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Overview of Neutron Star Structure

�

recall: �� � ��� �� 	
 � � 
� � � � � � � ��� � � � ��� 
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? : hyperons,

-condensate,
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quark matter

note: most of the

neutron star mass is

in the region
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EOS and properties of nonrotating neutron stars

�

given the EOS, mass and radius of a nonrotating star can be
obtained from the Tolman-Oppenheimer-Volkov (TOV)
equations (hydrostatic equilibrium + Einstein eqs)

� � ��� �
��

� � 	

�� ��� � 
 � ��� �� � �� 
 ��� � 
 ��� � � � ��� � � � � �

� � 
� � � 	 ��� � � � � ��

��� � � � �

�
�

� � � �� � � �� � �
� � �� � � � � ���

�

solving TOV equations one obtains a set of neutron star
configurations, characterized by the radius

�

, defined
through

� � � � � �
, and the mass � � � �
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Maximum neutron star mass

�

typical mass-central energy-density curve

�

maximum mass given by

�� � � � ��
�

�

�
��� ��� � ���

� �
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Compilation of measured neutron star masses

Hulse & Taylor: binary pulsar

20 accurate measurements of bynary systems yield

a recent determination of the mass of the X-ray pulsar Vela
X-1 yields
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Predicted maximum masses vs data

�

bottom line: most EOS support a stable neutron star of mass

� 1.4 M �

EOS based on nucleonic degrees of freedom predict
maximum masses typically 2 M

the presence of a core of deconfined quark matter lowers the
maximum mass by 10

the appearance of hyperons makes the EOS significantly
softer, typically leading to

if confirmed, the measured mass of Vela X-1 will rule out
soft EOS, thus leaving little room for the occurrence of
“exotic” matter
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NS mass vs central density
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NS mass vs central density
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Constraints from heavy-ion collisions
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Constraints from heavy-ion collisions
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Recent observational developments

�

Iron and Oxygen transitions recently observed in the spectra
of 28 bursts of the X-ray binary EXO0748-676 correspond
to a gravitational redshift � � �

�

��

(Cottam et al, 2002)

is related to the mass-radius ratio through

yielding

i.e.
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Predicted

�

ratios vs data
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APR2, BBS1: nucleons only, nonrelativistic ; APRB120,
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Further constraints on the

� �

ratios
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Proton fraction
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NS cooling: fast vs normal
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Cooling of hybrid stars
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URCA process of hybrid stars
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Rotating stars
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Moments of inertia
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Gravitational waves from neutron stars

�

a neutron star emits GW at the (complex) frequencies of its

quasi-normal modes

� g-modes: main restoring force is the buoyancy force

� p-modes: main restoring force is pressure

� f-modes: intermediate between g- and p-modes

� w-modes: pure space-time modes

� r-modes: main restoring force is the Coriolis force

in newtonian theory the frequency of the f-mode is
proportional to the average density of the star
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GW emission and EOS

�

how do neutron star oscillation modes associated with GW
emission depend upon the EOS ?

example: the frequencies of axial (odd parity) w-modes are

eigenvalues of a Schrödinger-like equation, whose potential

explicitly depends upon the EOS
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GW emission and EOS (continued)

�

frequency of the 1st w-mode
vs star compactness (Benhar,
Berti & Ferrari, 1999)

the pattern of frequencies reflects the stiffness of the EOS.
Softer EOS correspond to higher frequencies

for a given EOS, the frequency depends weakly upon
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GW emission and EOS (continued)

� �

-mode frequency as a function of the neutron star mass
(Benhar, Ferrari & Gualtieri, 2004)
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�

stars containing hyperons
and strange stars have much
higher frequencies
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GW emission and EOS (continued)

�

a set of empirical relations linking the mode frequencies to
and

�

can be inferred from the results of theoretical
calculations (Benhar, Ferrari & Gualtieri, 2004)
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GW emission and EOS (continued)

�
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Extracting and from GW frequencies

�

empirical relations between frequencies and star parameters

can also be obtained for the p- and w- modes. For example

� 	 �
�

� � 
 �
�

�
� 	

� � � � � � 
 �
�


�� �
�

�

symultaneous detection of GW signals associated with
different modes would provide up to five equations for the
two unknown

�

and
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A numerical experiment (Andersson & Kokkotas, 1998)

� select a model polytropic
star and compute and

� compute frequency and
damping time of the
f-mode and the 1st w-mode

� plot the four lines
corresponding to the
empirical relations

� the intersection of the four
lines gives the correct
and with a few percent
accuracy
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Will GW from neutron stars ever be detected ?

�

Assume that the

�

-mode of a neutron star with

� � � � �
� � ��� � � � � �
�

� � ��� has been excited

�

The signal emitted can be modeled as (Ferrari et al, 2003)

� ��� � � � ���� � � � � � �
	 � � ��
 
 � � � � ��� � � �� �
� �

�

and the energy stored into the mode is

� ��
� � ��� �

�
� �

��� � � � � � � � � � ���

�

Will the VIRGO interferometer be able to detect this signal ?
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Detection of GW from neutron stars (continued)

� VIRGO noise power spectral density ( � � � � � � , � � � � � � � � )

�
�

� � � � � � � �� � 	 �
�

� � 
 � �
�

� � � � � � 
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 � 
 � � � 
 �
� � � �

with � � � � � � and � � � � � � � �

� Signal to noise ratio

�� � � �

�
�

���
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�
�

� � �
� � �

� � � � � � requires

�
� � ��� � �	� � � � 
 � for a source in our

galaxy and � ���
� � for a source in the VIRGO cluster
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