/* cap20_binning.c: Computing the error on a set of correlated data by binning. Copyright (C) 2006 Federico Ricci-Tersenghi (Federico.Ricci@roma1.infn.it) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. This program has been extracted from "Programmazione Scientifica", Pearson Education ed. (2006), by Barone, Marinari, Organtini and Ricci-Tersenghi. ISBN 8871922425. */ /* by FRT */ #include #include #include #define L 20 #define L2 (L * L) #define N L2 #define DIM 2 #define CONN (2 * DIM) #define Tc (2.26918531421302) #define FNORM (2.3283064365e-10) #define RANDOM ((ira[ip++] = ira[ip1++] + ira[ip2++]) ^ ira[ip3++]) #define FRANDOM (FNORM * RANDOM) #define pm1 ((FRANDOM > 0.5) ? 1 : -1) /* variabili globali per il generatore random */ unsigned myrand, ira[256]; unsigned char ip, ip1, ip2, ip3; unsigned randForInit(void); void initRandom(void); float gaussRan(void); void error(char *string); void initProb(float temperature, float *prob); void initSpin(int *s, int *pMag, int *pEner); void oneSweep2D(int *s, float *prob, int *pMag, int *pEner); void measures(int time, int *s); int main(int argc, char *argv[]) { int i, numMeas, binSize; int t, thermMCS, numIter, s[N], mag, ener, tmp; float temperature, prob[CONN + 1], *m, *e, *pm, *pe, *pm2, *pe2; double aveM, aveE, aveM2, aveE2, invN = 1./ N; if (argc != 5) { fprintf(stderr, "usage: %s \n", argv[0]); exit(EXIT_FAILURE); } temperature = atof(argv[1]); thermMCS = atoi(argv[2]); numIter = atoi(argv[3]); myrand = (unsigned)atoi(argv[4]); if (temperature < 0.0) temperature = Tc; numMeas = numIter; printf("# L = %d T = %.3f thermMCS = %i numMeas = %i random seed = %u\n", L, temperature, thermMCS, numMeas, myrand); printf("# binSize error error numMeas\n"); fflush(stdout); m = calloc(numMeas, sizeof(int)); e = calloc(numMeas, sizeof(int)); initRandom(); initProb(temperature, prob); initSpin(s, &mag, &ener); for (t = 0; t < thermMCS; t++) { oneSweep2D(s, prob, &mag, &ener); } for (t = 0; t < numIter; t++) { oneSweep2D(s, prob, &mag, &ener); m[t] = mag; e[t] = ener; } for (binSize = 1; binSize <= numMeas / 100; binSize *= 2) { tmp = (int)(numMeas / 2); pm = m; pm2 = m; pe = e; pe2 = e; aveM = 0.0; aveM2 = 0.0; aveE = 0.0; aveE2 = 0.0; for (i = 0; i < tmp; i++, pm++, pm2 += 2, pe++, pe2 += 2) { aveM += *pm2 + *(pm2 + 1); aveM2 += (double)(*pm2) * (*pm2) + (double)(*(pm2 + 1)) * (*(pm2 + 1)); *pm = 0.5 * (*pm2 + *(pm2 + 1)); aveE += *pe2 + *(pe2 + 1); aveE2 += (double)(*pe2) * (*pe2) + (double)(*(pe2 + 1)) * (*(pe2 + 1)); *pe = 0.5 * (*pe2 + *(pe2 + 1)); } numMeas = 2 * tmp; printf("%i %g %g %g %g %i\n", binSize, invN * aveM / numMeas, invN * sqrt((aveM2 - aveM / numMeas * aveM) / numMeas / (numMeas - 1)), invN * aveE / numMeas, invN * sqrt((aveE2 - aveE / numMeas * aveE) / numMeas / (numMeas - 1)), numMeas); numMeas = tmp; } printf("\n"); return EXIT_SUCCESS; } unsigned randForInit(void) { unsigned long long y; y = myrand * 16807LL; myrand = (y & 0x7fffffff) + (y >> 31); if (myrand & 0x80000000) { myrand = (myrand & 0x7fffffff) + 1; } return myrand; } void initRandom(void) { int i; ip = 128; ip1 = ip - 24; ip2 = ip - 55; ip3 = ip - 61; for (i = ip3; i < ip; i++) { ira[i] = randForInit(); } } float gaussRan(void) { static int iset = 0; static float gset; float fac, rsq, v1, v2; if (iset == 0) { do { v1 = 2.0 * FRANDOM - 1.0; v2 = 2.0 * FRANDOM - 1.0; rsq = v1 * v1 + v2 * v2; } while (rsq >= 1.0 || rsq == 0.0); fac = sqrt(-2.0 * log(rsq) / rsq); gset = v1 * fac; iset = 1; return v2 * fac; } else { iset = 0; return gset; } } void error(char *string) { fprintf(stderr, "ERROR: %s\n", string); exit(EXIT_FAILURE); } void initProb(float temperature, float *prob) { int i; if (temperature > 0.0) { for (i = 0; i <= CONN; i++) prob[i] = exp(-2.0 * i / temperature); } else { for (i = 0; i <= CONN; i++) prob[i] = 0.0; } } void initSpin(int *s, int *pMag, int *pEner) { int site; *pMag = 0; for (site = 0; site < N; site++) { s[site] = pm1; *pMag += s[site]; } *pEner = 0; /* sommiamo prima le interazioni verticali */ for (site = 0; site < N - L; site++) { *pEner -= s[site] * s[site + L]; } /* gli spin dell'ultima riga sono connessi a quelli della prima */ for (site = N - L; site < N; site++) { *pEner -= s[site] * s[site + L - N]; } /* sommiamo quindi le interazioni orizzontali */ for (site = 0; site < N; site++) { /* quelli della prima colonna sono connessi a quelli dell'ultima */ if (site % L == 0) { *pEner -= s[site] * s[site + L - 1]; } else { *pEner -= s[site] * s[site - 1]; } } } void oneSweep2D(int *s, float *prob, int *pMag, int *pEner) { int site, ix, iy, sum; site = 0; /* caso iy = 0 ix = 0 */ sum = s[site] * (s[site+L2-L] + s[site+L-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; /* caso iy = 0 0 < ix < L-1 */ for (ix = 1; ix < L-1; ix++, site++) { sum = s[site] * (s[site+L2-L] + s[site-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } /* caso iy = 0 ix = L-1 */ sum = s[site] * (s[site+L2-L] + s[site-1] + s[site+1-L] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; for (iy = 1; iy < L-1; iy++) { /* caso 0 < iy < L-1 ix = 0 */ sum = s[site] * (s[site-L] + s[site+L-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; /* caso 0 < iy < L-1 0 < ix < L-1 */ for (ix = 1; ix < L-1; ix++, site++) { sum = s[site] * (s[site-L] + s[site-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } /* caso 0 < iy < L-1 ix = L-1 */ sum = s[site] * (s[site-L] + s[site-1] + s[site+1-L] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; } /* caso iy = L-1 ix = 0 */ sum = s[site] * (s[site-L] + s[site+L-1] + s[site+1] + s[site+L-L2]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; /* caso iy = L-1 0 < ix < L-1 */ for (ix = 1; ix < L-1; ix++, site++) { sum = s[site] * (s[site-L] + s[site-1] + s[site+1] + s[site+L-L2]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } /* caso iy = L-1 ix = L-1 */ sum = s[site] * (s[site-L] + s[site-1] + s[site+1-L] + s[site+L-L2]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } void measures(int time, int *s) { int site, mag, ener; mag = 0; ener = 0; /* sommiamo quindi le interazioni orizzontali */ for (site = 0; site < N; site++) { mag += s[site]; /* quelli della prima colonna sono connessi a quelli dell'ultima */ if (site % L == 0) { ener -= s[site] * s[site + L - 1]; } else { ener -= s[site] * s[site - 1]; } } /* sommiamo prima le interazioni verticali */ for (site = 0; site < N - L; site++) { ener -= s[site] * s[site + L]; } /* gli spin dell'ultima riga sono connessi a quelli della prima */ for (site = N - L + 1; site < N; site++) { ener -= s[site] * s[site + L - N]; } printf("%i %f %f\n", time, (float)mag / N, (float)ener / N); }