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1. Electron scattering by a static field

Let us consider electron scattering by a static external field, such as the Coulomb field associated with a heavy
atomic nucleus. The corresponding potential can be written

3 .
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while the S-matrix expansion reads:
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where ¢ is the electron field and, as usual, 7" and N denote time-ordered and normal product, respectively.
At lowest order, i.e. order 1 in the fine structure constant a = €?/4m, eq.(2) reduces to

S =ie / diz § (2) A(2)v () - 3)

The process described by the above S-matrix is depicted by the Feynman diagram GO, representing the interaction
between the electron and the exernal field, leading to the transition from the initial state |¢) = |pr) to the state
|y =p'r"), p= (E,p) and p' = (E',p’) being the initial and final electron four momenta.
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The matrix element of S of eq.(3) between the states |i) and |f) reads
Sir = (fIS|i) = (27) 6(E — E') NpyNpy My
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where V' is the volume of the normalization box. Note that the above equation only includes the energy conserving

d-function, resulting from the time integration in eq.(3). On the other hand, there is no three-dimensional J-function

expressing momentum conservation, as the space integration yields the Fourier transform of the potential (see eq.(1)).

This feature is a consequence of the fact in our treatment the momentum of the source of the static field is ignored. In

fact, introducing a source breaks translation invariance, thus immediately leading to breaking momentum conservation.
Energy conservation, as stated by the d-function in eq.(4)), requires

lpl =1p'| (5)



implying that the recoil energy of the source is consistently neglected.
As usual, the transition probability per unit time w;; is written in terms of the invariant amplitude M;; as
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where T denotes the interaction time and
Mis =ie @) (p')4(p’ — p)u(p) - (7)
The differential cross section
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can be readily obtained from the above equations using
Ip'[*dlp’| = |p'|E'dE 9)
and
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with the result
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Using the §-function to carry out the E' integration we can finally write the differential cross section, yielding the
probability that the electron be scattered into the element of solid angle dQ,,:
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wth q = p’ — p.
To be more specific, we will now identify the static field with the Coulomb filed of a heavy nucleus. In coordinate
space the corresponding potential reads

Z e
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while Fourier transforming to momentum space yields (see. eq.(1))
Ak (q) = (z@,o,o,o) . (14)

Substituting eq.(14) into eq.(12), summing over the final electron spin and averaging over the initial electron spin we
get
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where the r and ' sums have been carried out using the completeness relation fulfilled by Dirac’s spinors. The trace
involved in the above equation can be easily obtained from
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and the differential cross section can be rewritten
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where v and 6 denote the electron velocity and scattering angle (i.e. the angle between p and p'), respectively. Using
the relation
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we can finally recast eq.(18) in the form originally obtained by Mott.
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The Mott cross section describes elastic electron-nucleus scattering to lowest order in a. Obviously, it is a rather poor
approximation for heavy nuclei, having large Za.

In the nonrelativistic limit, i.e. setting v << 1 and E ~ m, we recover from eq.(19) the celabrated Rutherford cross
section
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whose experimental measeurement led to the development of the planetary model of the atom.

Note that the fact that Rutherford’s cross section has been obtained from a calculation carried out at lowest order in
a is somewhat surprising, since the same expression can be obtained in classical nonrelativistic mechanics as an exact
result *. The nontrivial solution of this puzzle was found by Dalitz, who was able to show that in the nonrelativistic
limit higher order corrections contribute a phase factor to the scattering amplitude, thus leaving the cross section
unaffected.

2. Bremsstrahlung

In the previous section, we have seen that the interaction with a static field deflects the incoming electron leaving
its energy unchanged. However, it is important to realize that, as an accelerated electron may also radiate, i.e. emit
real photons, elastic scattering is always mixed with the inelastic processes represented by the Feynman diagrams G1
and G2.

The occurrence of photon radiation, called ”bremsstrahlung” (”braking radiation”), has important experimental
implications and needs to be carefully taken into account. The main point to be realized is that measuring the elastic
scattering cross section amounts to counting the number of electrons hitting a detector with energies in the range
E - AE < E' < E+ AE, AFE being the detector resolution, i.e. the accuracy to which the energy of the scattered
particle can be determined. As a consequence, inelastic processes in which the emitted photon has energy smaller
than AFE cannot be distinguished from elastic processes. Their contribution must be calculated and subtracted from
the measured spectra to single out the elastic cross section.

In this section we will describe the calculation of the cross section of the processes represented by Feynman diagrams
G1 and G2, in which the incoming electron radiates a single photon of momentum |k| (and energy w = |k|) either
before or after interacting with the external field. The correspondig S-matrix elements (of order a®/?) reads

Sif = <f|S|i) = (271') 5(El +w— E) Npr/Nk Mif s (21)

*See, e.g., L. Landau and E. Lifchitz, Mécanique (Mir, Moscow, 1969) p. 75.



where (use Sp(p) = 1/(p—m) = (p+m)/(p* — m?))
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The differential cross section can be written
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Using the d-function to integrate over the energy of the outgoing electron, E’, we finally obtain
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The calculation of the above differential cross section with the invariant amplitude of eq.(22) involves lenghty
algebraic manipulations. Here we will only discuss the limit of small energy of the radiated photon, i.e. w = 0,
relevant to the experimental analysis of elastic scattering. In this limit

Ip'| = |pl, qQ=p' -p, (25)

and ¥ can be neglected in the numerator of the fermion propagators. As a consequence, the invariant amplitude takes
the simplified form

Mis = —ic® @ (p') A@)u™ (p) [ﬁ—k - %] . (26)

The above equation can be easily obtained starting from (w = 0)

ap!) 40075 T a)ut)(p) ~ o) 40957 Al (o) (27)
and using
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Substitution of eq.(28) into eq.(27) yields
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leading to (use the Dirac equation (™) (p')(j —m) = 0)
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Applying the same procedure to the second term in the last line of eq.(22) we finally obtain eq.(26).
Comparison between the amplitude of eq.(26) and that in absence of radiation (see eq.(7)),

MYy = ie @) (p)A(p' ~ p)u” () | (31)
shows that
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and (use eq.(24) and compare to eq.(12))
do m? |p' &3k
o = ToE u |Mif|2 haliihe
aQ,  (2m)% |p| 2w
/ 2 53
_ (4o a_(pe_pe|” &k 7 (33)
dQy ), (27)2 [Pk pk w

where (do/dQ,)o denotes the differential cross section in absence of radiation of eq.(12).

Besides displaying a simple factorized form, the right hand side of the above equation exhibits a singularity at
w = 0. For this reason it is said to be infrared divergent. Before discussing this feature in detail we will complete the
calculation of the differential cross section of eq.(33) carrying out the sum over the polarization states of the emitted
photon.

The procedure to perform the polarization sum exploits the requirement that the final result of our calculation be
gauge invariant and the fact that the amplitude of any process involving an external photon of polarization r can be
cast in the form (to simplify the notation the dependence of € upon k is omitted)

M = fr,uMgf . (34)

The polarization vector e, is gauge dependent, as can be easily seen in the case of a photon described in the Lorentz
gauge by

A, (z) = €67 . (35)
Let us consider the tranformation
Au(z) = Ayl (2) = Au(z) + 0uA (@), (36)
where the scalar function A satisfies
OA(z) =0 (37)

and we choose A(z) = ae®**. The above equations lead to
A (2) = (e, + iak,)e™™ = ¢, /e | (38)

showing that the gauge transformation changes the polarization vector €, into €,’.
Requiring that the amplitude (34) be unaffected by the replacement €, — €.’ amounts to require that

67‘7MM7f = fr,uIM?f = (€rp + iaku)M?f ) (39)
i.e. that

kM =0 (40)



The above result can be immediately employed to perform the sum
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The photon polarization vectors fulfill the completeness relation (see notes on photon propagator)
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Choosing the polarization vectors in the usual form:

e = 1" =(1,0,0,0) ,
e =(0,¢), r=1,2,3

with
67"65267'57 T>S:1727
k-, =0, r=1,2,
k
€3 = 77
[k|
implying
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we find (use the real photon condition k2 = 0)
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In conclusion, after summing over photon polarization the cross section reads (compare to eq.(33))

do _(do\ (-o) [p p]° &k )
dQ,  \dQy /), (2r)? |pk pk w

The divergence of the bremsstrahlung cross section at w=0 is a consequence of the fact that real photons have
vanishing rest mass. Therefore, it can be formally removed giving the photon a small finite mass A, i.e. setting
k2 = X2 and replacing

w= |kl > wx=+V[k]2+ A2, (48)

leading to (compare again to eq.(33))

do [ do a 2p'e  2pe 2 &’k (49)
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To carry out the sum over polarization states in the case of massive photons, we have to include both transverse
(r = 1,2) and longitudinal (r = 3) polarization. The sum can be easily obtained writing

3
> el = Ag" + BEME (50)
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and requiring (r = 1,2,3)
kuek =0, guete =-1, (51)
yielding B = —A/)\? and A = —1, i.e.
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The resulting cross section reads
do [ do (—a) [20"  2p 2 d3_k (53)
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Obviously, as A — 0 the above cross section reduces to the QED result and the infrared divergence reappears.
3. Radiative corrections

We have seen that the cross-section describing electron bremsstrahlung in a static external field behaves as d|k|/|k|,
implying that the probability of emitting a photon carrying zero energy is infinite. This unpleasant feature goes under
the name of infrared catastrophe.

As stated in Section 1, to better understand the origin of the infrared divergence and the mechanism driving its
dipappearance from the measured cross section, we have to carefully analyze the experimental conditions in which
bremsstrahlung is observed.

As the energy resolution of any detector is finite, the experimental device always accepts electrons scattered both
elastically and inelastically, provided the energy of the radiated photons is in the range 0 < w < AE, AE being the
experimental energy resolution. Hence, the experimental cross section can be written in the form

do ) ( do ) ( do )
= + , (54)
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where (do/dQ,)e is the elastic cross section and (do/dQ,)p denotes the inelastic bremsstrahlung cross section
integrated over the experimental energy resolution. In order to carry out a meaningful comparison between theory
and experiment, the two contributions appearing in the right hand side of the above equation must be calculated
consistently, i.e. at the same order in the fine structure constant c.

Using the results obtained in the previous sections and denoting again by (do/dQ,)o the lowest order elastic cross
section (eq.(12)) we can write

do do
= B
(de,>B (de,)O b (55)
with (to avoid the w = 0 singularity we give again the photon a small finite mass \)
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Consistency with the bremsstrahlung cross section requires that the elastic contribution be calculated including
corrections to (do/dQ, )o of order @, i.e. including R defined by

(d?za,> =(d§l§’,> (1+ak) . (57)
P/ el P /0




There are several types of corrections contributing to R.
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In principle, one should include the process in which the electron interacts twice with the external field (represented
by the second Born approximation diagram G3), processes in which the electron interacts with itself emitting and
readsorbing a photon (e.g. diagrams G4-G6) and processes involving the appearance of an electron-positron pair
(diagram GT).

The processes represented by diagrams G4 and G5 contribute only to the mass and wave function renormalization,



since the radiative correction occurs in the external lines. Diagram G6, besides contributing to the spurious charge
renormalization, provides the largest observable effect. Finally, diagram G7 contributes a true charge renormalization
and an observable vacuum polarization effect.

After renormalization, the amplitude receives contributions only from diagrams G0, G6 and G7, the resulting
expression being

ie @) (p")y*u" (p) A, (a) +ie @) (') [e2 AW, p)] u" () Au(a)
+ie 0 (p" )y ul (p) [—€® Te(q®)] Apu(a) - (58)

While II.(¢?) remains finite as w — 0, the term containing A#(p', p) (diagram G6) is infrared divergent. Interference
between this term and that associated with the lowest order process (diagram GO0) leads to the appearance of a
correction of order a to the lowest order cross section. We will show that this correction contains an infrared
divergent contribution that exactly cancels the divergence of the bremsstrahlung cross section at w = 0.

Consider the vertex function appearing in the invariant amplitude associated with diagram G6. As we will be
focusing on the infrared behavior only, the cutoff factor taking care of the ultraviolet divergence will be omitted, and
we will use once more the standard trick of giving the photon a finite mass A. QED will be recovered taking the limit
A — 0 in the final result. The vertex function can then be written
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To isolate the observable part A#(p’, p) we have to identify the ultraviolet divergent part. In the case of free initial

and final electrons, i.e. for p? = p'2 = m?, and in the limit p’ — p, Lorentz invariance requires (to simplify the
notation, the spin indices of the Dirac’s spinors will be omitted hereafter)

u(p)A* (p, p)u(p) = A a(p)v*u(p) + B p"u(p)u(p) - (60)
The above equation can be rewritten using Gordon’s identity (see Appendix)
2m a(p')y*u(p) = a(p') [(p+ p)* +ic™(p — p')v] u(p) , (61)
implying
ptu(p)u(p) = ma(p)y*u(p) - (62)
The resulting expression is
u(p)A* (p, p)u(p) = (A + mB)u(p)y*u(p) = Lu(p)y*u(p) , (63)
L being a scalar constant. At p’ # p we define A¥(p', p) through
A*(p',p) = Ly* + AL(P',p) (64)
with the obvious condition
u(p)AL (p,p)u(p) =0 . (65)

As already stated, after renormalization only A¥(p',p) appears in the amplitude we are interested in. We will come
back to this point later.

As we are only interested in the limit w = 0 we can rewrite eq.(60) neglecting terms linear in &k in the numerator
of the fermion propagators, in exactly the same way as we did in the calculation of the bremsstrahlung cross section
of the previous section. As a result, we find
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The ko integration involved in the above equation can be carried out using Cauchy’s theorem.

Im k,

In principle, to evaluate the integral along the contour shown in the figure, one should collect the contributions of
three simple poles located at wy — i, wp — in and wy — in, with

wyx = VIKkZ+ A,
and
wp=E, +Ip—k|>?+m? |, wy =Ey++/[p'—k>+m?,

where E, = /|p|? + m? and Ey = /|p'|? + m2. However, at w = 0, implying in turn |k| = 0, only the residue of
the pole at wy contributes to the final result, since in this limit w, ~ 2E, and wy ~ 2E, . Hence, we can write

3 /
e’ a(p) A (1, p)u(p) = e u(p')y"u(p) <_%) (271r)3 i_f W

= ¢ u(p' )y u(p) AW,p) , (66)

the three-dimensional integration being restricted to the region corresponding to |k| &~ 0. We are now in the condition
of subtracting the Ly* piece from A*(p',p) to get the observable piece A¥(p',p). From

e” u(p' )AL (p',p)u(p) = €* u(p’) [A* (¥, p) — Ly*] u(p) (67)
and
e” u(p)A*(p,p)u(p) = €* L u(p)y*u(p) = € u(p)v"u(p) A(p,p) (68)
it follows that
L=Ap,p) = AW, P) = 5 [A(p,p) + AW, D)) | (69
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implying in turn
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In conclusion, substituting the above result into eq.(58) and using the lowest order amplitude given by eq.(31) we

can write the amplitude associated with diagram G6 in the factorized form
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Interference bwtween the above amplitude and M?f produces a correction of order « to the lowest order elastic

cross section, to be included in the quantity R appearing in eq.(57). After integration over the experimental energy
resolution we can finally write

- L N R
= (2m)? /)\SwASAE W [(p’k) (pk)] T (72)

where the dots denote terms that remain finite in the A — 0, w — 0 limit.
Finally, comparison between eq.(72) and eq.(56) shows that R and B cancel one another and the observed cross
section

(), (&), penrem

is finite in the A — 0, w — 0 limit.

APPENDIX

Proof of Gordon’s identity

Dirac’s equation obviously implies
u(p') [d( —m) + ¢ —m)d]u(p) = 0.
It follows that
a(p') (dp + #¢) u(p) = 2miu(p')du(p) = 2ma,a(p’)y u(p) -

The quantity enclosed in round brackets in the left hand side of the above equation can be rewritten using

" = %{7“,7”} + % [v*,7"] = g —id"”
and
YAkt = g" +idt”
with the result
¢p + gt = ap "7 + 0,7 ) = au [ +P)ug"” +ilp — P .
leading to

a(p') [(p +p")wg"” +ilp — p)vo™u(p) = 2ma(p’)y"u(p) -
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