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Abstract

The properties of high-density nuclear and neutron matter are studied using a relativistic mean-
field approximation to the nuclear matter energy functional. Based on ideas of effective field theory,
nonlinear interactions between the fields are introduced to parametrize the density dependence
of the energy functional. Various types of nonlinearities involving scalar-isoscalar (o), vector-
isoscalar (@) and vector-isovector () fields are studied. After calibrating the model parameters at
equilibrium nuclear matter density, the model and parameter dependence of the resulting equation
of state is examined in the neutron-rich and high-density regime. It is possible to build different
models that reproduce the same observed properties at normal nuclear densities, but which yield
maximum neutron star masses that differ by more than one solar mass. Implications for the
existence of kaon condensates or quark cores in neutron stars are discussed.

PACS: 21.65.41. 26.60.4+¢, 97.60.1d

1. Introduction

Numerous calculations have established that relativistic mean-field models provide a
realistic description of the bulk properties of finite nuclei and nuclear matter [1,2]. In
addition to this successful low-energy phenomenology, these models are often extrap-
olated into regimes of high density and temperature to extract the nuclear equation of
state (EOS), which is the basic ingredient in many astrophysical applications and in
microscopic models of energetic nucleus—nucleus collisions.

Based on the original version of Walecka [3] and its extensions [4,5], relativistic
mean-field models generally involve the interaction of Dirac nucleons with neutral scalar
and vector mesons and with isovector p mesons. One of the key observations in their
success is that to provide sufficient flexibility, nonlinear self-interactions for the scalar

0375-9474/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
PIIS0375-9474(96)00187-X



H. Miiller. B.D. Serot/Nuclear Physics A 606 (1996) 5S08-537 509

meson must be included [2,4,6-11]. Since these models were proposed to be renormal-
izable, the scalar self-interactions are limited to a quartic polynomial, and scalar-vector
and vector—vector interactions are not allowed [12]. One of the motivations for renor-
malizability, as discussed in Walecka’s seminal paper, is that once the model parameters
are calibrated to observed nuclear properties, one can extrapolate into regimes of high
density or temperature without the appearance of new, unknown parameters,

An alternative approach is inspired by effective field theories, such as chiral per-
turbation theory [13,14], which successfully describes the low-energy phenomenology
of hadronic Goldstone bosons [15,16]. Although a Lagrangian usually serves as the
starting point. the meson and baryon fields are no longer considered elementary, and
the constraint of renormalizability is dropped. This has several important consequences.
First, there is no reason to restrict meson self-interactions to a simple quartic polyno-
mial in the scalar field; on the contrary, one should include all interaction terms that
are consistent with the underlying symmetries of QCD. Second, since there is an in-
finite number of coupling constants, one must find suitable expansion parameters for
the systems under consideration, and one must develop a systematic truncation scheme
for the effective theory to have any predictive power. Third, extrapolation of calculated
results into new regimes of the physical parameters becomes problematic, because the
truncation scheme may break down, and predictions can become sensitive to unknown
parameters.

Within the framework of effective field theory, mean-field models of nuclear structure
and the EOS must be interpreted in a new context. One important observation is that
near normal nuclear density, the mean scalar and vector fields (or nucleon self-energies),
which we denote as @ and W, are large on nuclear energy scales but are small compared
to the nucleon mass M and vary slowly in finite nuclei. This implies that the ratios @/M
and W/M and the gradients |V&|/M? and |VW|/M? are useful expansion parameters.
The assumption of “naturalness” in effective field theory is also important. Naturalness
implies that the coefficients of the various terms in the Lagrangian, when expressed
in appropriate dimensionless form, should all be of order unity. When combined with
meaningful expansion parameters, this means that one can anticipate the approximate
magnitude of mean-field contributions to the energy (at least up to moderate nuclear
densities) and thereby motivate a suitable truncation scheme; if the coefficients are
natural, the omitted terms will be numerically unimportant ! . Naturalness also implies
that one should include all possible terms (that is, those allowed by the symmetries)
through a given order of truncation; it is unnatural for some coefficients to vanish
without a relevant symmetry argument.

From this point of view, it is difficult to justity nuclear mean-field models that include
only scalar self-interactions [4,6,7,10], and recently, generalizations that also include
quartic self-interactions for the neutral vector meson have been discussed [9,19,20].
Moreover, a new analysis involving all meson self-interactions through fourth order

"t has alse been shown recently that the naturalness assumption is consistent with power counting in chiral
effective ficld theory | 17,181}.
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in the isoscalar scalar and vector fields has been performed [21]. These extensions
give rise to additional model parameters (coupling constants) that must be constrained
by calibrating to observed nuclear properties. For the truncation at fourth order to be
sensible, the parameters so obtained should exhibit naturalness.

Although it is possible to discuss effective hadronic field theory from the point of
view of a Lagrangian, as above, the expansion in powers of the mean fields is a low-
density expansion, and it is hard to justify the neglect of many-body corrections, which
are known to be relevant in nuclear structure and in the EOS. Alternatively, one can
consider this expansion at the level of an energy functional or effective action [21].
In such a formulation of the relativistic nuclear many-body problem, the central ob-
ject is an energy functional of scalar and vector densities (or more generally, vector
four-currents) [22-24]. Extremization of the functional gives rise to Dirac equations
for occupied orbitals with local scalar and vector potentials, not only in the Hartree
approximation, but in the general case as well. Rather than work solely with the densi-
ties, one can introduce auxiliary variables corresponding to the local potentials, so that
the functional depends also on mean meson fields. The resulting field equations have
the same form as in a Dirac-Hartree calcuiation [21], but correlation effects can be
included, if the proper energy functional can be found. This procedure is analogous to
the well-known Kohn-Sham [25] approach in density-functional theory, with the local
meson fields playing the role of (relativistic) Kohn-Sham potentials; by introducing
nonlinear couplings between these fields, one can implicitly include additional density
dependence in the potentials. Thus the nonlinear meson interaction terms simulate more
complicated physics, such as one- and two-pion exchange or vacuum-loop corrections,
which might be calculated directly in a more microscopic many-body approach [20,24].
The fields (and their gradients) again serve as useful expansion parameters at moderate
density, so the nonlinear interaction terms can be truncated, leaving a finite number of
unknown couplings.

Rather than focus on the calculation of the nonlinear couplings from an underlying
effective Lagrangian, we wish to concentrate instead on how well the energy functional
can be calibrated by fitting the couplings to observed nuclear properties, and on the
limitations on the extrapolation of the resulting EOS into the high-density regime. In
general, even with a significant truncation, the number of unknown couplings exceeds
the number of normalization conditions, which we take to be five properties of infinite
nuclear matter; the equilibrium density and binding energy (po, —ep). the nucleon
effective (or Dirac) mass at equilibrium (M), the compression modulus (Kp) and
the bulk symmetry energy (as). (Experience has shown that an accurate reproduction
of these five properties leads to realistic results when the calculations are extended to
finite nuclei [6,7,10,11,21].) Thus families of models can be generated which describe
exactly the same nuclear matter properties at equilibrium [19]. We then investigate the
differences in the high-density EOS predicted by models within a given family. This
question is important for astrophysical applications, particularly in the study of neutron
stars; it will be difficult to deduce the existence of “exotic” neutron-star structure (for
example, hyperonic matter, kaon condensates or quark cores) unless the EOS of the
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more mundane components (neutrons, protons and electrons) is well constrained.

If our truncation of the energy functional is motivated by low-density behavior, why
should we have any confidence at all in a high-density extrapolation? This is indeed
the crucial question, and we are not attempting here to justify such an extrapolation;
we are merely recognizing that this procedure is often used in neutron-star calculations,
even recent ones, without any mention of the implicit assumptions about the absence
of additional contributions at high density [26-32]. We therefore feel it is timely to
investigate quantitatively the uncertainties in the extrapolated equation of state.

We begin the theoretical analysis with a model that contains meson-meson and meson
self-interactions described by an arbirrary finite polynomial in the fields. We find that
both the asymptotic (high-density) limit of the EOS and the approach to this limit
(1.e., the “stiffness™) are model dependent. In particular, one can construct models with
the same equilibrium nuclear matter properties that yield high-density equations of state
ranging all the way from the causal limit (p = £) to one that resembles a free relativistic
gas (p =&/3) [9,19]. (Here p is the pressure and £ is the energy density.)

As an explicit example, we consider a model that includes self-interactions for the
isoscalar scalar and vector mesons and for the p meson up to fourth order in the fields.
To our knowledge, this is the first time nonlinear terms in the p meson mean field have
been included. (Note that the p field enters here as an effective field whose purpose
is to parametrize the isospin dependence; thus, fundamental questions about causal
propagation [33,34] and spin mixing [35] are not relevant.) To provide a quantitative
measure of the variations in the EOS, we compute neutron star masses, which turn
out to be sensitive to the model types and to changes in the parametrizations, even for
models that reproduce the same equilibrium nuclear matter properties. In some cases,
variations in the calculated maximum mass are more than one solar mass.

These results lead us to two basic conclusions. First, existing methods for calibration
of the EOS at normal density are not sufficient to provide a satisfactory extrapolation
into the density regime relevant for neutron stars. The basic problem rests with the
quartic neutral vector meson (w) interaction, which produces major modifications in
the high-density behavior. We discuss the existing situation regarding the specification
of this term and prospects for improved calibration. Second, we find that if the quartic
w term can be accurately determined, additional higher-order terms (and the quartic p
term) produce relatively minor changes in the neutron star mass. This occurs because
the W term softens the high-density EOS so completely that additional interactions
have little effect, at feast in the density regime relevant for neutron stars.

These conclusions have important implications, because the contributions to the EOS
from the neutrons and protons are commonly believed to be the best understood part of
the physical input necessary to describe a dense stellar object. Without well-constrained
results from this part of the EOS, it will be impossible to determine the importance
of additional dynamics, for example, the transition from nuclear matter to quark matter
in the interiors of neutron stars [36,37,27] or the role of strangeness in the form of
hyperons [38,39] or a kaon condensate [40]. As an example of how uncertainties in the
basic nuclear EOS can influence these interesting effects, we study the transition from
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hadronic matter to quark matter using a simple model [37,1] and show the possible
variations in the results.

The outline of this paper is as follows: In Section 2 we present the general model,
which involves an arbitrary number of nonlinear meson interactions and derive the EOS.
Based on this general model, Section 3 is devoted to the high-density limit of the
EOS. In Section 4 we apply our model to neutron stars. For the quantitative analysis,
we initially include self-interactions up to fourth order in the p and w fields and then
investigate the consequences of sixth-order and eighth-order @ self-interactions. We also
briefly discuss the parameter and model dependence of the transition to quark matter in
the central region of the star. Section 5 contains a short summary and our conclusions.

2. The nuclear equation of state

We describe the nuclear equation of state using a relativistic approach involving
valence Dirac nucleons and effective mesonic degrees of freedom, which are taken to
be neutral scalar and vector fields, plus the isovector p meson field. Rather than focus
directly on a Lagrangian, we consider instead as a starting point an effective action

=rié.V. b, (1)

which is a functional of the meson fields denoted by ¢, V, and b, for the scalar,
vector-isoscalar and vector-isovector field, respectively. In principle, this functional can
be calculated in a many-body approach based on a Lagrangian for the nucleon-nucleon
interaction, or its general form might be obtained from an underlying theory. Here we
will be satisfied to parametrize the effective action, calibrate it as accurately as we can
to observed nuclear properties, and then examine the predicted high-density equation of
state.
The effective action is related to the thermodynamic potential 42 [41] by

iBR=r[¢.V,. b, . (2)

where the fields are determined by the general thermodynamic principle that they should
make {2 stationary:
al’ al” ar
== =0 (3)
ap VvV, b,
A basic property of the functional is that it reflects the underlying symmetries [42].
Thus, if we assume that the system possesses two conserved charges, namely, baryon

number B and the third component of total isospin /3, this gives rise to two chemical
potentials ¢ and »:

D=6 ur) . (4)

with
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N
B:/d3xp=“—, (5)
au
1 0
L=~ 3 =
3 2/d X p3 Pl (6)

£ the inverse temperature and p3 = p, — p,. Note that the fields can be held fixed in
evaluating the partial derivatives in Eqs. (5) and (6) by virtue of the extremization
conditions (3).

In the field theoretical context [43], one can show that the effective action can be
expanded as a power series in gradients of the fields. Thus, after taking the zero-
temperature limit, one usually writes

IV, b,] =/d“x{—veff(¢>., Vaubi) = 20V by 0,68,V 0 | - (D)

where the second term vanishes in a uniform system and the dependence on the chemical
potentials has been suppressed. For the effective potential, we make the following ansatz:

Verr (G, Vb, v) = %mf L %m%VuV“ — %mf,bﬂ “b* +itrlnZy (p, v)
—itrlnZ, (0,0) + AV(, V, V¥ b, - b5 u,v), (8)

with a nonlinear potential

AV(, VuVE by - B vy = =) aplp,v) & (VVE)Y (b, - B (9)
ik
that contains at least three powers of the fields: i + 25 + 2k > 3. The fermionic contri-
butions are represented by a one-body term trin Z, (with the appropriate zero-density
subtraction [44]) and by terms where the fermions have been “integrated out”, which
results in a (generally nonanalytic) dependence of the mesonic coefficients a;;; on the
chemical potentials x and v. There will also be contributions to the a;; that are inde-
pendent of the chemical potentials; these arise from integrating out heavy degrees of
freedom and vacuum loops. Thus Ve contains explicit contributions only from valence
nucleons and classical meson fields.
The fermionic part trin Z, is obtained by evaluating the trace of the kernel

K(u.v) = (id" — g, V¥ = dg,m -0 )y + 1y’ + Somy’ — (M — ), (10)

using Dirac wave functions calculated in the presence of static background fields. The
subtraction removes contributions from negative-encrgy states, which are already in-
cluded implicitly in the nonlinear parameters a;j. (See Ref. [44] for an analogous
calculation.) The values of the fields are determined by extremization at the given
values of u and v.

The potential of Eq. (8) represents an ctfective field theory for the interacting nucle-
ons. Although the exact form of the effective potential is not known, we introduce the
meson mean fields as relativistic Kohn-Sham potentials [25] and consider the valence
nucleons moving in the resulting local fields. The nonlinear interactions of the fields
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generate implicit density dependence above and beyond that arising from the couplings
in Eq. (10). Thus the series in Eq. (9) can be interpreted as a Taylor series parametriza-
tion of the unknown part of the effective potential, which includes the effects of nucleon
exchange and correlations, as well as contributions from other mesons and the quantum
vacuum. (See the discussion in Refs. [21,44].)

Although the couplings a; generally depend on the chemical potentials, experience
with calculations for finite nuclei and nuclear matter, together with explicit computations
of exchange and correlation corrections [45], implies that mean fields and constant
couplings a;;; provide an adequate (albeit approximate) parametrization of these many-
body effects. Thus we consider the a;j; as constants in the sequel and leave the study
of their dependence on w and v as a topic for future investigation. Moreover, at low
densities and temperatures, the mean meson fields are small compared to the nucleon
mass, and so provide useful expansion parameters [21]. Thus, in practice, the series in
Eq. (9) can be truncated at some reasonable order, and the relevant question in this
paper is how far one can extrapolate the truncated potential into the high-density regime.

In principle, the unknown coefficients (coupling constants) can be constrained by
imposing chiral symmetry and other symmetries ot the underlying QCD, such as broken
scale invariance. (Lorentz covariance and isospin symmetry are already incorporated
explicitly *.) As has been discussed recently, however [1121], if one assumes a
nonlinear realization of the chiral symmetry for the pions and nucleons [46], the meson
interaction terms are essentially unconstrained . We therefore take the couplings as
frec model parameters in our approach. Obviously, an infinite number of normalization
conditions is generally needed to fix their values. Since this is not feasible in practice,
we terminate the summation at the finite values iy, fmax 20d Kpax.

According to Eq. (3), the thermodynamic potential {2 must be stationary with respect
to changes in the fields for fixed values of the proton and neutron chemical potentials

. (1)
: (12)

o —

il

Hp = [+ 50 = (k§p+M*2)"’J3+W+
n M“‘

v=(ki,+ MW -

D= 1=
=X

=

u

Here, following Bodmer [19], we define the scaled meson fields @ = g.p, W = g, W
and R = g,bo, with by the time-like, neutral part of the p meson field; the effective
nucleon mass is M* = M — @, (We work in the rest frame of the infinite matter, where
the spatial parts of the vector fields vanish.) The Fermi momenta for protons (kpp) and
neutrons (kjy,) are related to the conserved baryon density

1
p= 3—W—z(k;pw;n) (13)

* Note that since the encrgy functional is an effective functional, we presently know of no reason to exclude
terms that explicitly contain the medium four-velocity u#, such as w#V, V"V, This issue will be considered
in a later publication.

¥ Broken scale invariance leads 10 restrictions on the purely scalar interactions, as shown in Refs. [47.44],
but we will not consider these limitations here. As discussed in the next section, the details of the scalar
dynamics do not play a major role in our analysis.
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and isovector density

pr= s (K, — k). (14)

Using Egs. (2), (5) and (6), together with relations (11) and (12) for the chemical
potentials, it is straightforward to eliminate the chemical potentials in favor of the
densities and to compute the pressure p and the energy density £ = —p + up + %pr

kl'P I\I'n

- ! dk K + : dk K
p= 372 (kz 4 M*Q)l/z 3772 ) (kz + M*z)ljz
0 0
[ ! e _piw) p2k
?W +5—2R _ﬁ@ +) aged WY R, (15)
iJk
krP kl'n
1 P ,
E= 7/dkk2(k2+M*2)l P+ — /dk/«(k%rzw*z)‘/2
iae T
0 0
1 I, ]
+Wo+ -Rpr— W — =R + =’ i @ W R 16
PP o0 32 2 ;a”‘ (16)

Here the ratios ¢; = g7/m? and a3 = a,,;‘/gqgV g"‘ have been introduced for conve-
nience.

As noted earlier, the pressure in Eq. (15) and the energy density in Eq. (16) also
contain vacuum contributions arising from the partition function of the nucleons. How-
ever, at least at the one-baryon-loop level, these vacuum terms can be absorbed in the
definition of the nonlinear couplings in Eq. (9) [44], and thus we include explicitly
only the contributions from valence nucleons.

At zero temperature, the stationarity conditions of Eq. {3) with fixed chemical po-
tentials are equivalent to an extremization of the energy at fixed baryon and isovector
density. This leads to the self-consistency equations

J—

;(D iagp @'~ WY R* = p, . (17)
ik
1 _— .
C—2W+sza,-,-k4>‘ IR (18)
v ik
I ]
?R+Z2ka,_,k¢' w R"l‘_l=§p3 : (19)
a ik

where the scalar density is given by

k]"p kl-n

M* S M~ k* ;
p= [ | =
0 0
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Because of the factor of 1/2 on the right-hand side of Eq. (19), it follows that
the relevant expansion parameters for the energy density are @/M, W/M and 2R/M.
Moreover, by dividing £ by M* and expressing the result in terms of these expansion
parameters, one can identify the scaled couplings that should all be of roughly the same
size if they are “natural”, namely,

1 [ 1 By M 2k

. —. and
20IM%° 2eiM*T 8cIM? 224

3. The high-density limit

The coupling constants c%, cg. cf, and a;; in Egs. (15) and (16) enter as unknown
model parameters. According to the generally accepted procedure, these parameters will
be chosen to reproduce the properties of nuclear matter near equilibrium. The basic
ingredient in many astrophysical problems, e.g., neutron-star calculations, is the EOS

p=p(&), (21

which is then extrapolated into the neutron-rich and high-density regime. Anticipating
the results of the next section, one can expect that different parameter sets that lead to
identical equilibrium properties produce qualitatively similar equations of state at low
densities. The relevant question is whether this qualitatively similar behavior persists at
high densities, particularly in the regime important for neutron stars. As a first step in
this direction, we investigate the high-density limit of the EOS generated by the model
introduced in the previous section.

To make the discussion more transparent, we focus here on pure neutron matter
(kpp = 0, kpy = kp), although nuclear matter in 8-decay equilibrium with a finite proton
10 neutron ratio is necessary to achieve accurate results for maximum neutron star
masses. We will return to this issue in the next section.

It is clear that a sufficiently large number of couplings introduces a high degree of
flexibility. Due to the nonlinearity of the problem, not all families of parameter sets
lead to physically acceptable results, which provides one way to restrict the parameter
space. Classes of models can be ruled out if basic physical requirements are violated.
For example, one certainly requires that the pressure p be a smooth function of the
energy density £ Moreover, it is necessary that the speed of (first) sound ¢; respect
causality and also be real, 10 ensure stability. That is,

0<cf= -::—Z < 1.
In addition to these general principles, we require a positive and bounded value of the
nucleon effective mass, i.e.,

0 M <M. (22)
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This is motivated by the expectation that physically reasonable models will demonstrate
some degree of chiral-symmetry restoration at finite density, leading to a reduction in
the nucleon mass, with the most extreme situation corresponding to total restoration
of the symmetry. The consequences of Eq. (22) will become more transparent in the
following,

By specializing the formalism of the preceding section to pure neutron matter and by
using the self-consistency equations (17)-(19), the pressure and energy density can be
expressed as

p=polkp, M™) + Ap(P. W, R)
1\’|:

1 IS P R 2o
= — [ dk—s—o— + W 4 R~ — @’ a; @ W R,
3772/ o 2 T 2c2 2c? +;a*”‘ '
0 IR
(23)
E=Ey(kp, M™) +~ AE(D, W, R)
ky:
| n I
- dkk2 k2+M*2 1/2 _WZ _R2 o p2
7’ / ( ye 2¢2 i 22 * 2¢?
0
= (2 + 2k - Daud' WY R, (24)

ik

where py and &£, denote the results for a relativistic, noninteracting gas of spin-1/2
baryons with mass M*. Note that these expressions include, as a special case, models
where only the &g are nonzero, so that there are no scalar-vector couplings. Moreover,
the isovector density in Eq. (19) is replaced by

I
py=—p=—3 k. (25)

At high densities, the left-hand sides of the self-consistency equations (18) and (19)
must grow linearly in p, and thus we start with the ansatz

lim W = wyp®, lim R = rop”, (26)
p=roC

P00
where 0 < a, B < 1, wg > 0 and ry < 0. Since we assume that the effective mass is

bounded, we can replace the scalar field by the limit

Do = lim (M - M"Yy <M. (27)

P30

To fulfill the resulting self-consistency equations:

L o ,
—jWﬁ—sz(_l”[\(ploo "Vz‘['_l R2k=p s (28)
C;‘, if.k
! = i p2k—
C—%R+sza,-,-kqbocw2f1e b=lpy= —1p, (29)
i,j.k
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there must be integers (., k) and (j),, k},) with

(2 —Da+2kpyB=1>(2j— Da+2kB forall j# j,,.k+*k,. (30)
2jme + 2k, — 1B =1>2ja+ (2k— 1B forall j#j . k+k . (31
(This assumes that only one term in each sum produces the leading asymptotic behavior;

if this actually happens for more than one term in a sum, the conclusions below are
unchanged.) Using

3yt Ny 337913, ,
lim po = WT)/)“W L0y, im & = 20T i o), (32)

psoc e 4

the leading contributions to the pressure and the energy density are found to be

. BrH' :
Jm p =+ z“’op T+ 2_2r0/)
+Wé”"’rék”’ﬂmZflum@)’ + g *‘*Zau ik Poo s (33)
3(37%) 1 , ]
hm € = 473 s
P-Loc 4 + 2 v W()p ZCE)

+ WS’ r Ao Aa(zjm + 2km - 1) Z af]n
250 2k P !
+ WOJM r(] mpl+l8(2./r11 + 2]‘/,11 l ) Z a’vj',"k',"cp‘x ’ (34)

To this point, the discussion is rather general. To make the conclusions more concrete,
we discuss two distinct situations separately:

(i) No coupling between W and R. In this special case, the asymptotic behavior of the
fields is governed by their highest powers in the potential (9). From Egs. (30)
and (31), we obtain

1 1

a=—, B:m

zfmax - ]
For jmax = 1. kmax 2 1 OF jmax 2 |, kmax = |, the quadratic terms dominate the
right-hand sides of Egs. (33) and (34), so that
. 1 ) b . 1 5
Iim -W-x p° or lim =R xp

p—oa C% [iamde ol i

This case includes the original version of the Walecka model [3] and generates

the limiting behavior

lim p=¢. (35)

p—oc

The sums in Ap and AE contribute to the leading order only if jmax = 2, kmax = 2
O jmax = 2, kmax = 2. In this case, the quadratic terms can be neglected, and Ap
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and A& are of the same order as the contributions from the ideal Fermi-gas terms.
However, the factors in Eq. (34) conspire such that

lim Ap = 1A€, (36)

p—00

and the functional form of the limiting EOS resembles that of an ideal Fermi gas:

Jim p = i€ (37)
In the remaining cases (jmax > 2. kmax > 2), the dominant contributions arise
solely from pg and &, which also leads to Eq. (37). Note here the importance of
Eq. (22), which implies that in the high-density limit, M* becomes negligible, at
least to leading order.

(11) At least one coupling between W and R. From Egs (30) and (31), it follows

directly that

a<y and B<i
The quadratic contributions in the fields are negligible, and Ap and A& contribute
to the leading term only if & = 8 =1/3, where again Eq. (36) holds. In any event,
this leads to the limit of Eq. (37).

To summarize, we conclude that the high-density limit of the EOS is strongly in-
fluenced by nonlinear meson-meson interactions, which agrees with the conclusion of
Bodmer and Price [9,19]. The limit in Eq. (35) obtained in the original version of the
Walecka model [3] is a special case; in the more general situation, the nuclear matter
EOS approaches that of an ideal Fermi gas, given by Eq. (37). We will show in the
next section that these two limits can be achieved using different models with parameter
sets that reproduce the same equilibrium properties of nuclear matter.

4. Consequences for neutron stars

The high-density limit of the EOS and the way in which the matter approaches the
asymptotic regime have important consequences in neutron star calculations. The masses
and radii of stars are sensitive to the stiffness of the EOS, thus providing a quantitative
measure for studying the impact of the nonlinear interaction terms in Eq. (9).

To be specific, it is necessary to choose an explicit potential, and we begin with the
form

{ 4 5

, ) K A 2 ¢ 2
> apd (V) (b, - b = TR TUAR S T M A GRS v LAY R
£k

(38)

which includes a subset of the meson self-interactions up to fourth order in the fields. As
discussed in the Introduction, setting some of the allowed cubic and quartic couplings
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Table 1
Equilibrium properties of nuclear matter

(ke)o Pu Mi/M e Ko n
(fm=1  (fm~Y) (MeV)  (MeV)  {MeV)
1.30 0.1484 (.60 —15.75 250 35

to zero is “unnatural”, but as we will discover, the model defined by Eq. (38) is already
general enough to produce significant differences in predicted neutron star masses, and
restoring the omitted couplings will lead to even more variation in the results. Moreover,
the present model can be related to the most common models discussed in the literature,
and it generalizes them to include a nonlinear isovector interaction. The motivation for
adding the quartic rho-meson term is that one expects this coupling to be essentially
unconstrained by normal nuclear observables, where the neutron-proton asymmetry is
low, but it may have significant impact on the neutron-rich matter in neutron stars.
As noted earlier, since the meson fields are effective (Kohn-Sham) potentials, we are
not concerned here with their elementary excitations, and considerations of causality
[33,34] are unimportant.

In nuclear matter calculations, this model contains seven free parameters. The poly-
nomial in Eq. (38) contains four couplings that we may write as k = k/gl, A= A/glh,
¢ and &; in addition, values for the three ratios ¢f = g2/m? (i =s, v, p} are needed.
Five of the seven parameters can be chosen to reproduce the equilibrium properties of
symmetric nuclear matter, which we take as the equilibrium density and binding energy
(po. —eo). the nucleon effective (or Dirac) mass at equilibrium (Mg), the compres-
sion modulus (Ky) and the bulk symmetry energy (as). The first three of these are
tightly constrained [ 11], whereas the latter two are not. In principle, the sensitivity of
the high-density EOS 1o reasonable variations in Ky and a4 could be examined, but for
simplicity, we keep their values fixed in most of our calculations. The “standard™ set of
equilibrium properties used here are listed in Table [; these are motivated by successful
descriptions of bulk and single-particle nuclear properties [ 11,44,21]. The nucleon mass
is fixed at its empirical value (M = 939 MeV).

Our primary goal is to study the influence of the nonlinear vector-meson interac-
tions on neutron star masses. Since there are more free couplings than normalization
conditions, we proceed as follows: We choose values for the couplings { and & and
determine the remaining couplings by requiring that they reproduce the desired equi-
librium properties. This is achieved by solving a set of transcendental equations that
relate the parameters directly to the nuclear matter properties {19,21]. Although we
have no specific guidance on the allowed values of ¢ and £, we rely on the assumption
of naturalness, and based on the discussion at the end of Section 2, we observe that the
lollowing parameter combinations should all be of roughly equal size:

! ! ! koA Ly £
2eIM27 2eIM?T O 8AM?T oM 247 24 384
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Typical values for the first three parameters are between 0.001 and 0.002, so that the
natural values of { and £ are roughly limited to 0 < £ < 0.06 and 0 < ¢ < 1.5. (To
avoid abnormal solutions of the vector field equations, i.e., those with finite mean fields
at zero density, { and ¢ must be positive *.) We will include results for vanishing
¢ and ¢, which are in a strict sense unnatural, in order to make contact with earlier
calculations. For a more thorough discussion of naturalness and its implications, see
Ref. [21].

Using the notation of Section 2, the self-consistency equations (17)-(19) can be
written as

1 Kk A
—P+ —P? + =P =p,,
22 + > + ; Ds (39)
1
c: 6
1 g 2 1 1
R(E+ER>=§P3=—§P- (41)

The expressions for the pressure and the energy density follow as

ky

1 " K
p= 372 (k2 + M*Z)I/Z
0
Lo, $oa Loy & 0 1 5 k.3 Ay
—W W R R - S - ot 42
+263 Y 2c2 MY 2¢2 6 24 (42)
ky:
!
5=—2/dkk2(k2+M*2)”2
(
0
U oy b & L, Ry Ay
Wi 2w — R+ 2R D+ -+ 43
32" Ty 22t Tt At T T (43)

We begin our discussion with the model introduced by Bodmer and Price [9], which
corresponds to & = 0. According to the discussion in the preceding section, this model
has the interesting feature that the high-density EOS of pure neutron matter approaches
p = &, while in symmetric matter, where the mean-ficld of the p meson vanishes, the
EOS approaches the massless Fermi-gas limit, given by Eq. (37). In Fig. 1, we show
the binding energy curves for symmetric and pure neutron matter for different values
of the nonlinear coupling {. We emphasize that all parametrizations reproduce the same
equilibrium properties listed in Table 1.

At low densities, all the curves approach a common limit, because the nonlinear terms
do not contribute at leading order in a low-density expansion. At higher densities, the

4 Note that positive ¢ and & imply that the resulting nonlinear interactions are aifractive. This constraint on
the highest-order vector interactions appears to be general and explains why our earlier analysis finds that
nonlinear interactions soften the equation of state.
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Fig. 1. Binding energy of symmetric and neutron matter.

softening of the EOS as ¢ increases 1s clearly visible, at least for symmetric matter. The
softening in neutron matter is more apparent in Fig. 2. In the regime of intermediate
density, 200 < £ < 1000 MeV/fm', the EOS becomes softer with increasing values
of ¢ [19]. To study the approach to the asymptotic limit, we examine the nonleading
terms in the high-density expansion:

Lofoat T ,
imp=€6— — [T ) ¥ 0" for (=0, (44)
£—no 67 4c;+‘cl~5

L /72 2 13, a
lim p=¢&— (—7) {H—( ) ]52*%0(51/3; for ¢ # 0,
£—c o7 \ ¢ T¢

(45)

which reveals two important features. First. the ¢ # 0 results are nonanalytic in {. Thus
one cannot reproduce Eq. (44) by taking the £ — 0 limit of Eq. (45); at least as far as
¢ 1s concerned, the high-density expansion is essentially a strong coupling expansion.
Second. we observe that the coefficient of the nonleading term is smaller for { =0 for
two reasons: the appearance of the isoscalar coupling ¢2 in the denominator and the
absence of the multiplicative factor containing {. (Note that cf) is independent of £.)
These two features produce a cocfficient that is roughly an order of magnitude smaller
for £ =0 than for { # 0, which explains the relatively slow approach to the asymptotic
himit in the latter case. as is evident from Fig. 2.

The conseguences for neutron stars can be studied in Fig. 3. where the star masses
arc shown as a function of the central mass density p.. For a given value of p,



p [MeV/fim’]
>

3.0

2.5

2.0

M/M_,,

1.5

Fig. 3. Neutron star masses for different nonlinear couplings ¢. Pure neutron matter is assumed.
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the mass is obtained by integrating the Tolman-Oppenheimer—Volkoff (TOV) equation,
which follows from hydrostatic equilibrium in strong gravitational fields and the Einstein
cquations [48].

As expected from Fig. 2, the maximum mass decreases with increasing . This
decrease is substantial: from M = 2.9M 5 for { =0 to Mpu = 2.1M for £ = 0.06,
which is roughly 30%. The shifts in the maximum mass are most dramatic for small
couplings; for larger couplings, the softening effects begin to saturate.

To understand this result, it is useful to identify the regime of energy density that is
most important in determining the mass of the star. This regime can be deduced from
Fig. 4, where we show the radial mass density distributions for several neutron stars, as
well as the corresponding energy densities. Observe that most of the mass is generated
at radii between 6 and 12 km, which corresponds to energy densities of several hundred
MeV/fm?®. As can be seen from Fig. 2, this includes the regimc where the EOS is
sensitive to ¢, because this is where the W* contribution to the EOS begins to become
important. Note, however, that the contribution of the W* term in this regime is still
smaller than that of the W? term; the quartic term does not begin to dominate until the
energy density reaches several thousand MeV/fm?, as indicated by the coalescence of
the dashed and dotted curves in Fig. 2.

We now return to the general form in Eq. (38) and allow nonlinear self-interactions
of the p meson. In contrast to the isoscalar coupling ¢, the new quantity ¢ does not enter
in the calculation of our five “standard™ equilibrium properties of nuclear matter, and
the other parameters are determined independently. This is true even for the symmetry
energy, because the new coupling & first appears at order (N — Z)* in an expansion
around symmetric nuclear matter. In principle, ¢ could be constrained by fits to liquid-
drop expansions of the energy, but in most such fits this parameter is set to zero. (We
found only one nonzero value in the literature [49].) Thus, at present, contributions to
the symmetry energy beyond terms of order (N — Z)? are practically unconstrained.

Fig. 5 shows the energy density of nuclear matter as a function of the proton fraction
v for two different baryon densities. The curves are calculated for various values of ¢
with ¢ held fixed. For clarity, we plot the fractional shift in & relative to its value with
¢ = 0. At normal nuclear density, results for different ¢ are virtually indistinguishable,
but at high density, the curves differ by a few percent when the proton fraction becomes
very small. This demonstrates that it is possible to generate families of models that
reproduce identical properties of nuclear matter at low and normal densities, but which
generate different predictions at high densities.

According to the analysis in the preceding section, the EOS asymptotically approaches
the massless Fermi-gas limit for both symmetric and neutron matter. The high-density
expansion for neutron matter corresponding to Eq. (45) is
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Fig. 5. Energy difference AL = |£(&=0) — £(£)]/€(& = 0) of nuclear matter as a function of the proton
fraction y calculated at constant baryon density. In part (a) the density is fixed at its equilibrium value pg
and part (b) shows the results at 5p). Note the different vertical scales in (a) and (b).
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In contrast to the previous case, the asymptotic limit is now approached from above.
Moreover, the analytical form has changed, since Eq. (46) indicates a series in powers
of £1/2.

The dependence of the neutron star masses on ¢ follows the same trend as found
for {. This can be gleaned from Fig. 6, which shows results for pure neutron matter.
For fixed ¢, the maximum mass decreases with increasing £, although the effect of this
new parameter is smaller (less than a 10% change in the maximum mass), given the
limitation on parameter values imposed by naturalness.

A more complete picture of My, is given in Fig. 7, where the variations with both
¢ and ¢ are shown. It is apparent that parameter sets that yield identical properties
near nuclear equilibrium can still generate values of the maximum mass that differ by
as much as one solar mass. We find variations between Mpy,x = 29M5 and 1.9M,
for stars composed of pure neutron matter. The masses are most sensitive to changes
at small values of the couplings, particularly for { ~ 0, which can be related to the
nonanalytic form of the EOS in terms of { and &. [See Eqs. (44)-(46).] As seen
earlier, the effect of £ is smaller than that of ¢.

So far, we have considered pure neutron matter, which gives only a qualitative picture

EN L oY . (46)

1/2

of neutron star propertics. For a more realistic description, it is necessary to consider



528 H. Miiller. B.D. Serot/Nuclear Physics A 606 (1996) 508-537

K, = 250MeV
2.8
2.6
Eé 2.4 Neutron matter
£
= 22}
20 _ i
Matter in B-equilibrium
1.8 : 1 * l
0.00 0.02 0.04 0.06

G

Fig. 7. Maximum neutron star mass as function of ¢ and £. Results for pure neutron matter and for matter
in B-equilibrium are displayed. The shaded areas show the mass range obtained when £ is varied; the upper
boundaries correspond to ¢ = 0 and the lower boundaries to ¢ = 1.5.

beta-stable matter, i.e., matter composed of neutrons, protons and electrons in beta-decay
equilibrium. This situation was realized by adding the contribution of free, relativistic
electrons to the nuclear EOS and by imposing the equilibrium condition

Mp = Uy~ e .

The TOV equation is then integrated under the constraint of total charge neutrality.
Maximum neutron star masses for beta-stable matter are also shown in Fig. 7. The
dependence on the isoscalar coupling ¢ is similar to that obtained earlier (the maximum
mass varies between M. = 2.8Ms and 1.8M), but the influence of the i1sovector
coupling £ is less drastic, since the matter becomes significantly more symmetric in the
region that gives the largest contribution to the mass.

In Fig. 8, we examine the dependence of the maximum mass on the compression
modulus at equilibrium, which is not particularly well known. (Relativistic mean-field
models with 200 < Ky < 350 MeV can produce accurate nuclear binding-energy system-
atics and surface energetics [21].) The shaded band shows the total predicted variation
in maximum mass when both ¢ and & are varied within the bounds imposed by natural-
ness. The dashed curve shows the predicted variation when Ky is varied at fixed { and £,
Evidently, the variations in the maximum mass arising from the possibility of nonlinear
vector meson interactions is much greater than that arising from the uncertainty in the
nuclear compressibility.

We also studied the dependence of the maximum mass on the ratio S/Ko, where §
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Fig. 8. Maxtmum neutron star mass as a function of the compression modulus K. (All other nuclear matter
inputs are held fixed.) The shaded area marks the covered range of masses. The upper boundary corresponds
to { =0, ¢ =0 and the lower boundary 10 ¢ = 0.06, £ = |.5. For fixed values of the nonlinear couplings,
the mass changes marginally with the compression modulus. This can be seen from the dashed line inside the
shaded area, which corresponds to ¢ = 0.02, £ =0.5.

is the “skewness” defined by S = k2 [d*(£/p) /dk}] evaluated at equilibrium. Consider
again Fig. 8. At Ky = 350MeV, §/K, varies by a factor of three (from 2.66 to 7.75)
from the bottom to the top of the shaded region, indicating that this ratio could be
correlated to the maximum mass. However, at Ky = 200 MeV, there is a similar change
in the maximum star mass, but S/ Ky varies by only 20% between the boundaries of the
shaded region. Moreover, along the heavy dashed curve, there is a similar 10% variation
in S/Kp, but virtually no change in the maximum mass. We conclude that there is no
strong correlation between S/ Ky and M. This agrees with the results of Ref. [21],
where little correlation was found between $/Kj and the ground-state properties of finite
nuclei.

These results raise the interesting question of whether the only significant nonlinearity
is the quartic, isoscalar vector interaction. In other words, once one takes £ # 0 to soften
the EOS at high densities, does the addition of further nonlinearities produce only
small etfects? To examine this question, we extend the model of Eq. (38) to include
sixth-order and eighth-order terms involving the vector-isoscalar meson:

! g/l!
AV/=-6~!g€(V#V“)3~ -g—fgf(vﬂv”)f (47)
Thus /6! and ¢/8! are the relevant ratios to be included in the parameter list given
earlier, and we will initially set £ to zero and examine the consequences of varying Z,
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Fig. 9. Neutron star masses for models with different nonlinear couplings for the neutral vector meson. The
uppermost curve corresponds to the Walecka model, including cubic and quartic couplings for the scalar
meson. Region A4 shows the range of masses obtained when the quartic vector coupling is turned on. Regions
A and B correspond to models with up to sixth-order terms, and regions A, B and C include an eighth-order
term. The values of the nonlinear couplings are chosen within a natural range, as described in the text. The
cross indicates the maximum mass (1.58 M=) obtained for beta-stable matter in a calculation that includes
the £. &7, ¢ and £ couplings (see the text).

¢" and ¢ within the bounds imposed by naturalness.

Fig. 9 shows neutron star masses as higher-order vector nonlinearities are included
sequentially. Evidently, the quartic interactions arc the most important, producing a
roughly 30% variation in the maximum. The effects of the sixth-order term are quite
modest (roughly 10%), while the eighth-order contributions are essentially negligible
(roughly 2% ). Here the parameters are varied within the natural ranges 0 < { < 0.06,
0< ¢ < 1.2and 0 < " < 60. Thus we have the encouraging result that once the W#
interaction has been accurately calibrated, contributions from higher-order nonlinearities
arc relatively unimportant. To indicate the most extreme reduction in maximum mass
possible in the present model, the cross in Fig. 9 shows Mpax = 1.58M, which is
obtained for beta-stable matter when the couplings { = 0.06, ¢’ = 1.2, " = 60 and
& = 1.5 are included. Note that this value of M, is only slightly (= 10%) larger than
that of the most massive observed neutron stars.

Our analysis to this point has revealed significant model and parameter dependence
in the high-density EOS. It is therefore of interest to see if these variations influence
predictions arising from other relevant dynamics in systems with high densities. As an
example, we study the effect of the high-density hadronic EOS on the existence of
quark-matter cores in neutron stars. We adopt a simple two-phase model [37,1] based
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on a first-order (Van der Waals) phase transition between the hadronic and quark phase.
Although there are indications from QCD lattice calculations that the hadron-quark
phase transition is second-order at vanishing chemical potential [50,51] (for massless
quarks), the true behavior of the transition at finite density (and indeed, whether one
actually exists) is unknown at present. Until more reliable information is available,
one must resort to a separate description of the quark phase and the hadronic phase.
Moreover, whereas a detailed description involving beta-stable matter requires a careful
treatment of the phase transition in systems with two conserved charges (baryon number
and isospin) [27,52], here we will be satisfied with a qualitative discussion based on
pure neutron matter. This is certainly reasonable, given the large uncertainties we have
already found in the hadronic EOS at high density.
We adopt the simple EOS involving massless u and ¢ quarks given by

p=1€—31b, (48)

where the confinement property of QCD (or alternatively, the anomaly in the trace of
the energy-momentum tensor) is modeled by a positive constant b, which represents the
energy per unit volume in the vacuum.

We return to the hadronic model of Eq. (38), which leads to the high-density expan-
sion in Eq. (46). Our discussion is based on the simple observation that independent of
the actual nature of the transition, it is driven purely by the energetics in the two phases.

By comparing Eq. (48) with the expansion in Eq. (46), one observes that in the
quark phase, the limit p = £/3 is approached from below, whereas in neutron matter,
for the general case ¢ > 0 and £ > 0, the limit is approached from above. To decide
whether a transition takes place, it is necessary to compare the energy/baryon in both
phases. For the quark phase it is expressed as [37]

Efp=3m fla)p +b/p, (49)
with
; 20,
flag) = (1+2%h (1+ a‘),
3qr

which includes the lowest-order contribution in ¢, (the exchange energy). As discussed
in the preceding section, in hadronic models that are characterized by Eqs. (44) and
{45), the quadratic terms dominate at high densities, so that

lim £/p x p, (50)
E—oc

for { > 0 and & = 0. This is also true if £ =0 and ¢ > 0. Thus, at sufficiently high
densities, neutron matter always has higher energy compared to the quark phase [37],
and the two phases can be connected by a Maxwell construction, which signals the
transition from hadron to quark matter.

The situation is different in the general case ¢ > 0, ¢ > 0. For the asymptotic form
of the energy corresponding to Eq. (46), one obtains
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which 1s, up to the prefactor, the same leading behavior as in Eq. (49) for the quark
phase. Therefore a phase transition is possible, i.e., neutron matter has higher energy,
only if

‘%1/3 | 2 1/3 1 1 1/3 , ,

This remarkable observation implies that for sufficiently large values of the nonlinear
couplings. the matter remains in the hadron (neutron) phase, at least in the simple model
discussed here. More generally, one observes that independent of the asymptotic form,
increasing the couplings ¢ and ¢ increases the density at which the phase transition
occurs (if it does), since the hadronic EOS becomes softer as the nonlinear couplings
increase.

The different possibilities are illustrated in Fig. 10. The curve labeled a corresponds
to Eq. (50); the asymptotic behavior is clearly different from the quark EOS. The
phase transition occurs at roughly 3pg, and the Maxwell construction is indicated by the
dotted line. In the situation described by curve b, neutron matter and quark matter have
a similar asymptotic behavior, but the condition (52) remains true, and the two curves
cross, leading to a phase transition at roughly 6p. Finally, curve ¢ lies completely below
the quark EOS and a transition is not possible; neutron matter is stable at all densities.

- _3 2,173
Eli»n;cg/pm 2 (377)
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If one introduces interaction terms of higher than fourth order in the fields, for
example, (V,V#)?, the hadronic energy is dominated by the Fermi-gas contribution, and
Eq. (51) must be replaced by

Aim £/p =337 p! 7+ 0(p7'1), (53)

Since 3'/* < f(ay), no transition is possible in the asymptotic regime for any choice of
hadronic parameters in this case. On the other hand, the transition regime also depends
on the model and parameters used for the description of the quark phase. In our model,
the vacuum constant b and strong coupling « can be used to shift the transition point
substantially [53,54], so that a transition may occur outside the asymptotic regime. It is
clear, however, that the strong model dependence in the hadronic EOS introduces large
uncertainties in any attempted prediction of these values.

The consequences for neutron stars in this model follow straightforwardly. Nonlinear
vector meson interactions soften the hadronic EOQS, which lowers the maximum neutron
star mass and increases the density of the transition to quark matter. In contrast, a stiff
hadronic EOS lowers the density of the phase transition, and since the quark matter
EOS is soft, also tends to decrease the maximum star mass. Thus it may be impossible
to decide, from neutron star masses alone, whether quark matter cores exist in neutron
stars, and similar conclusions may be drawn about other exotic phenomena that soften
the EOS. (The situation is complicated further by the continuous nature of the transition
when two conserved charges are involved, which is the more physical case [27].)
Whereas it might be possible, using the results of more advanced calculations of the
finite-density hadron-quark phase transition, to rule out certain parametrizations of the
hadronic EOS, existing uncertainties in both the nature of the phase transition and in
the high-density hadronic EOS preclude any definite conclusions at this time.

5. Summary

In this paper we study the equation of state of nuclear and neutron-star matter based
on relativistic mean-field theory. Qur starting point is an effective action (or energy
functional) containing Dirac nucleons and local scalar and vector fields. These fields are
interpreted as relativistic Kohn-Sham potentials, and nonlinear interactions between the
fields are introduced to parametrize the density dependence of the energy functional. We
calibrate the energy functional by observing that at normal nuclear densities, the ratios
of the mean fields to the nucleon mass are small, and thus the nonlinear interactions can
be truncated at some low order in the fields. The unknown parameters can then be fit to
properties of nuclear matter near equilibrium that are known to be characteristic of the
observed bulk and single-particle properties of nuclei.

We then extrapolate the resulting equation of state into the neutron-rich, high-density
regime to calculate the properties of neutron stars. Two problems arise in the extrapo-
lation: First, even with a significant truncation of the energy functional, the unknown
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parameters are underdetermined. Thus there exist families of parameters that reproduce
exactly the same nuclear matter properties near equilibrium, but which produce poten-
tially different high-density equations of state. Second, terms omitted from the functional
because they are negligible at normal density may become important at densities rele-
vant for neutron stars. This is true even if we assume that the coupling parameters are
“natural”, which means that they are all of roughly the same size when expressed in
appropriate dimensionless ratios.

Our basic goal is to determine, in light of these two problems, whether the calibration
at equilibrium nuclear matter density is sufficient to predict a maximum neutron star
mass within a reasonably small range. This is relevant in view of recent calculations that
hope to see evidence for “new” physics in neutron stars (such as quark cores, strange
matter or kaon condensates) based on the need for a softer high-density equation of state
than that provided by neutrons, protons and electrons alone. These calculations assume
that the high-density behavior of these more mundane components is well known, and
in particular, that the contributions of many-nucleon forces are negligible [27-32].
These many-body, density-dependent forces are precisely the ones that are difficult
to calibrate using observed nuclear properties; the question is whether one can build
nuclear equations of state with different types of many-body forces that all reproduce
the observed properties near equilibrium, but which yield significantly different results
at high density.

By beginning with a meson self-interaction potential containing arbitrary powers of
scalar-isoscalar (o), vector-isoscalar (w) and vector-isovector (p) fields, we show
that the meson nonlinearities can have a profound effect on the high-density equation
of state. In models where the vector mesons enter the potential at most quadratically,
the equation of state is stiff and asymptotically approaches p = £. (The Walecka model
is a special case.) In models where the vector fields enter with high powers, these
fields become negligible at high density, and the asymptotic equation of state resembles
that of a free, relativistic gas: p = £/3. The intermediate case occurs when the vector
ficlds enter quartically: the asymptotic equation of state is still soft (p = £/3), but the
approach to the asymptotic limit is determined by the coupling parameters.

We illustrate these results using specific models containing quartic @ and p meson
couplings and also sixth- and eighth-order @ couplings. All models are calibrated to
cxactly the same nuclear properties at equilibrium, for all choices of parameters. We
find that by far the most important coupling constant is that of the quartic w term:;
even when restricted by the requirements of naturalness, variations in this parameter
can produce variations of nearly one solar mass in the predicted maximum neutron
star mass. (This is true for both pure neutron matter and for beta-stable matter.) This
uncertainty is clearly relevant on the scale on which one hopes to identify new, exotic
effects. Moreover, increasing the strength of the quartic coupling softens the equation
of state, which is precisely the effect sought from the exotica. The impact of a quartic
p meson coupling is smaller, and its effects are only appreciable in stars made of pure
neutron matler; the maximum masses of stars computed with beta-stable matter show
little change when this parameter is varied within the bounds imposed by naturalness.
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Similarly, sixth-order w interactions have only a modest effect on the predicted maximum
mass, and by the time the eighth-order terms are included, the high-density equation of
state 1s already so soft that these terms are negligible.

We emphasize that the importance of these many-body effects is not limited to the
domain of relativistic mean-field theories; equations of state based on nonrelativistic
potentials [26] use interactions that are calibrated to few-body systems and that are
insensitive to possible six- or eight-body forces that may be relevant at high density. This
is especially important because a mean-field calculation with four-component spinors
and just two-body Lorentz scalar forces already implicitly contains an infinite string of
many-body forces if it is recast in terms of two-component spinors.

To illustrate these difficulties more concretely, we also study the role of the hadron-
quark phase transition in a simple two-phase model with a first-order transition. We
find that with couplings well within the bounds of naturalness, it is possible to push
the phase transition to arbitrarily high density, and even to make it disappear altogether.
Although the absence of a phase transition is probably unrealistic and could serve to
exclude some values of the hadronic parameters, there are still too many uncertainties
on both sides of the transition (as well as in the nature of the transition itself!) to make
any definitive statements.

We therefore conclude that existing methods for calibrating the nuclear equation of
state for extrapolation into the neutron-rich, high-density regime appropriate for neutron
stars cannot constrain the predicted maximum star mass well enough to make reliable
statements about the existence of “new’ physics beyond the dynamics of neutrons, pro-
tons and electrons. We show that the uncertainties arising from an incomplete knowledge
of the hadronic many-body forces are much larger than those arising from an imperfect
knowledge of the properties of nuclear matter near equilibrium, such as the nuclear
matter compression modulus. Even the old question of the role of the hadron-quark
phase transition is problematic, since the high-density hadronic equation of state can be
made essentially as soft as desired by the addition of nonlinear interactions that are still
consistent with equilibrium nuclear matter properties.

One positive conclusion is that the most important nonlinear parameter is that of
the quartic w interaction. If this term could be accurately calibrated, the uncertainties
introduced by other nonlinear interactions are likely to be tolerable. (One caveat: we
do not study carefully the sensitivity to variations in mixed scalar-vector interactions
because of the overwhelming sensitivity to the quartic @ term; if the latter were well
constrained, the role of scalar-vector interactions should be examined in more detail.)
Although this coupling has not been extensively studied in mean-field calculations,
there are several possibilities for determining it reasonably well. First, since a quartic
w interaction leads to a nonlinear density dependence in the vector part of the baryon
self-energy, one could calibrate this interaction by fitting to the self-energy obtained in a
Dirac-Brueckner-Hartree-Fock calculation, for example. Although some initial attempts
at this procedure have been made [20], the resulting parameters are not always natural;
it 1s probably necessary to repeat the procedure using all possible scalar and vector
self-interactions through fourth order and to fit both the scalar and vector part ot the
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self-energy simultaneously. Second, the nonlinearities in the energy functional can be
interpreted in terms of effective masses for the vector and scalar mesons (defined by
diagonalizing the matrix of appropriate second derivatives of the energy functional).
This may provide useful constraints in the future, if concrete empirical information on
these effective masses becomes available. Third, it is possible that additional observables
in finite nuclei could constrain the nonlinear interactions. For example, some recent work
suggests that the ratio of the nuclear matter “skewness” (which is related to the third
derivative of the energy with respect to density at equilibrium) to the compression
modulus K is constrained by monopole vibrations. Although a recent calculation of
nuclear ground-state properties shows little correlation with this ratio [21], a more
detailed examination of dynamical effects could provide meaningful constraints.

To summarize, precise predictions of the properties of neutron stars apparently require
more accurate calibrations of the nuclear equation of state than are currently available. It
is especially important to have the high-density behavior of the “standard” components
{ neutrons, protons and electrons) under control before one can make reliable statements
about the existence of “new” physics. Since the window on experimentally observable
nuclear properties is a narrow one, producing an equation of state that can be extrapolated
with confidence remains a major challenge.
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