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Tidal deformation of neutron stars from microscopic models of nuclear dynamics
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The observation of the gravitational wave signal GW170817, consistent with emission from the inspiral of
a binary neutron-star system, provided information on the tidal deformation of the participating stars. The
available data may be exploited to constrain the equation of state of dense nuclear matter as well as to
shed light on the underlying models describing nuclear dynamics at the microscopic level. In this paper, we
compare the experimental results to the predictions of different theoretical models, based on nonrelativistic
nuclear many-body theory, the relativistic field-theoretical formalism, and a more phenomenological approach
constrained by observed nuclear properties. Although the precision of the available data does not allow to resolve
the degeneracy of the models, our analysis shows a distinct sensitivity to the star compactness predicted by the
different equations of state, which turns out to be significantly affected by relativistic boost corrections to the
nucleon-nucleon potential.
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I. INTRODUCTION

On August 17, 2017, the Advanced LIGO-Virgo detector
network made the first observation of the gravitational wave
(GW) signal labeled GW170817, consistent with emission
from a coalescing binary neutron-star (NS) system [1]. The
detection of this signal, and the later observation of electro-
magnetic radiation by space- and ground-based telescopes [2]
arguably marked the dawning of the long anticipated age of
gravitational-wave astronomy.

A great deal of effort is being made to exploit the in-
formation extracted from event GW170817 to constrain NS
properties, most notably the radius, which are, in turn, related
to nuclear matter properties encoded in its equation of state
(EOS), such as the compressibility module and the symmetry
energy, see Ref. [3] and references therein. The new data
will also be critical to the progress of nuclear matter theory
because they provide an unprecedented opportunity to test
microscopic models of nuclear dynamics in the regime of high
density and low temperature, which cannot be accessed by
terrestrial experiments.

GWs emitted during a binary inspiral are driven by the
tidal deformation of the participating stars, which is largely
determined by the nuclear matter EOS [4]. However, the-
oretical studies are often carried out using models of the
EOS which are only partially derived from a microscopic
description of the dynamics of dense nuclear matter, see,
e.g., Ref. [5], or simple phenomenological parametrizations
based on the information available from measured nuclear
properties, see, e.g., Ref. [6]. Although the results of these
analyses provide valuable information, the extension to the
case of fully microscopic models, applicable over the whole
range of densities relevant to NSs, is needed to fully exploit
the potential of GW observations and shed new light on
nuclear dynamics. This issue will be all the more important

in view of the detection of the GW emitted in the aftermath
of the excitation of quasinormal modes [7–9] because the
interpretation of the signals will require the understanding of
NS properties other than the EOS, see Ref. [10] and references
therein.

In this paper, we analyze the tidal deformation predicted by
different neutron-star models to highlight the role played by
the description of nuclear dynamics at the microscopic level.
The widely employed models that will be referred to as APR1
and APR2 [11,12] as well as the model recently proposed
by the authors of Ref. [13], Benhar and Lovato, referred to
as BL, have been obtained within the framework of nonrel-
ativistic nuclear many-body theory (NMBT), using a nuclear
Hamiltonian strongly constrained by the available empirical
information on two- and three-nucleon (NNN) systems. The
EOS referred to as GM3, on the other hand, has been derived
using the formalism of relativistic quantum field theory and
the mean-field approximation [14,15]. This scheme will be
referred to as relativistic mean-field theory (RMFT). For
comparison, we have also included in our paper a more phe-
nomenological EOS, labeled LS, obtained from extrapolation
of nuclear properties within the conceptual framework of the
liquid drop model [16]. The BL, GM3, and LS models have
been also recently compared in a study of neutrino luminosity
and gravitational wave emission of protoneutron stars [17].

Our paper does not include results obtained using the dy-
namical model based on chiral effective field theory (χEFT).
While providing an accurate description of the properties of
light nuclei, see, e.g., Ref. [18], chiral potentials are derived
from a low-momentum expansion. They are, therefore, inher-
ently limited in the ability to describe dense nuclear matter in
which nuclear interactions involve large momenta [19]. This
problem is highlighted in Ref. [20], whose authors plainly
state that using interactions obtained from χ EFT the EOS
of neutron matter can be reliably calculated only up to one
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to two times the equilibrium density of isospin-symmetric
nuclear matter "0. In view of the fact that the central density
of a neutron star of mass M = 1.4 M! typically exceeds
3"0, chiral Hamiltonians do not appear to be best suited for
calculations of neutron-star properties.

The main features of the dynamical models of neutron-star
matter are summarized in Sec. II, whereas the formalism em-
ployed to obtain the tidal deformability is outlined in Sec. III.
The numerical results of our work are reported and discussed
in Sec. IV. Finally, in Sec. V, we sum up our findings and state
the conclusions.

II. MICROSCOPIC MODELS OF THE
EQUATION OF STATE

According to NMBT, nuclear matter can be modeled as a
collection of pointlike protons and neutrons, whose dynamics
are described by the nonrelativistic Hamiltonian,

H =
∑

i

p2
i

2m
+

∑

j>i

vi j +
∑

k> j>i

Vi jk, (1)

where m and pi denote the nucleon mass and momentum,
respectively, whereas vi j and Vi jk describe two- and three-
nucleon interactions. The two-nucleon potential, that reduces
to Yukawa’s one-pion-exchange potential at long distances, is
obtained from an accurate fit to the measured properties of
the two-nucleon system in both bound and scattering states,
whereas the purely phenomenological three-body term Vi jk
is needed to explain the ground-state energies of the three-
nucleon bound states and obtain a reasonable account of the
empirical equilibrium properties of isospin-symmetric nuclear
matter.

The many-body Schrödinger equation associated with the
Hamiltonian of Eq. (1) can be solved exactly, using stochastic
quantum Monte Carlo (QMC) techniques for nuclei with mass
number A up to 12. The energies of the ground and low-lying
excited states turn out to be in remarkably good agreement
with the experimental data [21]. In the A → ∞ limit, the
QMC method has been applied to treat both pure neutron
matter (PNM), see Ref. [21], and, more recently, isospin-
symmetric nuclear matter (SNM) [22]. Accurate calculations
of the ground-state energy can also be performed using the
variational method [11].

In the APR1 model, matter is assumed to consist of neu-
trons, protons, electrons, and muons in β equilibrium. The
baryonic equation of state—constructed combining PNM and
SNM results—is obtained from a Hamiltonian comprising the
Argonne v18 nucleon-nucleon (NN) potential [23] and the
Urbana IX (UIX) three-nucleon (NNN) potential [24]. The
expectation value of the Hamiltonian in the ground state, de-
scribed by a trial wave function including correlation effects,
is computed using the cluster expansion formalism and chain
summation techniques [11].

The APR2 model—in the literature often referred to as
APR—is similar to the APR1 but takes into account the rela-
tivistic correction arising from the boost of the NN potential
to a frame in which the total momentum of the interacting
pair is nonvanishing. These corrections are required to use

FIG. 1. Ground-state expectation value of the NNN potential
per particle, obtained with (UIX∗) and without (UIX) inclusion of
relativistic boost corrections to the Argonne v18 NN potential. The
solid and dashed lines correspond to SNM and PNM, respectively.

the phenomenological Argonne v18 potential—designed to
describe interactions between nucleons in their center-of-mass
frame—in the locally inertial frame associated with the star.

Inclusion of the boost correction results in the appearance
of a sizable repulsive contribution to the potential energy
associated with the NN potential and to a corresponding
reduction of the repulsion arising from the NNN potential.
The modified NNN potential, to be used in conjunction with
the boost-corrected Argonne v18 NN potential will be referred
to as UIX∗.

The APR2 EOS of SNM also includes a density-dependent
correction to the variational ground-state energy, meant to
effectively take into account contributions not included in the
calculation. This correction, adjusted to reproduce the empir-
ical saturation properties, reaches a maximum of 4.5 MeV—
corresponding to ≈30% of the interaction energy—at subnu-
clear density " ∼ 0.11 fm−3 and rapidly decreases to become
negligible in the density region relevant to the NS core.

The impact of the relativistic boost correction on the de-
termination of the potential describing three-nucleon forces is
illustrated in Fig. 1. It is apparent that the difference between
the potential energy per particle corresponding to the UIX
and UIX∗ interactions begins to be appreciable just above
the equilibrium density of SNM "0 = 0.16 fm−3 and grows
steeply with ".

The large decrease in the repulsion arising from three-
nucleon interactions leads to a softening of the EOS, clearly
reflected in the density dependence of the pressure of SNM,
displayed in Fig. 2. The solid and dashed lines represent
the results obtained from the APR2 and APR1 models, re-
spectively. For comparison, the shaded area shows the region
consistent with the data obtained from the analysis of nuclear
collisions discussed in Ref. [25], providing a constraint on the
pressure at " ! 2"0.

The BL model exploits the formalism based on corre-
lated wave functions and the cluster expansion to devise
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FIG. 2. Density dependence of the pressure of SNM. The solid
line corresponds to the APR2 model, including the effect of rela-
tivistic boost corrections to the NN potential, whereas the dashed
line represents the results of the APR1 model. The shaded area
corresponds to the region consistent with the experimental data
reported in Ref. [25]. The density is given in units of the equilibrium
density "0 = 0.16 fm−3.

an effective NN potential, including the effects of two- and
three-nucleon forces as well as the density-dependent screen-
ing of nuclear interactions arising from strong correlations
in coordinate space. This effective potential—obtained from
a bare Hamiltonian comprising the Argonne v′

6 [26] and
UIX potentials—is well behaved and allows to describe the
properties of nuclear matter at arbitrary proton fraction us-
ing standard perturbation theory and the basis of Fermi gas
eigenstates [13].

Within RMFT, nucleons are described as Dirac particles
interacting through meson exchange. In the simplest imple-
mentation of this scheme, the dynamics are modeled in terms
of the scalar-isoscalar field σ , that can be identified with a
narrow two-pion resonance and a vector-isoscalar field, the
ω meson [27]. In addition, the GM3 model employed in this
paper includes the vector-isovector ρ meson [14,15]. The
equations of motion obtained from this scheme can only be
solved in the mean-field approximation, which amounts to
treating the meson fields as classical fields. The nuclear matter
EOS can then be obtained in closed form, and the meson
masses and coupling constants appearing in the Lagrangian
density can be determined by fitting the empirical properties
of SNM, that is, the binding energy, equilibrium density, and
compressibility.

The models derived within NMBT suffer from the limi-
tations inherent in the nonrelativistic approximation, leading
to a violation of causality, determined by the stiffness of the
EOS in the " → ∞ limit. On the other hand, RMFT, although
being relativistically consistent by construction, is based on a
somewhat simplified dynamics and is not constrained by NN
data. Moreover, it is plagued by the uncertainty inherent in the
use of the mean-field approximation, which is long known to
fail in strongly correlated systems [28].

FIG. 3. Mass-radius relations corresponding to the EOSs em-
ployed in this paper. The meaning of the labels is explained in Sec. I.
The box represents the 90%-confidence-level estimate of mass and
radius reported by the LIGO-Virgo Collaborations [34].

The EOS labeled LS corresponds to the bulk component
of the EOS of Lattimer and Swesty [16]. This model, specif-
ically designed for easy implementation in stellar collapse
simulations, has been derived from the liquid drop model of
the nucleus taking into account the constraints from nuclear
phenomenology.

All models considered in our analysis are compatible with
the observation of a neutron star of mass M ! 2 M! [29], see
Fig. 3 below.

III. TIDAL DEFORMATION

A tide is the deformation of a body produced by the gravi-
tational pull of another nearby body. Because the deformation
depends on the body’s internal structure, the observation
of tidal effects in binary neutron-star systems may provide
valuable information on the EOS of neutron-star matter.

The orbital motion of two stars gives rise to the emission
of GWs that carry away energy and angular momentum.
This process leads to a decrease in the orbital radius and,
conversely, to an increase in the orbital frequency.

In the early stage of the inspiral, characterized by large
orbital separation and low frequency, the two stars—of masses
M1 and M2 with M1 ! M2—behave as pointlike bodies, and
the evolution of the frequency is primarily determined by the
chirp mass M, defined as

M = (M1M2)3/5

(M1 + M2)1/5
. (2)

The details of the internal structure become important
as the orbital separation approaches the size of the stars.
The tidal field associated with one of the stars induces a
mass-quadrupole moment on the companion, which, in turn,
generates the same effect on the first star, thus, accelerating
coalescence. This effect is quantified by the tidal deformabil-
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ity, defined as

' = 2
3

k2

(
c2R
GM

)5

, (3)

where M and R are the star’s mass and radius, respectively,
and k2 is the second tidal Love number [30]. For any given
stellar mass, the radius and the tidal Love number are uniquely
determined by the EOS of neutron-star matter.

According to the Newtonian theory of gravity, the effect
of a quadrupole tidal field is driven by the tidal momentum,
defined as

Ei j = − ∂2)

∂xi∂x j

∣∣∣∣
)x=)rc

, (4)

where ) is the external gravitational potential. The body sub-
ject to the tidal momentum, whose center-of-mass position is
specified by the vector )rc, develops a quadrupole deformation
and the associated quadrupole moment,

Qi j =
∫

d3x
(

xix j − 1
3
δi j r

)
"()x), (5)

where " is the mass density and r is defined by the equation
r2 = δi jxix j .

The tensors Qi j and Ei j are both symmetric and traceless.
In the weak-field approximation, they are related through

Qi j = −λEi j, (6)

and simple dimensional considerations lead to

λ = 2
3 k2R5G−1, (7)

where the dimensionless constant k2 is the second tidal Love
number of Eq. (3) and 2/3 is a conventional factor.

The general relativistic treatment of quadrupole deforma-
tions of neutron stars involves the study of linearized perturba-
tions of the equilibrium configurations [31]. The metric tensor
is written as

gαβ = g(0)
αβ + hαβ, (8)

where

g(0)
αβ = diag(−e2ν(r), e2ϕ(r), r2, r2 sin2 θ ) (9)

is the metric of static and spherically symmetric space-time,
and the perturbation fulfills the requirement |hαβ | * 1.

Quadrupole effects are associated with the 0 = 2 even-
parity contribution to the expansion of hαβ in tensorial spheri-
cal harmonics, whose radial shape is described by the function
H (r), obeying the differential equation [30],

H ′′ + H ′
{

2
r

+ e2ϕ

[
2M(r)

r2
+ 4πr(P − ε)

]}

+H
[
−6e2ϕ

r2
+4πe2ϕ

(
5ε + 9P + ε + P

dP/dε

)
−(2ν ′)2

]
= 0.

(10)

Integration of Eq. (10) and of the Tolman-Oppenheimer-
Volkoff (TOV) equations [32,33] allows to determine the

second tidal Love number, whose expression can be cast in
the form

k2 = 8
5C5(1 − 2C)2[2 + 2C(y − 1) − y]

×{2C[6 − 3y + 3C(5y − 8)]

+ 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] log (1 − 2C)}−1,

(11)

where C and y are defined as

C = M
R

, y = R
H ′(R)
H (R)

, (12)

with M and R being the star mass and radius, respectively.
Equation (11) shows that given a model of the EOS deter-

mining the values of M and R, a calculation of the tidal Love
number k2 requires the knowledge of the functions H and H ′,
obtained from Eq. (10), evaluated at r = R.

IV. NUMERICAL RESULTS

The analysis of the GW170817 signal of Ref. [1] allowed
a precise determination of the chirp mass, the resulting value
being M = 1.188+0.004

−0.002 M!. On the other hand, the estimates
of the component masses and their ratio q = M2/M1 depend
on the assumptions made on the NS spins. In this paper, we
will consider the results obtained in the “low-spin” scenario
in which the NS spin parameter is restricted to values in
agreement with galactic binary NS measurements.

The mass-radius relations corresponding to the EOSs em-
ployed in our paper are shown in Fig. 3. The box rep-
resents the region compatible with the 90%-confidence-
level estimates of mass and radius extracted from the anal-
ysis of the GW170817 event, yielding R1 = R2 = 11.9 ±
1.4 Km, 1.18 " M2 " 1.36 M!, and 1.36 " M1 " 1.58 M!
[34]. These values have been obtained using the spectral
parametrization of the EOS [35]—constrained to support a NS
with mass M ! 1.97 M!—at densities " > "0/2 and the Sly
EOS of Ref. [36] at lower densities.

Although the accuracy of the available data does not al-
low to resolve the degeneracy between the results of differ-
ent models, it clearly appears that the GM3 EOS is only
marginally compatible with observations. The curves corre-
sponding to the BL and APR1 EOSs, obtained from NMBT
using similar nuclear Hamiltonians, lie close to one another,
whereas the differences with respect to the APR2 model show
that the relativistic boost correction to the NN potential and
the associated modification of the NNN potential result in an
appreciable softening of the EOS, see Fig. 2.

The tidal deformability '—computed using Eq. (3) with
the values of mass and radius obtained from the EOSs de-
scribed in Sec. II—is displayed in Fig. 4 as a function of the
stellar mass. The vertical bar represents the 90%-confidence-
level estimate, 70 " '(1.4 M!) " 580, obtained by the au-
thors of Ref. [34] by expanding the function M5'(M ) around
M = 1.4 M!. The emerging pattern, showing that, for any
given M, the results obtained from different models are
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FIG. 4. Tidal deformability obtained from the EOSs described
in Sec. II, displayed as a function of the stellar mass. The vertical
bar in the lower panel represents the range of ' for a star of
mass M = 1.4 M!, extracted from the analysis of the GW170817
signal [34].

ordered according to the compactness C, see Eq. (12), are
consistent with Fig. 3.

The authors of Ref. [1] also report the results of an analysis
aimed at pinning down the tidal deformability of the compo-
nents of the binary system '1 and '2.

Assuming a uniform prior on the quantity,

'̃ = 16
13

[
(M1 + 12M2)M4

1'1 + (M2 + 12M1)M4
2'2

]

(M1 + M2)
(13)

determining the GW phase, its value in the low-spin scenario
has been constrained to '̃ " 800 at 90% confidence level.
The posterior distribution function for '1 and '2 was derived
using this constraint and assuming that both stars in the binary
system can be described using the same EOS.

In order to compare theoretical predictions to these data,
for each EOS, we have generated pairs of stars with masses
M1 and M2, distributed according to the joint probability
distribution reported in Ref. [1] for the low-spin scenario.
Because the initial condition for the integration of the TOV
equations is the central density "0, not the mass of the star, we
have solved the equations for a wide range of central densities
to obtain the function M("0). Interpolation of this function
in the region in which dM/d"0 ! 0, corresponding to stable
equilibrium configurations, yields the values of central density
of the stars belonging to the binary system, needed to obtain
their radii and tidal deformabilities.

The radii of NSs with masses M1 and M2 within the ranges
reported by the authors of Ref. [34], obtained using the EOSs
described in Sec. II, are listed in Table I.

The results of our calculations of the tidal deformabilities
'1 and '2 are displayed in Fig. 5 together with the data
resulting from the analysis performed by the LIGO-Virgo
Collaborations [1]. The thick curves corresponding to differ-
ent EOSs are clearly ordered according to compactness and
appear to be all compatible with the data at 90% confidence

TABLE I. Radii of NSs with masses in the ranges estimated
by the authors of Ref. [34]—1.36 " M1/M! " 1.58, and 1.18 "
M2/M! " 1.36—computed using the EOSs considered in this paper.
The first and second rows report the radii extracted from the analyses
of Refs. [34,37], respectively.

EOS R1 (km) R2 (km)

[34] 10.50–13.30 10.50–13.30
[37] 11.98–12.88 11.89–12.98
APR1 12.21–12.28 12.28–12.30
APR2 11.46–11.58 11.58–11.70
BL 12.38–12.52 12.52–12.61
GM3 12.90–13.24 13.24–13.43
LS 12.48–12.82 12.82–13.00

level. However, only those obtained from NMBT fall within
the region bounded by the 50%-confidence-level contour. The
curve corresponding to the APR1 model is not included in the
figure because it turns out to be nearly indistinguishable from
that labeled BL.

V. SUMMARY AND CONCLUSIONS

We have compared the data obtained from the analysis of
the GW170817 event, detected by the LIGO-Virgo Collabora-
tions [1,34], to the predictions of different microscopic mod-
els of nuclear dynamics, based on NMBT and RMFT. For the
sake of completeness, the results of a more phenomenological
approach, derived from the liquid-drop model of the nucleus,
have been also included in our paper.
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FIG. 5. Probability density of the tidal deformability parameters
'1 and '2, obtained from the analysis of the GW170817 signal. The
thick solid lines represent the results of calculations carried out using
the EOSs described in Sec. II. The dashed lines show the boundaries
of the regions enclosing 50% and 90% of the posterior probability
density.
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The choice to consider matter consisting of nucleons only
appears to be reasonable in view of the masses of the coalesc-
ing stars, whose values have been estimated to lie in the range
of 1.2–1.6 M!. In a NS with mass in this range, the density is
unlikely to exceed 3"0—with "0 being the equilibrium density
of isospin-symmetric nuclear matter—and the transition to
more exotic phases, involving strange baryons or deconfined
quarks, is not expected to occur.

Even though the precision of the available experimen-
tal information does not allow to resolve the degeneracy
between the predictions of different models, our analysis
shows a distinct sensitivity to the star compactness, whose
value is driven by the EOS and the underlying description
of nuclear dynamics. Models based on NMBT in which the
dynamics is strongly constrained by the properties of the
two- and three-nucleon systems, yield similar predictions as
shown by a comparison between the results obtained from the
APR1 and BL models. However, the inclusion of relativistic
boost corrections to the NN potential and the associated
modification of the NNN potential result in a softening of
the EOS at high density, leading to a sizable change in
the mass-radius relation determining the compactness. It is
also worth noting that boost corrections push the occur-
rence of the noncausal behavior of the EOS towards higher
density, thus, expanding the range of applicability of the
APR2 model of Ref. [12]. On the other hand, a compari-
son between the results obtained from NMBT and RMFT
suggests that the low compactness predicted by the GM3
EOS is likely to be ascribed to the mean-field approxima-
tion and to the use of a simplified dynamical model, rather
than to relativistic corrections to the potential describing NN
interactions.

The possibility to extract more stringent constraints, com-
bining the data collected by the LIGO-Virgo Collaborations
with those obtained from observations of bursts in accreting
low-mass x-ray binaries, has been recently investigated by
the authors of Ref. [37]. Although yielding mass ranges
close to those reported by Ref. [34], this analysis—based on
a phenomenlogical parametrization of the EOS—sets more
stringent bounds on the radii R1 and R2, see Table I.

The first observation of GW from a coalescing double NS
binary system and the ensuing developments of the multimes-
senger approach have allowed to obtain valuable new infor-
mation on the nuclear matter EOS. Although being important
in their own right—in that they allow to pin down average
properties of dense nuclear matter, such as the compressibility
and the symmetry energy—these data have the potential to
shed light on the underlying dynamics at the microscopic
level. Future observations with improved sensitivity may
allow to constrain the NNN potential models in the high-
density regime in which interactions involving more than two
nucleons become dominant and shed light on the limits of
applicability of the nonrelativistic approximation.

ACKNOWLEDGMENTS

This work was supported by the Italian Istituto Nazionale
di Fisica Nucleare (INFN) under grant TEONGRAV. The
authors are deeply indebted to A. Maselli for his many sug-
gestions and continued advice. Thanks are also due to V.
Ferrari and L. Gualtieri for countless illuminating discussions
on gravitational waves and neutron stars. Finally, O.B. grate-
fully acknowledges the hospitality of the Theoretical Physics
Department at CERN where this paper has been prepared.

[1] LIGO Scientific Collaboration and Virgo Collaboration, B. P.
Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).

[2] LIGO Scientific Collaboration and Virgo Collaboration, B. P.
Abbott et al., Astrophys. J. Lett. 848, L12 (2017).

[3] L. Baiotti, Prog. Part. Nucl. Phys. 109, 103714 (2019).
[4] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.

Rev. D 81, 123016 (2010).
[5] I. Tews, J. Margueron, and S. Reddy, Phys. Rev. C 98, 045804

(2018).
[6] P. G. Krastev and B.-A. Li, J. Phys. G: Nucl. Part. Phys. 46,

074001 (2019).
[7] N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron. Soc.

299, 1059 (1998).
[8] O. Benhar, E. Berti, and V. Ferrari, Mon. Not. R. Astron. Soc.

310, 797 (1999).
[9] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70, 124015

(2004).
[10] K. Glampedakis and L. Gualtieri, in The Physics and Astro-

physics of Neutron Stars, edited by L. Rezzolla, P. Pizzochero,
D. I. Jones, N. Rea, and I. Vidaña (Springer Nature, Cham,
Switzerland, 2018), p. 673.

[11] A. Akmal and V. R. Pandharipande, Phys. Rev. C 56, 2261
(1997).

[12] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.
Rev. C 58, 1804 (1998).

[13] O. Benhar and A. Lovato, Phys. Rev. C 96, 054301 (2017).
[14] N. K. Glendenning, Astrophys. J. 293, 470 (1985).
[15] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett. 67,

2414 (1991).
[16] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331

(1991).
[17] G. Camelio, A. Lovato, L. Gualtieri, O. Benhar, J. A. Pons, and

V. Ferrari, Phys. Rev. D 96, 043015 (2017).
[18] D. Lonardoni, J. Carlson, S. Gandolfi, J. E. Lynn, K. E. Schmidt,

A. Schwenk, and X. B. Wang, Phys. Rev. Lett. 120, 122502
(2018).

[19] O. Benhar, arXiv:1903.11353.
[20] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J.

860, 149 (2018).
[21] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[22] D. Lonardoni, I. Tews, S. Gandolfi, and J. Carlson,
arXiv:1912.09411.

[23] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

045807-6



TIDAL DEFORMATION OF NEUTRON STARS FROM … PHYSICAL REVIEW C 101, 045807 (2020)

[24] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,
and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[25] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592
(2002).

[26] R. B. Wiringa and S. C. Pieper, Phys. Rev. Lett. 89, 182501
(2002).

[27] J. D. Walecka, Ann. Phys. (NY) 83, 491 (1974).
[28] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

(Benjamin, New York, 1972).
[29] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.

Hessels, Nature (London) 467, 1081 (2010).
[30] T. Hinderer, Astrophys. J. 677, 1216 (2008).

[31] K. S. Thorne and A. Campolattaro, Astrophys. J. 149, 591
(1967).

[32] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[33] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[34] LIGO Scientific Collaboration and Virgo Collaboration, B. P.

Abbott et al., Phys. Rev. Lett. 121, 161101 (2018).
[35] L. Lindblom, Phys, Rev. D 82, 103011 (2010).
[36] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151

(2001).
[37] M. Fasano, T. Abdelsalhin, A. Maselli, and V. Ferrari, Phys.

Rev. Lett. 123, 141101 (2019).

045807-7


