
NON-PERTURBATIVE ASPECTS OF GAUGE

THEORIES

Lectured by M. Bochicchio at SNS-Pisa

Solutions to problems

by L. Lopez

1



L. Lopez

Problem 1

Write the resolution of identity that defines the Nicolai map as a Hitchin system in terms

of the non-hermitian connection Bλ = (Az + λDu)dz + (Az̄ + λ−1Dū)dz̄.

Solution

First of all we want to write equations
F−01 = µ−01

F−02 = µ−02

F−03 = µ−03

(1)

in terms of complex coordinates z = x0 + ix1, z̄ = x0− ix1, u = x2 + ix3 and ū = x2− ix3

on R2 ×R2
θ, where θ is the non-commutative parameter satisfying [∂u, ∂ū] = θ−11.

By definition

F−µν = Fµν − F̃µν , F̃µν =
1

2
εµνρσFρσ (2)

therefore

F−01 = F01 + F32

F−02 = F02 + F13

F−03 = F03 + F21 (3)

Introducing yα = (z, z̄, u, ū) one has

F01 =
∂yα

∂x0

∂yβ

∂x1
Fαβ =

∂z

∂x0

∂z̄

∂x1
Fzz̄ +

∂z̄

∂x0

∂z

∂x1
Fz̄z = −2iFzz̄ (4)

F32 =
∂yα

∂x3

∂yβ

∂x2
Fαβ =

∂u

∂x3

∂ū

∂x2
Fuū +

∂ū

∂x0

∂u

∂x2
Fūu = 2iFuū (5)

F02 = Fzu + Fzū + Fz̄u + Fz̄ū (6)

F13 = −Fzu + Fzū + Fz̄u − Fz̄ū (7)

F03 = i(Fzu − Fzū + Fz̄u − Fz̄ū) (8)

F21 = i(Fuz − Fuz̄ + Fūz − Fūz̄) (9)

thus

F−01 = µ−01 −→ i(Fuū − Fzz̄) = µ0, µ0 =
1

2
µ−01 (10)

Now defining Du = ∂u + iAu and Dū = ∂ū + iAū one has

[Du, Dū] = [∂u, ∂ū] + i([∂u, Aū] + [Au, ∂ū])− [Au, Aū]

= θ−11 + i(∂uAū − ∂ūAu)− [Au, Aū] (11)
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so

Fuū = ∂uAū − ∂ūAu + i[Au, Aū] = i(θ−11− [Du, Dū]) (12)

and (10) becomes

−iFzz̄ + [Du, Dū]− θ−11 = µ0 (13)

Moreover

F−02 = 2(Fzū + Fz̄u) = µ−02 (14)

F−03 = 2i(Fz̄u − Fzū) = µ−03 (15)

can be combined in

Fzū =
1

4
(µ−02 + iµ−03) = n (16)

Fz̄u =
1

4
(µ−02 − iµ−03) = n̄ (17)

Defining Dz = ∂z + i[Az, . . .] and Dz̄ = ∂z̄ + i[Az̄, . . .] then

−iDzDū = −i∂z(∂ū + iAū) + [Az, ∂ū + iAū] = ∂zAū − ∂ūAz + i[Az, Aū] = Fzū (18)

and −iDz̄Du = Fz̄u. Actually eq. (1) becomes
−iFzz̄ + [Du, Dū]− θ−11 = µ0

−iDzDū = n

−iDz̄Du = n̄

(19)

Now defining the non-hermitian connection Bλ = (Az + λDu)dz + (Az̄ + λ−1Dū)dz̄, then

Fzz̄(Bλ) = ∂zBz̄ − ∂z̄Bz + i[Bz, Bz̄] = ∂zAz̄ + λ−1∂zDū − ∂z̄Az
−λ∂z̄Du + i([Az, Az̄] + λ−1[Az, Dū] + λ[Du, Az̄] + [Du, Dū])

= Fzz̄ + i[Du, Dū] + λ−1DzDū − λDz̄Du

= i(µ0 + θ−11 + λ−1n− λn̄) (20)

therefore the first of eq. (19) can be replaced by

−iFzz̄(Bλ) = µ0 + θ−11 + λ−1n− λn̄ (21)
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Problem 2

Consider the second order contributions to 〈TrΨλ〉 , where

Ψλ = P exp i

∮
(Az + λDu)dz + (Az̄ + λ−1Dū)dz̄ (22)

is the twistor Wilson loop.

1. Find the terms that are obviously zero.

2. On the basis of dimensional considerations show how terms that are not obviously

zero vanish for θ →∞.

3. Explain why dimensional considerations could be insufficient to demostrate that

some of these terms vanish for θ →∞.

4. Show if all these terms vanish for finite θ.

Solution

The lowest non-trivial order in perturbation theory is

〈
∮
s

[(Az + λDu)dz + (Az̄ + λ−1Dū)dz̄](s)

∮
s′<s

[(Az + λDu)dz + (Az̄ + λ−1Dū)dz̄](s′)〉 (23)

where Du = ∂u + iAu and Dū = ∂ū + iAū.

1) Non-commutativity breaks the Euclidian O(4) symmetry leaving a residual O(2)×O(2)

symmetry in the planes (z, z̄) and (u, ū) . Therefore the only vevs that respect O(2) in-

variance of the vacuum involve the products ∂u∂ū and ∂ū∂u and fields contractions.

The trace in (23) is over the tensor product of the U(N) Lie algebra and the infi-

nite dimensional Fock space that defines the Hilbert space representation of the non-

commutative plane (u, ū). In fact the commutation relation [u, ū] = θ1 implies u =
√
θ a

and ū =
√
θ a†, where a and a† are the annihilation and creation operators respectively.

Moreover imposing ∂uu = ∂ūū = 1 one gets ∂u = −[θ−1ū, . ] = −[θ−1/2a†, . ] and

∂ū = [θ−1u, . ] = [θ−1/2a, . ] with [∂u, ∂ū] = θ−11.

Finally, since the Euclidean metric in complex coordinates (z, z̄, u, ū) is off-diagonal, the

only non vanishing contractions are 〈AzAz̄〉 and 〈AuAū〉.
2) In the large-θ limit in the Feynman gauge 〈AzAz̄〉 = 〈AuAū〉 so that in (23) they cancel

because of the i in the definition of Du and Dū. Thus one is left with∮
ds

∮
s′<s

ds′〈∂u(s)∂ū(s′)ż(s) ˙̄z(s′) + ∂ū(s)∂u(s
′) ˙̄z(s)ż(s′)〉

(24)
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Let’s consider the first term in the sum. This can be written as

∂u(s)∂ū(s
′) =

[∂u(s), ∂ū(s
′)]

2
+
{∂u(s), ∂ū(s′)}

2
(25)

The term with the commutator is ∼ θ−11 and comes out of the integral. The one with

the anticommutator, being symmetric in s and s′, comes out of the integral as well (the

dependence on s and s′ was a sort of fake dependence that has been introduced originally to

remember the order between the two operators, but once this has been taken into account

the dependence disappears). Before taking the vev one has to trace this expression over

the Fock space. The term with the commutator gives θ−1Tr1 while the one with the

anticommutator, since {∂u, ∂ū} ∼ θ−1N where N = a†a is the number operator, gives

θ−1
∑

n〈n|N |n〉 = θ−1
∑

n n. Once divided by the normalization factor Tr1 the first

contribution is finite while the second is infinite. But both the results must be multiplied

by the integral of a constant over the loop that is zero. The same argument applies to

the second term in (24), therefore these terms are zero even for finite θ.

3) We have seen that the contribution involving the anticommutator is infinite, thus, even

if by dimensional analysis this goes like θ−1, it is not guaranteed to vanish in the θ →∞
limit. It is anyway zero since it is multiplied by the integral of a constant over the loop

that is zero.

4) For finite theta not all the terms vanish. In fact, for instance, the terms 〈AzAz̄〉 and

〈AuAū〉 are only equal (and thus cancel) in the large-θ limit.
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Problem 3

Find whether in Nekrasov formula for the N = 2 SYM localization ‘commutes’ with

Pauli-Villars regularization of the zero modes of the determinants.

Solution

In Nekrasov computation of the partition function of N = 2 SYM theory there are two lo-

calizations. In the first localization, where susy is used, one reduces the partition function

to a sum of finite dimensional integrals over the moduli space of instantons. Afterwards,

by means of a second localization, one can reduce the finite dimensional integrals to a

sum of contributions of (noncommutative) Abelian instantons that are the fixed points

of a torus action. In order to perform this second localization, i.e. in order to have a

vanishing coboundary integral, one has to compactify the moduli space of the instantons

performing a noncommutative deformation of the gauge theory, i.e. defining it on a non-

commutative space-time. In this case in fact the scale size parameter ρ of the instanton

is bounded below at
√
θ, where θ is the noncommutative parameter, so that the UV

non-compactness is cured. The torus action on the noncommutative deformation of the

moduli space that allows one to perform the second localization is the diagonal Cartan

subgroup of SU(N) × SO(4). The latter is the group acting on the instantons moduli

space in a SU(N) gauge theory on ordinary commutative space-time.

The number of bosonic collective coordinates, i.e. the dimension of the muduli space, for

an instanton of charge k = 1 in ordinary SU(2) is eight. These are the position and

the size ρ of the instantons which are coordinates on the manifold SO(5, 1)/SO(5) of the

Euclidean conformal group divided the subgroup SO(5) (consisting of SO(4) rotations

and a combinations of conformal boosts and traslations) that leaves the instanton invari-

ant up to gauge transformations. In addition there are three gauge orientation collective

coordinates corresponding to a rigid SU(2) symmetry.

Instantons in SU(N) can be obtained by embedding SU(2) instantons in SU(N). If one

considers the embedding in which the instanton resides in the 2 × 2 block on the lower

right of a N ×N matrix, it is easy to see that the transformations generating new solu-

tions belong to SU(N)/SU(N − 2)×U(1) where SU(N − 2)×U(1) is the stability group

leaving the SU(N) instanton solution invariant. The number of collective coordinates,

i.e. the dimension of the previous coset space, is 4N − 5 that together with the position

and the scale of the SU(2) solution yields a total of 4N (4Nk for an instanton of charge k)

collective coordinates. On the top of that there are also fermionic collective coordinates.

A k-instanton solution in SU(N) has 2Nk fermionic collective coordinates for fermions

in the adjoint representation and k for fermion in the fundamental representation.
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Once the second localization is performed, namely a noncommutative space-time is in-

troduced, one has to consider the fixed points of the aforementioned torus action. These

are U(N) (noncommutative) instantons which split as a sum of U(1) noncommutative in-

stantons corresponding to N commuting U(1) subgroups of U(N). But these instantons

have no moduli and thus no zero modes, therefore one has to regularize first and then lo-

calize at the fixed points otherwise one would miss the correct powers of the Pauli-Villars

regulator.
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Problem 4

Compute the 1-loop β function of pure YM by the background field method.

Solution

The partition function of pure YM is

Z =

∫
DA e−SYM (26)

where

SYM =
1

2g2

∫
d4x trFµνFµν =

1

4g2

∫
d4x F a

µνF
a
µν (27)

In the previous formula, we used the following normalization for the trace in the funda-

mental representation

tr(tatb) =
1

2
δab (28)

The YM field strength is

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (29)

F a
µν = ∂µA

a
ν − ∂νAaµ − fabcAbµAcν (30)

Now split the gauge field into a classical background field and a fluctuating quantum field

Aµ = Āµ + δAµ. Then the YM field strength decomposes as follows

Fµν(Ā+ δA) = Fµν(Ā) +Dµ(Ā)δAν −Dν(Ā)δAµ + i[δAµ, δAν ] (31)

where Dµ(Ā) = ∂µ + iĀµ is the covariant derivative in the adjoint represention, i.e.

Dµ(Ā)δAν = ∂µδAν + i[Āµ, δAν ] (32)

(Dµ(Ā)δAν)
a = ∂µδA

a
ν − fabcĀbµδAcν = Dac

µ (Ā)δAcν (33)

with

Dac
µ (Ā) = ∂µδ

ac − fabcAbµ = ∂µδ
ac + iAacµ , Aacµ = Abµ(T b)ac = ifabcAbµ (34)

To define the functional integral we must gauge-fix using the Faddeev-Popov procedure.

We choose a gauge fixing condition which is covariant with respect to the background

gauge field

G(A) = DµδAµ − c (35)
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The Faddeev-Popov determinant involves the variation of this operator with respect to

the gauge transformation

δAµ → δAµ −Dµω (36)

namely, one has

det

(
δG

δω

)
= det(−∆Ā) =

∫
DηDη̄ exp

[∫
d4x η̄(−∆Ā)η

]
(37)

where

∆Ā = Dµ(Ā)Dµ(Ā) = ∂2 + i∂µAµ + 2iAµ∂µ − AµAµ (38)

and η and η̄ are anticommuting fields (FP ghosts) belonging to the adjoint representation.

As usual we can promote the gauge-fixing term to the exponent, to quantize the theory

in the background field analogue of Feynman-’t Hooft gauge. Namely, we can insert into

the functional integral∫
Dc exp

[
− 1

ξg2

∫
d4x tr(c2)

]
δ(DµδAµ − c) (39)

that corresponds to adding a new term tr(DµδAµ)2/ξg2 to the Lagrangian. Then the

gauge-fixed Lagrangian is

LFP =
1

2g2
trF 2

µν(Ā+ δA) +
1

ξg2
tr(DµδAµ)2 + η̄ (−∆Ā)η (40)

Keeping only the quadratic terms in δAµ (since we are doing a 1-loop computation)

F 2
µν(Ā+ δA) = F 2

µν(Ā) + (Dµ(Ā)δAν −Dν(Ā)δAµ)2 + 2iFµν(Ā)[δAµ, δAν ]

= F 2
µν(Ā) + 2(Dµ(Ā)δAν)

2 − 2Dµ(Ā)δAνDν(Ā)δAµ + 2iFµν(Ā)[δAµ, δAν ] (41)

where we used that Fµν(Ā)Dµ(Ā)δAν = 0, since integrating by parts this gives the equa-

tion of motion Dµ(Ā)Fµν(Ā) = 0. Again integrating by parts and using1

DµDν = DνDµ + iFµν (42)

tr(δAν [Fµν , δAµ]) = tr(Fµν [δAµ, δAν ]) = −tr(δAµ[Fµν , δAν ]) (43)

then the quadratic form becomes

tr{(Dµ(Ā)δAν −Dν(Ā)δAµ)2 + 2iFµν(Ā)[δAµ, δAν ]}
= tr{−2δAµ∆ĀδµνδAν + 2δAνDµDνδAµ + 2iFµν [δAµ, δAν ]} (44)

= tr{−2δAµ∆ĀδµνδAν + 2δAνDνDµδAµ + 2iδAνFµνδAµ + 2iFµν [δAµ, δAν ]}
= tr{−2δAµ∆ĀδµνδAν − 2(DµδAµ)2 − 4iδAµ[Fµν , δAµ]}

1Henceforth we will sometimes forget the bar on A since no confusion can arise.

9



L. Lopez

Moreover, we can choose ξ = 1 (Feynmann gauge) in (40) in such a way to cancel the

second term in (44).

In the end the quadratic form becomes

tr {δAµ(−2∆Āδµν − 4i adFµν)δAν} = tr{δAaµta[(−2∆Āδµν − 4i adFµν)δAν ]
btb}

= δAaµ[(−∆Āδµν − 2i adFµν)δAν ]
a = δAaµ(−∆Āδµν − 2i adFµν)

acδAcν

= δAaµ[−(∆Ā)acδµν + 2fabcF b
µν ]δA

c
ν (45)

where adFµν = [Fµν , .], (adFµν)
ac = F b

µν(T
b)ac = ifabcF b

µν , and

(∆Ā)ac = (Dµ)ad(Dµ)dc = ∂2δac + i∂µA
ac
µ + 2iAacµ ∂µ − Aadµ Adcµ (46)

Plugging in (26) and integrating over the fluctuations and the ghost fields, one gets2

Z = e−SYM (Ā)det−1/2(−∆Āδµν − 2i adFµν)det(−∆Ā) = e−Γ1−loop(Ā) (47)

where Γ1−loop(Ā) is the effective action for the classical fields Āµ to 1-loop order.

The first term in the determinant ∆Āδµν is called the orbital term, while 2i adFµν is called

the spin term.

Moreover

det−1/2(−∆Āδµν − 2i adFµν)) = det−1/2(−∆Āδµν)det
−1/2(1− 2i(−∆Ā)−1 adFµν)) (48)

The first term gives

det−1/2(−∆Āδµν) = det−2(−∆Ā) (49)

Therefore

e−Γ1−loop(Ā) = e−SYM (Ā)det−1/2(1− 2i(−∆Ā)−1 adFµν))det
−1(−∆Ā) (50)

Let’s start with the second determinant, namely

det−1(−∆Ā) = det−1(−∂2 − i∂µAµ − 2iAµ∂µ + AµAµ)

= det−1(−∂2)det−1
[
1 + (−∂2)−1(−i∂µAµ − 2iAµ∂µ + AµAµ)

]
(51)

Now using

det(1 +M) = etr log(1+M) = etrM−tr(M)2/2+... (52)

then

det−1(−∆Ā) = det−1(−∂2) exp
{
−tr[(−∂2)−1(−i∂µAµ − 2iAµ∂µ + AµAµ)]

}
× exp

{
tr[(−∂2)−1(−i∂µAµ − 2iAµ∂µ + AµAµ)(−∂2)−1(−i∂µAµ − 2iAµ∂µ + AµAµ)]/2

}
2We can factorize an irrelevant 2 overall in the quadratic form.
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The term det−1(−∂2) is an irrelevant constant while terms linear in Aµ vanish since

tr(ta) = 0. Moreover the term tr[(−∂2)−1AµAµ] is quadratically divergent and we can

neglect since we are only interested in log divergencies. Thus we are left with

det−1(−∆Ā) ∼ exp
{

tr[(−∂2)−1(i∂µAµ + 2iAµ∂µ)(−∂2)−1(i∂µAµ + 2iAµ∂µ)]/2
}

(53)

Let’s call V = i∂µAµ + 2iAµ∂µ, then

tr[(−∂2)−1V (−∂2)−1V )] = tr

∫
d4x

∫
d4yG(x− y)V (y)G(y − x)V (x) (54)

where

G(x− y) =

∫
d4p

(2π)4

e−ip(x−y)

p2
, G(y − x) =

∫
d4q

(2π)4

e−iq(y−x)

q2
(55)

and the trace is now simply a trace over gauge and space-time indices. Moreover one has

V (y)e−iq(y−x) = [2qµAµ(y) + i∂yµAµ(y)]e−iq(y−x) (56)

that, substituting

Aµ(y) =

∫
d4k

(2π)4
e−ikyAµ(k) (57)

gives

V (y)e−iq(y−x) =

∫
d4k

(2π)4
e−ikyAµ(k)[2qµ + kµ]e−iq(y−x) (58)

With the same steps

V (x)e−ip(x−y) =

∫
d4`

(2π)4
e−i`xAµ(`)[2pµ + `µ]e−ip(x−y) (59)

Plugging all back in (54) and integrating over d4x (it gives (2π)4δ(4)(q − p− `)) and d4y

(it produces (2π)4δ(4)(p− k − q)) one obtains

tr[(−∂2)−1V (−∂2)−1V )] = tr

∫
d4p

(2π)4

∫
d4k

(2π)4

∫
d4`

∫
d4q Aµ(`)Aν(k)

×(2pµ + `µ)(2qν + kν)

p2q2
δ(4)(q − p− `)δ(4)(p− k − q) (60)

Finally, integrating over d4q (q → p− k) and over d4` (`→ −k) this becomes

tr[(−∂2)−1V (−∂2)−1V )] = tr

∫
d4k

(2π)4

∫
d4p

(2π)4
Aµ(−k)Aν(k)

(2pµ − kµ)(2pν − kν)
p2(p− k)2

(61)

The log divergent part of the integral over d4p must be gauge invariant, so∫
d4p

(2π)4

(2pµ − kµ)(2pν − kν)
p2(p− k)2

= Π(k2)(k2δµν − kµkν) + . . . (62)
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where the dots stand for the quadratically divergent part.

Taking the trace over space-time indices one gets∫
d4p

(2π)4

4p2 + k2 − 4pk

p2(p− k)2
= 3k2Π(k2) (63)

We are interested in log divergencies, i.e.
∫
d4p/p4, therefore, expanding in power of k/p∫

d4p

(2π)4

4p2 + k2 − 4pk

p2(p− k)2
=

∫
d4p

(2π)4

4p2 + k2 − 4pk

p4[1 + (k2 − 2kp)/p2]

(1+ε)−1∼1−ε+ε2−→

∼
∫

d4p

(2π)4

−4k2 + k2 + 8(pk)2/p2

p4
= −

∫
d4p

(2π)4

k2

p4
= − 2k2

(4π)2
log

Λ

µ
= 3k2Π(k2)

In the previous formula we used a standard trick in field theory. Namely, symmetry allows

us to replace

pµpν → Ap2δµν (64)

into the integral. Tracing both sides, one gets A = 1/4. Similarly (pk)2 → p2k2/4.

Moreover, we regularized the following integral∫
d4p

p4
= 2π2

∫ ∞
0

dp

p
→ 2π2 log

Λ

µ
(65)

So one gets

Π(k2) = − 2

3(4π)2
log

Λ

µ
(66)

Lets check now that the log divergent part of (62) is really transverse, i.e. it vanishes

when contracted with kµ. Again expanding the denominator in (62) and contracting with

kµ one gets∫
d4p

(2π)4

(2pµ − kµ)(2pν − kν)
p2(p− k)2

∼
∫

d4p

(2π)4

1

p4

[
−8(pk)k2pν

p2
+

16(pk)3pν
p4

− 4(pk)2kν
p2

+ k2kν

]
Using (pk)2 → p2k2/4 and3 pµpνpρpσ → p4(δµνδρσ + δµρδνσ + δµσδνρ)/24 then∫

d4p

(2π)4

(2pµ − kµ)(2pν − kν)
p2(p− k)2

∼
(
−8

4
+

16

24
× 3

)
k2kν

∫
d4p

(2π)4

1

p4
= 0 (67)

Plugging back in (53) then

det−1(−∆Ā) ∼ exp

[
− 1

3(4π)2
tr

∫
d4k

(2π)4
Aµ(k2δµν − kµkν)Aν log

Λ

µ

]
= exp

[
− 1

3(4π)2

∫
d4k

(2π)4
Aacµ (k2δµν − kµkν)Acaν log

Λ

µ

]
= exp

[
− N

3(4π)2

(
1

4

∫
d4x F a

µνF
a
µν

)
log

(
Λ

µ

)2
]

(68)

3This must be a completely symmetric tensor, thus pµpνpρpσ → Bp4(δµνδρσ + δµρδνσ + δµσδνρ).
Tracing both sides twice, one gets B = 1/24.
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where in the last step we used

fabcfabd = Nδcd (69)

and that, for the term quadratic in Aaµ,

1

4

∫
d4xF a

µνF
a
µν ∼

1

2

∫
d4k

(2π)4
Aaµ(−k)Aaν(k)(k2δµν − kµkν) (70)

Now we have to compute the first determinant in (50). Since trFµν = 0 then

det−1/2(1− 2i(−∆Ā)−1 adFµν)) = exp
{
−tr[(−∆Ā)−1adFµν(−∆Ā)−1adFνµ]

}
(71)

Considering the lowest order (−∆Ā) ∼ (−∂2), then

tr[(−∂)−1adFµν(−∂)−1adFνµ] = tr

∫
d4x

∫
d4yG(x− y)adFµν(y)G(y − x)adFνµ(x)

= −N
∫
d4x

∫
d4y[G(x− y)]2F a

µν(y)F a
µν(x) (72)

where we used

tr(adFµνadFνµ) = (adFµν)
ac(adFνµ)ca = ifabcF b

µνif
cdaF d

νµ = −NF c
µνF

c
µν (73)

In the coordinates space

G(x− y) =
1

4π2(x− y)2
(74)

Since we are interested in log divergencies, we can expand Fµν(y) = Fµν(x) + . . . and keep

only the first term. Thus, defining z = x− y

tr[(−∂)−1adFµν(−∂)−1adFνµ] = − N

(4π2)2

∫
d4xF a

µν(x)F a
µν(x)

∫
d4z

z4

= − 2π2N

(4π2)2

∫
d4xF a

µν(x)F a
µν(x) log

Λ

µ

= − 4N

(4π)2

(
1

4

∫
d4xF a

µνF
a
µν

)
log

(
Λ

µ

)2

(75)

Therefore

det−1/2(1− 2i(−∆Ā)−1 adFµν)) = exp

[
4N

(4π)2

(
1

4

∫
d4xF a

µνF
a
µν

)
log

(
Λ

µ

)2
]

(76)

In the end, plugging all back in (50), one gets for the 1-loop effective action

Γ1−loop = SYM +

[
N

3(4π)2
− 4N

(4π)2

](
1

4

∫
d4xF a

µνF
a
µν

)
log

(
Λ

µ

)2

=

[
1

g2
− 11N

3(4π)2
log

(
Λ

µ

)2
](

1

4

∫
d4xF a

µνF
a
µν

)
(77)
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Therefore the original fixed coupling constant in the effective action is replaced by a

running coupling constant

1

2g2(Λ)
=

1

2g2(µ)
+

11N

3

1

(4π)2
log

(
Λ

µ

)
(78)

or

g2(Λ) =
g2(µ)

1 + 2 11N
3(4π)2 g2(µ) log

(
Λ
µ

) (79)

that is the solution at one-loop of the renormalization group equation for the β function

β(g) =
∂g

∂ log Λ
= −β0g

3, β0 =
11N

3(4π)2
g3 (80)

Eq. (78) can be also written as

Λ e
− 1

2β0g
2(Λ) = µ e

− 1
2β0g

2(µ) (81)

Thus, the combination

ΛYM = µ0 e
− 1

2β0g
2(µ0) (82)

where µ0 is any fixed scale, is independent of the choice of scale µ0, i.e. it is a renormal-

ization group invariant (at one-loop). It is called the strong coupling scale of YM.
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