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1. Summary of Maxwell’s theory

The celebrated Maxwell’s equations, summarizing the basic laws of electricity and magnetism, are a set of coupled,
first-order partial differential equations linking the electric and magnetic fields, E(x,t¢) and B(x,t), to the charge
density and current p(x,t) and j(x,t). Using a system of units in which ¢ = 1 they can be written in the form
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From egs.(1) and (2) it follows that charge density and current satisfy the continuity equation
dp
V-j+-=L=0 )
it5 =0, ()
implying conservation of the electric charge
Q= [ &z pix,t). (6)

To obtain eq.(6) we have used the identity stating that, given any vector v, V - (V x v) = 0. From the same
identity and from eq.(3) it follows that the magnetic field B can be written as the curl of a new vector field A(x, )
according to:

B=V xA. (7)

The above equation defines the vector potential A. Substitution of eq.(7) into eq.(4) yields

0A
E+—]=0 8
vx(B+5) =0, ®)
implying in turn that the quantity enclosed in round brackets can be written as the gradient of a scalar function:
(minus) the scalar potential ¢(x,t) (recall that, for any scalar function ¢, V x (V1) = 0). The electric field can then
be rewritten

E=-Vj- . 9)

Obviously, the electric and magnetic fields defined by eqgs.(7) and (9) satisfy Maxwell’s equations (3) and (4) by
construction. Substitution of eqs.(7) and (9) into the remainig pair of equations, i.e. egs.(1) and (2), yields

OA\ ., 0 _
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o} O0A .

Finally, using the vector identity V x (V x v) = V - (V - v) — V2v) the above equation can be rewritten

2 A VIiV-A —
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Eqgs.(7), (9), (10) and (12) provide an alternate formulation of Maxwell’s theory, in which the physical fields B and
E are replaced by the potentials ¢ and A. Eqgs.(7) and (9) give B and E in terms of ¢ and A, while egs.(10) and (12)
are the equations of motion describing the evolution of the scalar and vector potentials. It has to be noted, however,
that egs.(10) and (12) are coupled second order partial differential equations, and no longer first order equations as
eqs.(1) and (2). In the new formulation the state of the fields at time ¢ is determined by the values of both A and
OA /Ot at the initial time t.

From eqs.(7) and (9) it follows that the physical fields are not uniquely specified. In fact, replacing

A—>A'=A-VA (13)
and
. oA
b=¢ =9+, (14)

A being any scalar function, obvioulsy leaves the magnetic field B unaffected, since V x (VA) = 0. In addition,
substitution of A’ and ¢' given by the above equations into the definition of the electric field, eq.(9), leads to

E—>E’:—V(¢+%)—%(A—VA)

0A
=-V¢-—=E.
¢ ot
The combination of transformations (13) and (14) goes under the name of gauge transformation.
The ambiguity in the definition of the fields implied by the invariance of Maxwell’s theory under gauge transforma-
tions can be reduced choosing a specific gauge, i.e. requiring that the potentials satisfy a specific constraint, or gauge
condition. The two most commonly used gauges are the Lorentz gauge, defined by the condition

o¢
VA = 1
+ e 0, (15)
and the Coulomb gauge, defined by
V-A=0. (16)

Let us consider the Lorentz gauge. First, it has to noticed that eq.(15) still does not specify the vector and scalar
potentials in a unigque fashion. In fact, if A and ¢ satisfy eq.(15), so do A’ and ¢’ given by

A'=A-VA (17)
and
oA’
!
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provided the scalar function A’ is a solution of
02N’
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Use of the Lorentz gauge condition allows one to decouple eqs.(10) and (12), that can be rewritten in the more
symmetric form
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On the ohter hand, the equations obtained using the Coulomb gauge condition are still coupled. Eq.(10) reduces to



Vp=—p, (22)

i.e. to Poisson’s equation for the scalar potential generated by the charge distribution p, while from eq.(12) one
obtains

DA:j—V%?. (23)

2. Fourier decomposition of the classical radiation field

If there are no charges, i.e. for p(x,t) = 0, the unique solution of Poisson’s equation (22),
t)
o= [#a LED (24)
is
$=0. (25)

Hence, in the Coulomb gauge, and in absence of charges and currents, the scalar potential vanishes and the vector
potential satisfies the equations

OA =0 (26)

V-A=0. (27)

Note that eq.(26) represents a set of three equations, satisfied by the components of A, while eq.(27) is a relation
between the components of the vector potential, implying that they are not linearly independent.

A solution of eq.(26) satisfying periodic boundary conditions in each of the three space dimensions of a cubic box
of side L can be written

uk(x, t) — % €x ei(k.x—wkt) , (28)

where V = L?, w;, = |k| and the components of the wave vector k fulfill

27 27 2T
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with ng,ny,n, =0,£1£2....
Requiring that uy (x,t) of eq.(28) also satisfy the Coulomb gauge condition leads to the transversality condition for
the polarization vector

kK-ex=0, (30)

implying that, for any given wave vector k, €k lies in the plane perpendicular to k. Hence, we can define two real
unit vectors, €x1 and €gs, such that ek, ex2 and k/|k| form a set of mutually orthogonal unit vectors satisfying

€k - €kpt = Oppr (31)

GkT'kZO . (32)

In conclusion, the general solution of the equation of motion (26) satisfying the Coulomb gauge condition (27) can
be written as a linear combination of the complete set of functions defined by eq.(28) according to (remember that
the A is a real function)

A(x,t) = Z Z [exrtkr (X, 1) + Clep e, (X, )]

k r=1
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where

Cier (1) = crpe™ ™kt (34)
and the functions
1 x
Uk,r(x) = W €xkr QZk . (35)

satisfy the orthogonality and normalization condition

/d3:L' u, (X)uger e (x) = EkTVﬂ /d3,z' pi(k—k')x _ P S (36)

3. Energy of the classical radiation field

The classical energy of the electromagnetic field, given by
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can be rewritten using the Fourier decomposition of the vector potential A, eq.(33), wih the result
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kr kvl
Ockr
ot

tiger (%) + c.c.] - [5‘§t’r’ (%) + c.c.]} . (38)

The calculation of the magnetic contribution to H involves integrations of the type
Iy = / P (V % e (x)) - (V X 1,0 ()
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The above result can be easily obtained using the periodic boundary conditions and the identities (V xu)-(V xv) =
V ux (Vxv)]+u-[Vx(Vxv)]and Vx (Vxu)=V-(V-u)-Vu
The electric contribution involves integrals of the type

30 ac*: [ *
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Collecting all terms together we finally find
H ="} [eer()eier () + cier (B err ()] (40)
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where the coeflicients cik,(t) satisfy the differential equation
G (t) = —wi a(t) (41)

i.e. the equation of motion of a classical harmonic oscillator of angular frequency wy and unit mass. Note that, the
coefficients ck,(t) being complex numbers, [ci,(t)cg, (t) + ¢, (t)cxr(t)] = 2¢kr(t)cr,. (). The reason why H has been
written as in eq.(40) will become apparent in the next section.



The fact that the energy of the radiation field can be cast in the form (40), with cy,.(t) satisfying eq.(41), suggests
that H can be seen as the classical energy of a collection of independent harmonic oscillators of unit mass, oscillating
in the directions specified by €y, with angular frequencies wy. Comparison between eq.(40) and the classical harmonic
oscillator energy

1
H= Z 5 @ir + wz‘m%ﬂ*) ’ (42)
kr

where 2x, and py, are classical canonical variables, shows that the quantities appearing in the left hand side of eqs.(40)
and (42) can be identified provided ck, and cj,. satisfy

1 ) " 1 .
Clr = m(wkxkr +iper) G = m(wkxkr — iPkr) (43)

implying in turn the inverse relations

Tkr = Ckr + Clp , Pxr = —iwg(Ckr — Cgp) - (44)

4. Quantization of the harmonic oscillator

Having pointed out the formal analogy between the energy of the classical radiation field and the energy of a system
of classical harmonic oscillators, we now want to generalize to the quantum mechanical case.

Let us consider, for simplicity, a single harmonic oscillator of unit mass and angular frequency w. Its quantum
mechanical hamiltonian reads

1
h= 50" +wa?), (45)

where z and p are now the position and momentum operators in Hilbert’s space, satisfying the commutation rule (we
use units such that A =1)

[z,p] =i (46)

The hamiltonian of eq.(45) can be rewritten in terms of the operators a and af, defined as

1 1
a=—(wz+1 , al = —(wz —ip) , 47
m( p) «/ﬂ( p) (47)
and satisfying the commutation rule that follows immediately from eq.(46)):
[a,al]=1. (48)
Using eqgs.(45) and (48) we find
h= %(al'a—}—aaf) = g(ZaTa—f—l) =w (aTa+ %) , (49)

showing that the hamiltonian can be rewritten in terms of the hermitean operator N = ata. The diagonal matrix
elements of N satisfy the inequality

(a|Nla) = (alatala) =Y (ala'|B){Blala) = D [(Blala)® >0, (50)
5 5

implying in turn that the lowest eigenvalue of N, ng, is non negative. From the eigenvalue equation
Nn) = ataln) = n|n) (51)
and the commutation rule (48) it follows that

Naln) = (a'a)a|n) = (aa' — 1)aln) = (n — 1)a|n) . (52)



Hence, a|n) is an eigenstate of N belonging to the eigenvalue (n — 1). In the same fashion it is easy to show that
Na'|n) = (n + 1)al|n) , (53)

i.e. that af|n) is an eigenstate of N belonging to the eigenvalue (n + 1).
As ng is the minimum eigenvalue of N, the corresponding eigenstate must satisfy a|no) = 0. As a consequence, the
eigenvalue equation

N|ng) = afa|n0) = ng|no) (54)

necessarily implies ng = 0. Finally, it can be shown* that n can only be an integer.

The fact that the spectrum of N is composed of non-negative integers implies that the energy of the quantum
mechanical harmonic oscillator is quantized. The eigenvalues of N give the number of oscillator quanta, while the
normalized eigenstate belonging to any eigenvalue n can be obtained applying n times the operator a! to the vacuum
state |0). In fact, from

any =vnln-1) , afln)=vn+1n+1) (55)
it follows that
(ah)"
=) (56)

In conclusion, the eigenvalue equation for the hamiltonian operator can be written

1 1
hin) = w (N + 5) |n) = w <n+ 5) |n) . (57)
In the Heisemberg picture, a generic operator O evolves in time according to
A(t) = et 0 e7tHt | (58)
H being the hamiltonian operator. The above definition leads immediately to Heisenberg’s equation of motion
i0(t) = [O(t), H] . (59)

In the case of the harmonic oscillator, using the hamiltonian (49), we find that the time evolution of the operator a(t)
is dictated by the equation

ia(t) = [a(t), h] = wla(t),a’d] , (60)
implying
a(t) = —iwal(t) (61)
and
a(t) =a e ™t . (62)

5. Quantization of the electromagnetic field
Using the results of the previous section, we can write the hamiltonian of a collection of quantum mechanical

harmonic oscillators as

*the intersted reader can find a proof in: C. Cohen-Tannoudji, B. Diu and F. Laloé, Quantum mechanics (Wiley-Interscience,
New York, 1977), p. 492.



H= Z (akrakr + akTaLr) . (63)

Comparison with eq.(40) immediately shows that the energy of the electromagnetic field can be identified with the
above hamiltonian, provided the coefficients ck, and cj, appearing in the Fourier expansion of the vector potential A

are identified with quantum mechanical operators, related to ax, and aLT through
1 » 1 t
Ckr = —— a Crp = ay.,. .
kr ,—2&)]9 kr ) kr ,—2wk kr

Within this picture, the vector potential has to be regarded as a quantum mechanical operator, defined in terms of
the ay, and a;'(r according to

(64)

[akr (t)e’ ) + a;rﬂ, (t)eik'x)]
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1 . .
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kET Vo €r [akre + ay,.e ] (65)
=At(x,t)+ A (x,t) . (66)

The coefficients in the above expansion (and therefore the field A(x,t)) are quantum mechanical operators acting in
the Hilbert space whose state vectors are given by

|nk17'1 y Mkoaroy - - - NMkyry - - ) ) (67)

where the integer ny, denotes the number of quanta, called photons, oscillating in the mode specified by the wave
vector k and the polarization vector €y,.. From the results of the previous section it follows that the generic state (67)
can be obtained from the vacuum state, in which no pothons are present, through

nk ;
“1“ (68)

|nk17‘1 > Mkorgs - - ' P \/m

For example, the two photon state reads
|nk17'15nk27"2> = ann (I/Ly,z |O) . (69)

Note that we have split the series of eq.(66) in such a way that A*(x,t) and A~ (x,t) contain only photon annihi-

lation (ak,) or creation (aLT) operators, respectivey, implying A*(x,t)|0) = 0.

The electromagnetic hamiltonian

H=Y w (Nkr ¥ %) , (70)

kr

with Ny, = a;r(rakr, can be rewritten in a slightly different form exploiting the arbitrariness inherent in the choice of
the energy scale. Choosing a scale in which the vacuum state has zero energy allows one to replace eq.(70) with

H=>Y =uw N, (71)
kr
leading to the eigenvalue equation
H|nk17'1 y Nkorgs - - ) = Z Nk;r; Wk; [Mkyry > Mkorgy - - ) ) (72)
kiT‘,’

and

H|0 Z Wk, Nkr,

kir;

=0. (73)



As a final remark, note that, as A(x,t) is linear in the ay, and aLr, from

[ [akr,a;r(,r,akr] = 8yt Grcter Qrcr (74)
and
[aLT’Nk'T’] = [GLNGL’T’CLI‘T} = 67'7"61(1(’ G‘LT ’ (75)

it follows that the operator Ny,, whose eigenvalue yields the number of photons in the mode kr, does not commute
with the vector potential A(x,t). As a consequence, it does not commute with either the electric field E or the
magnetic field B. This result implies that the number of photons and the strengths of the physical fields cannot
be simultaneously determined to arbitrary accuracy. Moreover, since the potential is linear in the photon creation
and annihilation operators, the expectation values (E) and (B) in the state defined by eq.(67), containing a definite
number of photons, vanish.

6. Spin of the photon

We have seen that the quanta of the electromagnetic field carry momentum k and energy wy, = |k|, implying that
their rest mass k% = w? — k? vanishes. Let us now briefly discuss the photon spin J.

The projection of the photon intrinsic angular momentum along the quantization axis is related to photon’s polar-
ization. It can be shown' that the operator associated with the projection of J along the direction of propagation
satisfies the commutation rule

[75,0f,] =i (ehrals — €hualy) (76)

where we have taken the z-axis in the direction of k. Let us now define the new operators

1 . 1 .
CLLR = E (a;rd + mId) ) aLL = E <a;r<1 - ZG’I&) ) (77)

which create circularly polarized photons, i.e. photons whose polarization is described by the vectors

1 . 1 .
€kR = ﬁ (€1 +i€x2) , €xr = ﬁ (€x1 —i€x2) - (78)

Choosing €x1 = (1,0,0) and exs = (0,1,0) and rewriting eq.(76) in terms of the new operators we obtain

[J3’aLR] = aLR ) [J’o’aaLL] = _GLL ) (79)

implying in turn
Jsalgl0) = [ s, ale] 10) = af410) , (80)
Jsal[0) = [Js,af, | 10) = —af,10) . (1)

The above equations show that the photon has spin |J| = 1 and the two spin projections J3 = =£1 correspond to
circularly polarized states. While the value of |J| is dictated by the vector nature of the electromagnetic field, the
absence of the J; = 0 state is a consequence of its property of being transverse, which is in turn a consequence of the
fact that photons are massless.

ta detailed derivation can be found in: J.D. Bjorken and S.D. Drell, Relativistic quantum fields (McGraw-Hill, New York,
1965), chapt. 14.



