Chapter 2

The equation of state

The equation of state (EOS) is a nontrivial relation linking the thermo-
dynamic variables specifying the state of a macroscopic physical system. The
most popular example is Boyle’s ideal gas law, stating that the pressure of
a collection of N noninteracting, pointlike classical particles, enclosed in a
volume V, grows linearly with the temperature 7" and the average particle
density n = N/V.

The ideal gas law provides a good description of very dilute systems,
in which interaction effects can be neglected. In general, the EOS can be
written expanding the pressure, P, in powers of the density (from now on,
we will use units such that K = 1) according to

P=nT [14nB(T)+n’C(T)+...] . (2.1)

The coefficients appearing in the above series, called virial expansion, depend
on temperature only and describe the departure from the ideal gas law arising
from interactions.

The EOS carries a great deal of dynamical information and provides a
link between measurable macroscopic quantities, such as pressure and tem-
perature, and the forces acting between the constituents of the system at
microscopic level.

2.1 The van der Waals fluid

This dynamical content of the EOS can be best illustrated using the van
der Waals fluid as an example. This system consists of a collection of particles
interacting through a potential featuring a strong repulsive core followed by
a weaker attactive tail, as schematically illustrated in Fig.2.1.
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Figure 2.1: Behavior of the potential describing the interactions between con-
stituents of a van der Waals fluid (both the interparticle distance r and v(r) are
given in arbitrary units).

The EOS of a van der Waals fluid is usually written in the form

nT
P = —an?, 2.2
1—nb (22)
where the two quantities ¢ and b account for interaction effects. We will now
show that a and b can be simply related to the potential v(r).
The total energy of a system consisting of N nonrelativistic particles of
mass m, enclosed in the volume V' and interacting through the potential v,
is

E=K+U (2.3)
with
N 2
K = = 2.4
; et (2.4)
and

N
U= Z v(|r; — ) . (2.5)
j>i=1
where r; and p; denote position and momentum of the i-th particle, respec-
tively.
The free energy at temperature 7' can be obtained from

F = —Tlog/e_g dr (2.6)
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where dI' is the phase space volume element

dr = Hd% H dgpz . (2.7)

i=1

Substitution of Eq. (2.3) in the right hand side of Eq. (2.6) leads to
the factorization of the integral. For an ideal gas (IG), i.e. when U = 0,

integration over the particle coordinates simply yields the result V" and one
finds

Frg = —Tlog VN e T, (2.8)
implying in turn
1 [y 4 v
F = FIG_TIOgW Hdrie T
i=1
1 N
_u
= FIG—TlOg W/Hd?)ri(e T—1)+1 (29)
i=1

We will now make the assumption that the system be so dilute that the
probability of symultaneous collisions involving more than two particles be
negligible. As the particles are identical, we can then rewrite the integral
appearing in the second line of Eq. (2.9) as

_1 /Hd% —%— ) , (2.10)

where v;; = v(|r; — r;|). The integrand only depends on the positions of
particles 1 and 2, so that the remaining integrations, yielding a factor V=2,
can be carried out right away. Moreover, as N is a large number N(N —1) =~
N?, and Eq. (2.9) becomes

1 /N\?
3 (7) /d3r1d3r2 (e_T — 1) +1

In the low density limit, which is appropriate as we are dealing with a dilute
system, the integral in the above equation, being proportional to (N/V)? is
small. We can therefore use the result log(z + 1) ~ = at + < 1 to obtain

T (N’ 2
F = F[G - 5 (V) /d37'1d37'2 (e_T - 1) . (212)
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The interaction potential depends on the relative coordinate only. Hence,
defining

Riz=;(ri+r2) , Tiz=11-17 (2.13)

DN | =

we can replace
/d37‘1d37'2 <€‘_U1T2 — 1) -V /d3T12 (e_UITZ — 1) (214)

(2.15)

to obtain

with .
B(T) =3 /d3r12 (1 = e‘%) : (2.16)

Finally, from

oF
p__ (%" 9.1
<6V>N,T (217)
and N
Pig =T (2.18)

it follows that the EOS of a dilute gas can be written as a virial expansion, in-
cluding terms of first and second order in the particle density N/V (compare
to Eq. (2.1))
N N
P=—-T|1+—=B(T)| . 2.19
o1+ 8] (2.19)
Let us now go back to the van der Waals fluid, and consider the expansion
of the quantity B(T') of Eq. (2.16) in powers of the ratio Uy /T, Uy > 0 being
the depth of the attractive part of the interparticle potential (see Fig. 2.1).
First, we split the integral in two parts according to (see Fig. 2.1)

2ro v
B(T) = 277/0 (1 - e—¥) rlydris + 277/2

T0

o

(1 - e_%) riydria . (2.20)

At 0 < r19 < 271 the potential energy is positive and very large, implying that
the exponential exp —vq5/7 is small and can be neglected. As a consequence,
we can define the quantity b as

2ro . ].6
b= 27r/0 (1 - e—%) ~ Tﬂrg . (2.21)

Note that, if we interpret ry as the particle radius, b equals four times its
volume.
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Condider now the second integral in the right hand side of Eq. (2.20).
For Uy /T < 1 the inequality |vio|/T < Uy/T implies

vie| /T < 1, (2.22)

and the integrand can be expanded in series of powers of v12/7. Keeping the
first nonvanishing term we obtain the result (recall that for 2r; < ri3 < 0o
v12 is always negative)

* a

V19| odris = T (2.23)

2T

T

2rg

that defines the positive constant a. Collecting the two pieces together we
can write

a
B(T)=b- T (2.24)
yielding (see Eq. (2.15))
N2

To write the EOS in the form P = P(N/V) we make use of the general
expression of the free energy of the ideal gas

”
Fi¢ = —NTlog % +NF(T), (2.26)

where f(T') is a function of temperature only. Substitution into Eq. (2.25)
leads to

F=Nf(T) —NTlog% —NT (logV— J:Z’)

NZ2a

> (2.27)

According with the hypotesis that the system be diluted, we now make the
assumption that

Nb<V (2.28)
implying
Nb Nb
log (V — Nb) =logV + log (1 — 7) ~logV — v (2.29)
and
e N?q
F = Nf(T)—- NTlog— (V — Nb) —
F(T) = NTlog (V= Nb) = =

Nb N2q
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Note that the above equation yields the correct result, F' = Fjg, in the limit
of infinite dilution, corresponding to V' — oco. On the other hand, it also
implies that the system cannot be compressed indefinitely, as for No/V > 1
the argument of the logarithm becomes negative.

Knowing the free energy, we can finally obtain the pressure from Eq.
(2.17), leading to

N Nb N\? NT N\?
p="roant— 22 () 4= (2 9.31
v T YT o) (V) TV N (V) a, (231)

ie. to Eq. (2.2) with n = N/V.
Equation (2.31) can also be rewritten in the form

2
P+ (%) a
showing that (compare to the ideal gas EOS, PV = NT) the occurrence
of interactions betwen the particles results in an increase of the pressure,
driven by the constant a, and a decrease of the available volume, driven by
the constant b (recall that b o< r§ can be related to the particle volume).

In spite of its simplicity, the van der Waals EOS provides a fairly accurate
description of systems exhibiting a liquid-gas phase transition, like water (in
this case the values of the parameters entering Eq. (2.31) are a = 2 X
107* J m® and b =6 x 1072° m?).

Defining the quantities

(V — Nb) = NT (2.32)

a 8a
Po=—5 , c=3Nb , T.=_—, 2.
272 Ve=3 27b (2:33)
and introducing the new adimensional variables
~ P ~ V ~ T

the van der Waals EOS can be rewritten in the form

<ﬁ + %) <17 - %) = g’f . (2.35)

Note that the above relation is universal, as it does not explicitely depend
on the constants a and b.

Figure 2.2 shows the relation between pressure in units of the critical
pressure, P, and density in units of the critical density, n = V,/V/, for different
values of T It appears that at T < T, i.e. T < 1, the curves exhibit both
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Figure 2.2: Behavior of the pressure (in units of the critical pressure) as a function
of density (in units of the critical density) for a van der Waals fluid. The different
curves are labelled according to the value of the ratio T = T/T,, T, being the
critical temperature. The diamond corresponds to the critical point P =V = 1.

a maximum and a minimum, whereas at T > T, i.e. T > 1, P becomes
a monotonically increasing function of n. The curve corresponding to the
critical temperature T = T, features a point of abscissa 7, such that

opP 2P
- = [ — =0. 2.
() -(5%) -0 (230

This point is called critical point. From Eqgs. (2.35) and (2.36) it follows that
e =1 and P(7,) = 1.

As already pointed out, the van der Waals EOS describes a system ex-
hibiting a liquid-gas phase transition. For 7" > T, the system is in the liquid
phase at density n > n, (n. = N/V,) and in the gas phase at n < n.. For
T < T, there is a density region ny; < n < ny, with ny; < n, and ny > n, in
which the two phases cohexist. The values of n; and ny are determined by
the requirements

ng(l—i>:—LTPmﬂ@. (2.38)

and
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These features are best illustrated by the phase diagram of Fig. 2.3,
showing the boundary of the regions corresponding to the different phases in
the (n,T) plane.
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Figure 2.3: Phase diagram of a van der Waals fluid.

The example of the van der Waals fluid shows that the EOS contains in-
formation on the dynamics driving the interactions between the constituents
of the system at microscopic level. The rather simple structure of the phase
diagram of Fig. 2.3 reflects the simplicity of the potential represented in Fig.
2.1.

In the case of strongly interacting matter, the complexity of the under-
lying dynamics leads to a much richer structure, schematically illustrated in
Fig. 2.4.

Under standard terrestrial conditions the elementary degrees of freedom of
the fundamental theory of strong interactions (Quantum Chromo-Dynamics,
or QCD) are confined within hadrons, and protons and neutrons cluster to
form nuclei. At much larger density and/or temperature, however, the situa-
tion dramatically changes, and many different forms of matter are expected
to become energrtically favoured. In the following sections we will discuss
the structure of matter at large density and low temperature, relevant to the
understanding of neutron star properties.



