
the unit isospin operator vanishes for all diagrams involving charge exchange so that contributions from these
diagrams can involve only the parameters /' and g’ (hereafter, the subscript O on the Landau parameters is to be
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understood). Furthermore, due to cancellations of the same type that eliminate the vector part of the weak inter-
action, matrix element contributions from the parameters fand f* vanish among the various diagrams not involving
charge exchange. Hence, contributions from these diagrams can involve only g and g'.

Among the four diagrams contributing to the nnvi matrix element, there are further cancellations. In this case,
not only do the fand f” contributions cancel pairwise between diagrams A and B and between C and D, but the
g and g’ contributions cancel as well between the sum of A and B and the sum of C and D. Hence, the nnvi
matrix element has no contribution in lowest order in the nuclear propagator from the Landau part of the NN
interaction. Note that this result does not depend upon the particular functional form of the Landau parameters,
but is a property solely of the particular configuration of spin operators associated with the Landau interaction.
In other words, a more complicated interaction, such as a tensor interaction, is mandatory to obtain a lowest
order contribution to the nnvv matrix element.

For the other processes, the Landau contributions to the matrix elements are

G , _ ,
M®,, . = m (g — 8'Nguw ™ DlAiemelxs* oxx1xs ™ omxa] » (33a)

M (n)np,L = \/2 (f — g)(gaw™12h[xa " oixaxs ™ X1 — Xa%iX1Xa X2l s (33b)

and
G ! r . ’
Mygoa,L = w(gAw‘l)l,{Z(f — 8xstoixixaxe — xatoxexstx1] + 2ieim(g — &")xs* oOmx1xa T Ouxal} - (34)

To obtain the spin-summed matrix elements, we simply sum the OPE and Landau contributions, square, and
evaluate the traces. After contraction with the lepton trace, given by
Tr (;*1) = 8(q1/921 + qui2; + 9192815 + Teiass91°92°) » (35)

where g;; is the metric tensor, and e, is the completely antisymmetric tensor of rank 4, this yields for the nnvw
matrix element

4 k2 2
Z |M,,|? = 64G* (mi) 842 (W) o™ w0y — g1-kga-k), (36)
spins n n

where w; and w, are the neutrino energies corresponding to the momenta ¢, and ¢,.

In the approximation that the neutrino momenta are neglected compared with the nucleon momenta—in
particular, in the momentum-conserving delta function—the second term in (36) involving (g, + -k)(g2+ k) vanishes
in the phase space integration. Hence, it may be omitted, leaving an expression that involves only the lepton
energies and the magnitude of the nucleon momentum transfer, k:

4 k? 2 w w
M 2=6402(f) (—) Wiy 37
spZns | My 84\ 1 m2) w? (37
The corresponding expressions for the npvi and Urca processes are

2 2 2
Z |M,,®% = 64Gg,? S\ __2_k___§ 2 +4(g —g') i 2k—2 + 6(g — g')? w1w2 > (38a)
my) \k* + m, my) k* + my

spins £

> 1, = 1860 (L) (i) + 207 - 80() s + 307 - 207 222 o)

spins mg
and

> |Mosoal? = 256ngA2{2(7nf:n)4(]_c_2f_2’11’l_2)2 Fae- )+ 0 - (L)

2 2
spins m,] k%*+ m,

+3le - g + (- IR (39)
where the Urca result has been multiplied by 2 to include diagrams not shown in Figure 3.

b) Phase Space Integrals

The emissivity or luminosity per unit volume for a particular neutrino process is the integral over the total phase
space available to the participating particles of the product of the total neutrino energy and the spin-summed
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matrix element. Explicitly (fic = 1)

_ 277 4 dapi d3q1 d3q2 3(3) 1 2
0= [Q (2")3] T Tagy S — En2m) SOy — Pu) ( > M| )wvy’, (40)

spins

where the p; are the nucleon momenta, the ¢, and w,; are the lepton momenta and energies, 8(E; — E,;) is the
energy conserving delta function, §®(P, — P,,) is the momentum-conserving delta function, s is a symmetry
factor, w, is the total neutrino energy, and & is the appropriate product of Fermi-Dirac distribution functions.

To evaluate this expression for a particular process, we first perform the integrals over the neutrino phase space.
This can be easily accomplished if the neutrino momenta are dropped from the momentum-conserving delta
function. Next, we effect a separation of the angular and energy parts of the remaining phase space by performing
the angular integrals with the momenta of the degenerate fermions approximated by the corresponding Fermi
momenta. In particular, we make the replacement

d%p, = &p, [ AEE, - E,) > d*pdIE — E0) | dE, 1)
where Eg(i) is the Fermi energy of particle i, and use either the nonrelativistic relation
8[E; — Ex(i)] = [m*[ps(i)18[p: — pr(i)] (42a)
or the relativistic one,
8[E, — Ex(i)] = 8[p; — px())], (42b)

according to whether i is a nucleon or an electron. Such a procedure is justified by the smallness of kT compared
with the Fermi energies.
We now introduce an integral over the momentum transfer by inserting

1= f k5O — py + po) . @3)

With this insertion it is found that the angular part of the phase space collapses to a single integral over the
magnitude of k, the limits of which are fixed by the delta functions in (41). Evaluating this integral yields an
emissivity expression that involves the product of the energy integral and some function of the Fermi momenta.
For the nnviv process, this expression is

_ 64 G%g°m,*t (¢ m, )
€nn = B (211')9h (mn PF(”)F 2PF i‘l) I, (44)
where F(x) is defined by
_ 3 {1 1 x?
Fx)=1 - 3 X tan (}) + 3 (ﬁ'—x—z) 45)
and the energy integral, I,3, can be expressed in dimensionless form, to within errors of at most exp [— Ex(n)/kT], as
© o [_4 dx- 4 1 © yS(y2 + 4_”.2)
__ 8 4 i — ) == 8 ZAS T
to = Gy [ " [ [TTgo (35— 0 - goerr [ X5 (46)
with y = w,/kT. To evaluate the integrals over the x;’s in the above, we employed a technique described by Baym
and Pethick (1978).
If the second relation for I,; in (46) is inserted into (44), one obtains
_ 2GSl m* ( f\* m, 8 J‘ 302 + 4n?)
o = 33 LE (L) oo (s e [y HE ) (@)

This is a particularly useful form for e,, in that it yields an expression for the nnvv neutrino distribution function
fw(»), defined by .

o = f B d%ga f( Yoy - @8)

In particular, performing the integrals in (48) after inserting

1= I deo,S(w, — @, — wg) (49)
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and comparing the result with (47), one finds
o _ 16 Gglm ¥t ( f\4 m, | (kT\ y? + 4n?
53 =3 onh o ps(W)F |\ 7)) =1 (50)
In terms of this distribution function the average energy imparted to the neutrinos in the nnvv process is
4% d3 _ )
—- _J q1 42fw(J’)w ~ 5.8kT . (51)

w, =
T [ Pqidaafs(y)
Returning to the emissivity, evaluation of the integral in (47) yields

= TaTs g (i) oeterF| s ey (52)

my
The corresponding expressions for the group I and group II contributions to the npv7 emissivity are

82 ngAzm *2p,) %2 f 4
™ — n My " (] 8
w® = 12175 g (L) peterater) (53a)
and
82 G2gA2m *2m *2 f )4
an _— n_ My (] 8
™ = a5 g (L) pe@entery, (53b)
where the functions o; and «;; are defined by
= my I_ -2 —_ o — my -1 2pF(e) L - — o2
o=F [ZPF(e)] + 4('"”) (g—¢ ){l STRO) tan [ o, + 6 oy (g—¢g") (54a)
and
— sz(n) 2 L -2 ' ! sz(n) _f_)_4 r n2
=2 B a( L) - ) O o( L) -, o
with F given by (45).

In o;; we have retained only the zeroth order term in pr(e)/pr(n). The total npvi emissivity is just the sum of
(53a) and (53b). Note that since the energy integral associated with the npvv process is identical to that for the
nnvv process, the average energies imparted to the neutrinos in the two processes will be the same.

For the Urca process, the emissivity calculation is greatly simplified if the triangle approximation discussed in
the introduction is adopted. Within this approximation, only the neutron momenta appear in the momentum
conserving delta function, so that after the angular and energy parts of the phase space have been separated, the
electron and proton angular integrals can be performed immediately. Introducing the momentum transfer and
evaluating the remaining angular integrals then yields

G?g,2m,**m,* 4
€yrca = 312 _g—a'r)_"ﬁ& (mi,,) Pr(€)ayrcalyrca » (55)

where

conen = 2 )+ 2(L) e - 8 + 07 - )

sz(n) 'l' mnz mn PFz(n) + mn2
+ 3(mi) e — g + (- ) (56)

and in dimensionless form, the Urca energy integral is
5

© © dx 5
I =kT8fd3J' [ x—‘]s( x—)
vroa = ( )o Yy _w;l:_l[e‘_'_l gli y

_1 o7 5 V2Ot + 10722 + 97%)
= 4 () L dy e : (57)

with, again, y = w,/kT.
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In analogy with f,5, a neutrino distribution function can be defined for the Urca process:

€UrRcA = f d%q, forca(¥)w, . (58)
Using (57) in (55) and comparing the result with (58), we obtain for this function

32 G2%g,°m,*3m,* 4 ¢ 4 10m2p2 + 9t
Jorca(y) = 3 —géﬂ)m% (‘mf“n) O‘UR(:;»J’F(Q)(kT)4y eyﬂ _:) 1 i 5 (59)

and for the average energy imparted to the antineutrino in the Urca process

& = fds‘]vaRCA(y)‘”v
’ f dq, foroa(y)
Finally, evaluating the integral in (57) yields

11513 G?g®m,*3m * ¢
€URCA — 60480 84 Z:’h T (L) pl’*‘(e)c‘URCA(k:T‘)8 . (61)

my

~ 4.7KT . (60)

V. NUMERICAL RESULTS WITH AND WITHOUT CORRELATIONS

To obtain numerical results for the various neutrino emissivities, we first evaluate the auxiliary functions defined
in the previous section. Using the results of §§ I and III (egs. [7], [9b], and [20]) and expanding the quantity
pr’(n)/(pr*(n) + m,?) and its square in (m,/px(n))* and keeping only the lowest order terms reduces those func-
tions to

my ~ 1/3
F[m] ~ F[021(p/po)"],

m, | 2/3
0 = F| o] & FIO8261p0]

o & 1.52 — 0.57(po/p)?®, ‘
OCyRCcA ~ 1.76 — 0.63(P0/p)2/3 . (62)

The density dependence exhibited in these expressions is quite weak: at p = p,, we obtain

F(Z;’;gn)) X059, oxO0Il1, oyx095, ayea ¥ 1.13; (©38)
while at p = 5p,,
F(zptfn)) 074, oyx049, ey=x 133, oaypea X 1.54. (63b)

Hence, within the expected range of neutron star densities, it is not an unreasonable approximation to simply
use the values at nuclear matter density. Then the emissivities become, in cgs units:

*\ 4 1/3
€nn = (7.8 X 1019)(%—) (ﬁ) Tl ergscm=2s™1, (64a)
my Po

*\ 2 [ ¥ 2/

e = en® + €™ = (1.5 X 1019)(%_) (’"_)(ﬂ) T,® ergs cm2 57, (64b)
my my Po

m,*\ 2 (m,* 2/3 .

eurca = (2.7 x 10%1) (—rz) (—rf;) (ﬁ) Te®ergscm=3s~1, (64c)

where factors of 2 have been included in e,, and ¢,, to account for u-neutrino production and in eygc, to account
for the inverse Urca process, Ty = 7/10° K, and equations (7) and (9b) for the neutron and electron Fermi momenta
have been used.

These results do not include short-range correlations in the OPE interaction. To study the influence of such
correlations on the emissivities, we first adopted the form (14) for V(k), which is based on a simple position-space
cutoff for the correlation function. The major disadvantage of this form is that it necessitates numerical evaluation
of the phase space integrals.
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TABLE 1

RATIOS OF EMIssivITIES COMPUTED WITH THE
CORRELATED AND UNCORRELATED OPE
POTENTIAL AT NUCLEAR MATTER DENSITY
FOR THE nnvi, npvé, AND URCA PROCESSES
AS A FUNCTION OF d

d (fm) Rpn Rnp Ryroa
055........... 0.68 0.56 0.78
07....cvvtt 0.56 0.66 0.68
085........... 0.44 0.77 0.58

Our results with this form are summarized in Table 1. Here the ratio of the emissivities computed with the
correlated and uncorrelated OPE interactions at nuclear matter density is shown for each neutrino process as a
function of the cutoff distance d. Note that the ratios do not depend strongly on the cutoff within a reasonable
range of values. Also, of the three emissivities, that of the nnvi process is influenced most by correlations. This is
just what is expected since the nnvi process involves the largest momentum transfers and hence smallest inter-
nucleon distances.

In order to check the results in Table 1 and to determine whether the effects of correlations depend on the
particular form of the correlated potential, we have recomputed the nnvv emissivity using the form (17) for V(k).
With this form the phase space integrals can be evaluated analytically in the same manner as for the uncorrelated
interaction. We find that the resulting emissivity is a factor of 0.56 less than that without correlations at nuclear
matter density and for g, = m, = 780 MeV. At p = 5p,, the reduction factor is 0.36. These results indicate that
correlation effects are not strongly dependent on the density. Moreover, as comparison with Table 1 reveals,
they are relatively insensitive to the form of the correlated interaction.

Using the results of Table 1 for d = 0.7 fm, which is typically the range of correlation functions, we obtain
for the neutrino emissivities, including correlations:

*\ 4 1/3
€ = (4.4 % 1019)(m—”) (ﬁ) Te®ergscm=3s~1, (65a)
my Po
m *\ 2 m *\ 2 P 2/3
o = (5.0 x 10%° —"—) (—”) (—) To®ergsem™°s™*, 65b
ur = ( )(2) (5 (2) 70 e (65b)
_ oy (Ma*\3 m* (P )2 I
evrca = (1.8 x 10 )(mn) P (Po) To® ergscm =251, (65¢)

Comparison of the different contributions to the e-functions, given by equations (54) and (56), indicates that these
emissivities arise almost entirely from the OPE contributions to the matrix elements. The Landau contributions
merely reduce the emissivities somewhat through the interference terms in the squared matrix elements.

If, somewhat arbitrarily, we adopt the Bickman, Kéllman, and Sjoberg (1973) value 0.8 for m,*/m, and the
same value for m,*/m,, the emissivities become

€nn = (1.8 x 109)(p/po)*To® ergscm =3 s~1, (66a)
enp = (2.0 x 109)(p/po)*®Te® ergscm=2 s, (66b)
€URCA = (7.4 X 1020)(p/P0)213T98 ergs Cm_a S-l > (660)

We believe these to be reasonable estimates of the Urca and neutral-current bremsstrahlung emissivities within
the present approximations and in the absence of better effective mass values. It should be emphasized, however,
that the effective mass dependences exhibited in equations (65) are quite strong.

. For a neutron star of 10km radius with constant density equal to po, equations (66) yield the following
uminosities :

L™ = (1.5 x 10°)T,8 ergss~1, (67a)
L,,"” = (84 x 10°") T8 ergss~?, (67b)
Lyrca® = (3.1 x 10%%) T8 ergss™?. (%)

VI. EXCHANGE TERMS

Thus far, we have ignored the antisymmetrization requirement on the nucleon wave functions in the OPE
matrix elements. To satisfy this requirement, one must consider, in addition to the diagrams illustrated in Figures
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1-3, a set of diagrams analogous to the direct diagrams but with the outgoing nucleon lines (or, alternatively, the
incoming nucleon lines) interchanged. In the matrix elements these exchange diagrams must be summed coherently
with the direct diagrams and hence can significantly affect the resulting emissivities.

To ascertain the importance of exchange terms, we have recomputed the neutrino emissivities for all three
processes including both the direct and exchange OPE contributions to the matrix elements but omitting the
Landau contributions. As discussed in the previous section, the Landau contributions do not affect the emissivities
in a major way. Hence, their omission is not serious.

For the nnv process, the direct and exchange contributions to the matrix element differ only in the arrangement
of the spinors, the value of the nucleon momentum transfer, and the overall sign. In particular, the spinors x;

and y, are joined in the exchange terms instead of x, and y; as in the direct terms. The two momentum transfers
differ by

k" — k =ps — ps, (68)

where k” is the exchange term momentum transfer, and the neutrino momentum has been neglected. Because of
the close relationship between the direct and exchange terms, the exchange contribution to the matrix element can
be obtained immediately from the direct contribution. Adding the two contributions and summing over spins

yields
2 24 2 L 4 k? 2 k"2 2 k22 w10y
sg';s 1Mol = 5455, (mn) [(kz + mnz) e m2) tEe Ty T m|\ e ) (69)

where we have used the fact that in the nnvi process k and k” are orthogonal when the neutrino momenta are
neglected. Note in this expression that the direct and exchange contributions interfere constructively in the spin-
summed matrix element.

The relationship between the direct and exchange terms is not so simple for the npvs and Urca processes because
of the different isospin projections of the outgoing nucleons. Nevertheless, it is still a simple matter to derive the
exchange contributions to the matrix elements from the direct contributions. For the total spin-summed matrix
elements, we obtain

M2 _ 2, 2(\* K2 2 k" z k2k"? W Wy
2, M7 = 64G7¢, (m) [(k + m,ﬁ) P T @ T @ T my w0
and

S [Muncal? = 256%, (i)‘[ (k k2 )2 N ( k' )2 ke — 3R — 3k X k”)2] waw,

& m) \Eevmz) * \omme @+ mHET+md | o

(71)

where we have omitted terms involving the neutrino momenta and in the npvi matrix element, we have again
k-k" = 0. The group II contribution to the npvv matrix element is just (70) with k and k” interchanged.

Evaluation of the phase space integrals is straightforward for the Urca process if the triangle approximation
is adopted. Within this approximation, momentum conservation requires

k=p,—ps=—p; (72a)
and
kK'"=k+ps=p;. (72b)
Hence,
k® = k" = pg*(n), (73a)
k-k" = ps*(n), (73b)
and the matrix element given by (71) reduces to
2 2, 2 i ¢ 2 pri(n) 2 wewy
spzns |MURCA| - 256G 84 (mn) 16 [sz(n) + mnz wz (74)

Integrating this matrix element over the allowed phase space, we find for the ratio of the Urca emissivities with
and without exchange terms (and without the Landau contributions)

h h) . 21
€urca P feyrca® P = 44 * 1.3. (75)

Thus, inclusion of exchange terms in the Urca matrix element increases the resulting emissivity, but only slightly.
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For the nnvi process the phase space integrals can be done analytically without further approximations. For the
ratio of the nmvv emissivities with and without exchange terms we find

(exch) [ _(noexch) _ _Ma Mz |\~
€nn®*C /enn 0 exC] {Fex[zpF(n)]}/{F [pr(n)]} ~ 28, (76)
where F,,(x) is given by
1 x2 x? [+ 2xB)12
— — -1 (= 1N 7 ,
Fey(x) =3 — 5 x tan (x) tir=t Tt 2on tan [ e ] an
and F(x) by (45).

To perform the phase space integrals for the npvi process we find it convenient to simplify the integrand. Since
k and k” in (70) are constrained by the inequalities

0 < k < 2pg(e) (78)
and
pr(n) — pr(e) < k" < pp(n) + pxle), (79

respectively, and pg(n) is much larger than pg(e), we can replace k” by px(n) in (70) and expand the matrix element
in mz2/[m,® + pg*(n)] (x0.14 at p = p,). If the terms above first order in this expansion are dropped, we obtain

o2 — a0 2L\ _ m,’ ms’ mg>  \?| wiwy
s;s M2 = 64G%%. (mn) [l 27+ 5 (1 T mE T k2) * (m,,2 + 1) | o? (80)

The phase space integrals can now be readily evaluated. Since the group II diagrams yield an identical contribu-
tion to the emissivity, they are included by just doubling the group I result. Our result for the npvw process is then
(excluding Landau contributions)

«,
eﬂp(exeh)/em:’(noexoh) =2 a’_.:xaI? ~ 1.3 s (81)
I

where o;" and oy are given by equations (54) with the Landau parameters set to zero and o,y is given by

L m,2 1 B m,2 my _1 |2px(e) My .
=1 ) T [z 2+ ppz(n)] 2pem) [ e o R R

The numbers on the right hand sides of (76) and (81) were obtained at nuclear matter density, but neither ratio is
strongly density dependent.

Our results reveal that both the nnvi and npvi emissivities are increased by the inclusion of exchange terms in
the matrix elements. For the npvi process, the increase is moderate, as for the Urca process. By contrast, the
increase in the nnvi emissivity is quite sizable. We believe that this is primarily due to the different isospin structures
of these processes. In particular the nmvi process clearly has only a T = 1 contribution, which is pure tensor,
while the npvi and Urca processes have both T = 1 and T = 0 tensor contributions (the weak axial current flips
the nucleon isospin state from T = 1 to T = 0) and contributions from the spin-spin interaction. The tensor
interaction is greatly enhanced by exchange in the T = 1 channel but relatively unchanged by exchange in the
T = 0 channel. On the other hand, the contribution from the spin-spin interaction is reduced by the inclusion of
exchange. Hence, for the npvs and Urca emissivities there is a competition between the increase in the tensor
contribution and the decrease in the spin-spin one so that these emissivities should be only slightly affected by
the inclusion of exchange. The nnvi emissivity, however, which arises solely from the tensor interaction and is,
moreover, pure T = 1, should be increased substantially. Our results confirm these expectations.

VII. p-EXCHANGE

The Landau parameters discussed in § ITI describe only part of the short-range contributions to the NN-inter-
action—in particular, those terms associated with the central, t+<, -6, and (6-6)(t-7) spin-isospin operators. In
addition to these terms, there is a short-range contribution of tensor character arising from the exchange of
p-mesons. This short-range tensor interaction has the opposite sign of the OPE tensor interaction and hence
could significantly decrease the neutrino emissivities obtained with the OPE tensor alone.

To check this possibility, we calculated the nnvi emissivity with both 7- and p-exchange included in the NN-
interaction. The nnvi emissivity is, as we saw in § V, the process which is most sensitive to the short-range behavior
of the interaction. Hence, we expect that the effects of p-exchange should be largest for this emissivity.
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Using the identity
(6® x k)+(6? x k) = k%26V.0? — oV k6P -k, (83)
the p-exchange interaction can be cast in the form
2
%) (m)
V. = ({2 - [kzca),c(z) — 6D ke@ kD@ 84
? (mp k2 + m,? 1 (84)

where m, ~ 770 MeV is the p mass (treating the p as a sharp resonance), and f,, the p-wave pN coupling constant,
is given by
12 = (my[2my)’g,”(1 + «)* = 38 (8%5)

in the absence of vertex renormalization mechanisms. To obtain the numerical value for f,2, we used g,2/4mr = 0.5
and the value, « = 5.

The oV.6? term in (84) does not contribute to the nnvw matrix element as explained in § IV, and can hence be
dropped. The remaining term, containing the tensor, has the same spin-isospin structure as the uncorrelated OPE
interaction. Thus, inclusion of p-exchange in the NN interaction alters the nnvw matrix element only in the k-
dependence. After summing over spins, we obtain

2 _ 2, 2 _L 4 k? 2 2 _kz_ 2 _ k* w Wy
2>, |Mol? = 6467, (m) [(k2 m m,,z) T o\ETme) T T maE v my)| W GO

spins

where
m 2
c, = ((f;f;/; :))2 ~ 125, @87)
This yields for the ratio of emissivities with and without p-exchange
€an Flm,/|2p(n)] Fmy[2ps(n), m,[2px(n)]
Mo =14 C22 -2C z - s 88
* Flma2pem] ~ 2T Fmal2ps() ®
where F(x) is given by (45) and F(x;, x5) by
= —xls -1 l. _—'xi_ -1 i .
F(xy,x)=1+ P tan (xl) + XE = 5 tan xz (89)
At p = po, (88) reduces to
nn O™ = 0.46 ; (90a)
and at p = 5p, to
€™ P €™ = 0.25 . (90b)

Inclusion of correlations of the form (16) in both the OPE and p-exchange interactions alters these results only
slightly: instead of (90), we get

€an P eun® = 0.39 (91a)
at p = po and
enn™ TP e, ™ = 0.21 (91b)

at p = 5po. Thus, for the nmvi emissivity correlation effects on the OPE and p-exchange tensor contributions
approximately cancel.

Equations (90), or alternatively (91), reveal that p-exchange affects the nnvv emissivity rather substantially and
in a manner that is somewhat density dependent. It is interesting that the influence of exchange terms on this
emissivity, as given by equation (76), and that of p-exchange largely offset each other. This indicates that the
nnvi emissivity is well represented by the results of § V with neither exchange terms nor p-exchange included in
the matrix element. For the other neutrino processes, we found in the previous section that exchange terms influence
the emissivities quite moderately. We expect, furthermore, that the influence of p-exchange is quite moderate for
these processes, as discussed above. Hence, both the npvi and Urca emissivities should also be well represented by
the results of § V.

VIII. DISCUSSION AND CONCLUSIONS

Equations (66¢) for the Urca emissivity and (66a) for the nnvi emissivity exceed the previous results, obtained
by Bahcall and Wolf (1965) and Flowers, Sutherland, and Bond (1975), respectively, by nearly an order of magnitude
at nuclear matter density. We believe this large difference to be due to the long-range and tensor character of the
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OPE term included in our NN interaction. In partial support of this belief, we note, with regard to the nmvvw
emissivity, that the Flowers et al. result exhibits no contribution from lowest order terms in the nucleon propagator.

In contrast to the nnvi and Urca results, equation (66b) for the npvi emissivity is less than the Flowers et al.
result. This is rather surprising, particularly since the Flowers et al. result does not contain contributions from
group II diagrams (as evidenced by the collection of T-matrices in their eq. [S1]), which provide the largest con-
tribution to e,, in our calculation. However, Flowers et al. employ neutron-neutron Landau parameters to describe
the neutron-proton Landau interaction. In our notation the appropriate combination of parameters for the latter
isg — g, whereas g + g’ is the neutron-neutron combination. Since g and g’ are nearly equal, use of the neutron-
neutron combination to describe the neutron-proton interaction will clearly result in a large overestimate of the
npvi emissivity.

Note that the Born terms considered here, for a given effective NN-interaction, include all contributions of
order T® to the neutral current processes. The lowest order corrections are of higher order in the temperature,
and hence small compared to the leading terms. For the Urca process the situation is different, since for this
process the correction terms are of the same order in the temperature as the Born term. In particular the rescattering
term, where the nucleons interact both before and after the weak interaction, could be important. This is essentially
the process considered by Bahcall and Wolf and recently by Sawyer and Soni (1978). However, since their results
are roughly an order of magnitude smaller than ours, it seems that the Urca emissivity is also dominated by
the OPE interaction. Hence, we believe that inclusion of the rescattering terms would not change our results
significantly.

In the absence of nucleon superfluidity, the present result for eypca exceeds €,, and e,, by a factor of 40. Hence,
the Urca process will dominate the production of neutrinos in normal fluid neutron stars without =~ condensates.
The situation is somewhat different if the interior nucleons are superfluid. In that case, limitations on the phase
space available to the participating nucleons severely hinder the neutrino emission processes. Qualitatively,
superfluidity reduces ¢,, and eypca by a factor exp [—(A,(0) + A,(0))/kT] [for A,(0) > A,(0)], where A,(0) and
A,(0) are the zero-temperature gaps in the neutron and proton spectra at the Fermi surface. For e,,, the reduction
factor is exp [—2A,(0)/kT]. Clearly, in regions where protons but not neutrons are superfluid, e,, and eygcs Will
both be suppressed relative to ,,, so that the latter quantity will dominate the total neutrino emissivity.

A number of authors have studied the influence of nucleon superfluidity on neutrino emissivities in considerable
detail. These include Wolf (1966), Itoh and Tsuneto (1972), and Malone (1974).

Up to now it has been assumed that neutrinos, once produced, escape from neutron stars without interacting
further with the neutron star matter. Thus, the luminosities given by equations (67) were obtained by simply
multiplying the emissivities evaluated at an average value of the density by the stellar volume. At moderate
temperatures—a few times 10° K and lower—this procedure is probably valid. At higher temperatures, however,
neutrino absorption mechanisms may be strong enough to seriously hinder the exodus of neutrinos from the star,
as Sawyer and Soni (1977) first pointed out. Such absorption would significantly lower neutrino luminosities by
restricting the volume contributing to the luminosities to a thin spherical shell lying just below the surface.

To estimate the magnitude of absorption effects, one can use the further observation of Sawyer and Soni (1977)
that neutrino absorption and emission mechanisms are closely related. This relationship is particularly apparent
within our formalism. Consider, for example, the process.

v+n+n—>n+p+e, 92)

which is just the absorption analog of the Urca process and, as such, is one of the primary absorption mechanisms
in neutron star matter. The contribution to the neutrino mean free path from this process is given by

o d%, | d% 1\ 1
-1 _ e _F 3.(3), _ i 2
not = 20| | LT3 o 5 = ECo?s%, = po)(5) 2 ( 3, 1M17) %, ©03)
where the factor of 1 is a symmetry factor, and %, is the appropriate combination of Fermi-Dirac functions.
(Note that <, has two terms: the usual term and a blocking term containing contributions to A,~! from Pauli
inhibition of the inverse process [see Baym and Pethick 1978].)

If we ignore the neutrino energy in the nucleon propagator, the matrix element in the above is just the Urca
matrix element. Using that observation, (93) can be reduced to the simple form

A= 2m)3%c e + D furca(—y) = @m)3c (e’ + 1) furca(y) , %94)
which, upon substitution of (59) for fyrca, becomes
M) = (8.2 x 10*)(po/p)?3Te~4(y* + 107%y% + 97%)~lcm 95)

with y = w,/kT. For a neutron star of 10 km radius with constant density equal to nuclear matter density, this
yields

L()/R = (8.2 x 18Ty~ 4(y* + 10a%y% + 9a?)~1 . (96)
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Finally, choosing y = 4.7, the average Urca process neutrino energy, we obtain

MR = (23 x 109)T,~*. ©7)

Equation (97) reveals that a neutrino of average energy produced in the Urca process will have a mean free path
less than the stellar radius if T, exceeds 22. Thus, for temperatures of order 10!° K and above, absorption mechan-
isms will significantly affect neutrino luminosities. This actually represents an upper limit since only one contribu-

tion to the mean free path has been considered.

Let us now briefly consider the neutrino luminosity from a star for which A, « R, keeping only the Urca con-
tribution. For a neutron star with constant density and A, > R the luminosity can be expressed as

Lyrca = $7R%yrca = $7R° fdaqufURCA(y)wv (98)

where the extra factor of 2 takes account of the inverse Urca process. For A, « R, only a surface layer of thickness
A, contributes to the luminosity. Thus, we must replace (98) by

Lusca = HB7R?) [ 40, foncat3)nh(3) 99)

which, upon substitution of (94) for A,, yields

1
Lygca = Z(gﬂch)f

d3qv wy

@m)® exp (w,/kT) + 1°

(100)

The integrand of (100) is just a Fermi-Dirac energy distribution function for particles with zero chemical potential.
Hence, the Pauli principle is automatically satisfied in this expression.

Equation (100) can also be expressed in the form

1
Lygea = 1 (8mR%c) I

d 3
& e, aon

which is a blackbody expression for neutrinos with an effective surface temperature 7. This is exactly what one
expects for A, « R, since in that case the neutron star is completely saturated with neutrinos. A more complete
study of neutrino transport at high temperatures has recently been carried out by Sawyer and Soni (1978).

We would like to thank Professors. G. E. Brown and C. J. Pethick for useful conversations, Professor R. F.
Sawyer for suggesting the importance of the nmv process and the nnv — npe™ mean free path, and Professor W.
Weise for suggesting the importance of the p-exchange tensor interaction.
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