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1. Interaction hamiltonian

As the photon number operator commutes with the hamiltonian of the radiation field, the occupation numbers
nkr, specifying the number of photons in the mode with wave vector k and polarization vector €y, are constant of
the motion of the free field. However, this is no longer the case as soon as the radiation field interacts with electric
charges and currents. These interactions may in fact lead to photon absorption and emission.

We will now discuss emission and absorption of photons by atomic electrons, which will be described using nonrel-
ativistic quantum mechanics.

First, we need to obtain the hamiltonian of a charged particle in presence of an electromagnetic field. The classical

equation of motion of a particle of mass m, charge ¢ and position x(t) in presence of an electric field E and a magnetic
field B is

mi(t) =qE+jxB, (1)
where the current j is defined as
J=qx(t) =qv, (2)
v being the particle velocity. Eq.(1) can be rewritten in terms of the scalar and vector potentials according to
0A
From the Lagrangian leading to the above equation of motion*,
1
L= omv —ap+a(A-v), )

we can readily obtain the classical variable conjugate to x,

T =mv+qgA , (5)
and the classical hamiltonian
1
H=7n%—L=— (7 —qgA)? )
mx— L 2m(7r qA)” +q¢ (6)

The hamiltonian of a collection of atomic electrons interactig with an electromagnetic field can be obtained using
the quantum mechanical generalization of eq.(6) and the results discussed in the notes on quantization of the electro-
magnetic field. The conjugate variable  has now to be interpreted as the quantum mechanical operator satisfying
the canonical commutation rule

[x, 7] =1 . (7)

Hence, we replace w — —iV and rewrite the first contribution to the right hand side of eq.(6) according to

1 1 .
%(n —qA)? - 5 [-V?+ig(V-A+A-V)+¢*A%] . (8)

Exploiting the Coulomb gauge condition V - A = 0, implying V - A = A - V, we can finally rewrite the quantum
mechanical hamiltonian

*a detailed derivation of this result can be found in: J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York,
1962), chapt. 12.
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H=—-—(p-A)+_—A 9
o~ (P A) oA+ qg, 9)
p being the usual quantum mechanical momentum operator.
Collecting all things together we can cast the full hamiltonian of the electrons in presence of the electromagnetic

field in the form
H=Hyg+ Hyjo1qa + Hing (10)

where H; and Hjy;eq only depend upon the dynamical variables of the electrons and the radiation field, respsctively,
whereas Hj;,; describes the electron-field interactions.
Recalling that in the Coulomb gauge the scalar potential satisfies Poisson’s equation

V2% =—p, (11)
and using the charge distribution appropriate for a collection of pointlike particles
P(X, t) = Z qid(x - Xi(t)) ) (12)

%

we can write the electron hamiltonian in the familiar form including a kinetic energy term and the potential energy
associated with electrostatic interactions

2
p; 1 44q;
Hy=Y PLyoy 44 (13
¢ —~ 2m 2; |x; — x|
The hamiltonian of the radiation field is
Hyjera =y, wiNir (14)
kr

where wy, = |k| and Ny, = aLTakr aLT and ak, being photon creation and annihilation operators, respectively. Finally,
the interaction hamiltomnian reads

Hine =3 [—%(pi A)+ j—mA] : (15)

i

Note that, in principle, H;,¢ should also include the interaction of the electron spin with the magnetic field, that we
will neglect.

2. Photon absorption and emission

Let us first consider absorption of a photon, characterized by k and ey,, associated with the
transition of an atom from the initial state |A) to the final state |B). The radiation field makes
a transition from the state |ny,) to the state |nx, — 1) (to simplify the notation, the occupation
numbers of the modes not affected by the transition are not listed).

As the vector potential A is linear in the photon creation and annihilation operators aLT and ay,,
only the terms linear in A in eq.(15) contribute to the one-photon absorption process. The term
quadratic in A would in fact change the number of photons by 0 or £2.

In first order perturbation theory, we can write the transition matrix element as (¢; = —e)

Mi = <f| Hint |Z> = <Ba Nkr — 1| Hint |Aa nkr)

e 1 Ci(wrt—kex;
= o (B e =1y [gp e S awe (b ) (4, o)
2

(& Nkr ik-x; —twpt
= C [ SN B e (p - ) [A) et 1
m \ 2Vwy, & (B] " (pi - €xr) |A) € (16)
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The corresponding matrix element for the case of photon emission reads
Mif - <f‘ Hint |Z> = <Ba Nkr + 1‘ Hint ‘A, nkr)

Tlkr +1 —ik-x; )
= 2ka Z(B| KX (D - €gy) |A) €25 (17)

A remarkable feature of the above result is that M;; # 0 for ny, = 0, implying the possibile occur-
rence of spontaneous photon emission. This prediction is a consequence of the quantum mechanical
treatment of the radiation field, having no classical analogue.

We will now evaluate the matrix element of eq.(17) in the so called dipole approximation. This
procedure can be applied when the spacial variation of the radiation field over the atomic size is
negligible, so that we can replace its values at the points x; with the value at x = 0. This amounts
to replacing

ek X 51 (18)

when the wavelength of the radiation field ) is such that A = |k|~™! > R, R being the typical atomic
size. Substitution into eq.(17) yields

e Nir + 1 ot
Mi - — B i r A Wk . ]_
1= o (Bl X aw) ) e (19)

The transition probability per unit time, w;r, can be readily obtained from the above amplitude
using Fermi’s golden rule of time dependent perturbation theory:

U)Zf:27T (S(EA—EB—wk) ‘M1f|2 y (20)

where F4 and Ep denote the energies of the initial and final atomic state, respectively. The -
function can be eliminated integrating over the final states available to the emitted photon. Using

(21)

implying that the phase-space available to a photon emitted in the solid angle d€2; with magnitude
of the wave vector between |k| and |k| + d|k| is [V/(27)3]d2%|k|?d|k|, we can rewrite the differential
transition probability

o ;2 5 [ R e (B i) [4) 8~ By — )
= # e::;k (nir + 1)|Pap - €| (22)
with
wy = k| = B4 — Eg (23)
and
Pap = (B| X_pi |4) - (24)

Eqgs.(22)-(24) yield the probability of emitting a photon with energy given by (23) and polarization
vector €, within the solid angle d€);. The matrix element of eq.(24) can be rewritten in a more
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familiar form, making it clear why the approximation of eq.(18) goes under the name of dipole
approximation. In Heisenberg’s picture we can rewrite P 45 as

Pap = (Bl Ypi [4) = m (B X% |4) = —im (B [ X xi, Hu] |4)

= —im (Ea— Eg)(B| Y_x; |4) = —im wy Xup, (25)
where
1 1
Xap = (B] d_x; |[4) = - (B| D |A) = - Dag , (26)
i

D being the electric dipole moment associated with the distribution of atomic electrons.
Substitution of eqs.(25) and (26) into eq.(22) leads to

dwif . 1 3

7. — g2 Wk (Mo +1)Dap- €rr|” - (27)
k

We are now left with the problem of carrying out the sum over possible photon polarizations. From
€ - €+ = 0. and €, - k = 0 it follows that (k = k/|k|)

2
Z eireir = 5ij - kzk] ) (28)
r=1

implying

> Dup - €|’ = Dagl* — (Dag - k)(Dip - k) = Dagl*(L - cos’0) , (29)

f being the angle between D 45 and k.
In conclusion, the probability per unit time of spontaneous (i.e. nyx, = 0) photon emission in the
atomic transition A — B is

dw; 1 +1
WAB = /ko (;&j) =3 Wi |Dagl|? 2%[1 (1 — cos? @)d cos 6
3
w
=5 Dasl”. (30)
Note that the same result might have been obtained using the dipole approximation from the very

beginnig, i.e. writing the interaction hamiltonian in the form

Hyy=-D-E(x=0,t), (31)

with the dipole moment D given bt eq.(26) and E(x = 0,t) = —(0A/0t)x=o-
The lifetime of the quantum state A, denoted by 7, is defined through
1

; zn: WA B, (32)
where the sum includes all possible atomic final states B,, i.e. all states compatible with the
appropriate selection rules.

First of all, the initial and final atomic states, |A) and |B,), are required to have opposite parity.
The parity of the states |A) and |B,) is specified by the eigenvalues of the equations
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P‘A> = PA‘A> ) P|Bn> = PBn|Bn> ) (33)

where P4, Pg, = + 1 and the parity operator P satisfies the relations P~ = P! = P. As under
parity transformation x goes into Pt x P = —x, we can write

(Bp|x|A) = —(B,|P'xP|A) = — Py P4(B,|x|A) , (34)

implying Pg, P4 = —1.

The total angular momenta of the states |A) and |B,,), J4 and Jg,, and their projections along the
quantization axis, J3 and J3 , must be such that AJ = Jy — Jg, =0,£1 and AJ> = J — J} =
0, %1. In addition, as the projection of the photon angular momentum cannot take the value .J3 = 0,
transitions between states with J3 = Jj, = 0 are forbidden.



