February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Chapter 13

Lists, dictionaries and percolation

The black 99 had been a nozoki: it aimed to the
center of the white triangle. The whites, with the
100, connected.

Yasunari Kawabata, Il Maestro di Go (1942).

In this chapter we discuss different types of data structures, and some
applications. We introduce a new C construct, namely the union, and
we discuss linked lists. These data structures are very simple, but they
fundamental in many contexts. We discuss how to build a simple dictionary
with lists, suggesting how to lexically analyze a text. To this purpose we
introduce doubly linked lists, which we can easily scroll through in both
directions.

We define the concept of recursivity, and we apply to the factorial, and
to a the design of a tree (in order to efficiently manage data). A useful
application in various scientific and engineering contexts is the reconstruc-
tion of connected components of a cluster. After introducing an elementary
algorithm that can do this, we use the lists to improve the code. These
algorithms allow us to study the problem of percolation.

13.1 The unions
A union is a type of C variable, which at different times, during execution,
can contain elements of different types. This might seem incompatible

with the paradigm we usually adopt, namely that a variable is of a well-

369

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

370 Scientific Programming: C—Language, algorithms and models in science

defined given type, and that each environment knows which type tit has
to expect and return. A strict control of the used types (even in a simple
multiplication) helps to avoid programming errors. Nevertheless, as we
discuss in the following, there are some situations in which this flexibility
comes in handy. In these cases the union construct is essential.

The syntax of a union is very similar to the one of a struct, though
the object defined in this way is very different. Let us define a union of
the chameleon type (as a chameleon easily changes color depending on its
needs of the moment). We also define two instances of this union type, say
theChameleonJohn and theChameleonMary, thus allocating the memory
required to store them:

union chameleonq
double green;
int red;
char yellow;
} theChameleonJohn , theChameleonMary;

Knowing that the double type takes eight bytes, the int type four bytes and
the char type just one byte, each union of the chameleon type allocates
eight bytes. Indeed, a union allocates the space necessary to store its
largest possible member. Contrary to the case of a struct, in which a
memory location is allocated to each one of its components, a single memory
location, large enough to contain any member of the union, is allocated.
The variables theChameleonJohn and theChameleonMary can contain, at
different times during the execution, variables of the double, int or char
type. As for the struct we refer to the members of a union by writing
something like name _union.name_ element, as in theChameleonMary.red.

At a given time, the type of a union is the one of the last data it has
been assigned. The program does not have any information on this type,
and it is the programmer’s task to keep track of this (obviously an error
could have catastrophic consequences). One possible way out is to define an
associated variable which is updated each time the union is. For example,
let us define the constants

#define GREEN 0

#define RED 1
#define YELLOW 2

and a new variable for each union we defined

int colorOfTheChameleonJohn , colorOfTheChameleonMary;

When we change the union we should always remember to update the

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 371

associated variable as well, as in

theChameleonJohn.green = 256.32;
color0OfTheChameleonJohn = GREEN;

or, in case of an integer,

theChameleonJohn.red = 25632;

color0fTheChameleonJohn = RED;

From the value of color0fTheChameleonJohn we always know the type of
value stored in the union. If, after the above statement has been executed,
we would assume that the union chameleon theChameleonJohn contains
a variable of the double type, we would probably run into a disaster. The
allowed union operations and the ways of accessing its components are the
same as for the struct. Moreover, it is possible to define structs or arrays
of unions. The union construct is not used very often. We quote three
cases in which they can be very useful.

(1) Sometimes we need to align short words (for example variables of
the char type) delimiting long words (for example of the long int
type). In this case an array of unions can be the most efficient
solution.

(2) An unions can be useful to initialize different parts of a large word
(consisting, for example, of eight bytes) with variables of shorter
sizes (consisting, for example, of a single byte).

(3) Sometimes, we might need to communicate an object whose type
might depend on the context. For example, depending on the result
obtained in a function, the function’s return value might either be
a variable of the float type or a variable of the int type.

Hands on 1 - A safe factorial and its logarithm.

The result of a factorial n! can be represented as an in-

aﬂ%%?ﬂ%?ﬂ%l?ﬂ%?eo teger variable of 64 bits only if n < 20. Write a func-

Il b))l L)
[€] G

tion that returns a value of the unsigned long long int

type containing the factorial, when called with an argu-
ment n < 20, while for n > 20 it returns a value of the double type
containing the factorial’s logarithm obtained by using the Stirling approx-
imation:
nl e~ V2r n"tE e
The function, returning a union, should be used by considering these two
possibilities.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

372 Scientific Programming: C—Language, algorithms and models in science

13.1.1 A wvirtual experiment

We now discuss a typical situation in which the union construct is partic-
ularly useful. We consider the on-line analysis of the results of an experi-
ment. Often a computer is connected by means of an appropriate hardware
interface to an experimental instrument collecting data. Here, we obviously
limit ourselves to a simulation of an experiment and we analyze the random
results that our code generates. Still, the procedure we show is the same
when we want to check a real experiment.

For example, think of a detector measuring what happens to a particle
traveling through a physical medium. We start from the hypothesis that
one out of three possible situations occur in each one of our measurements.
In the first case the particle travels in the medium without creating any
other particle. In this case, the variable we want to measure and analyze is
the particle’s speed. Correspondingly, the device returns a double value.
In the second case the particle strongly interacts with the medium, and
generates a swarm of particles. In this case, the device cannot measure
the particles’ velocities, but rather counts their number and returns a value
of the int type. In the third case, an error occurs. This is a rare case
which nevertheless might occur. The error might have several causes: the
detector’s electrical components possibly responded too slowly, the particle
interaction occurred too close to the border of the material (i.e, outside
the “confidence zone”), an error occurred in the memory of the device. In
these cases we only want to write an error message on screen to notify the
researcher performing the experiment. This error message, i.e., a character
string, is produced directly by the device. In this situation the hardware
interface returns a variable of the double or int type or a series of char-
acters. Therefore, a union is the ideal data structure to manage these
different cases when calling this function.

The relevant code for this operation is easy and compact, while the
overall code simulating the experiment and randomly deciding which results
to return is still easy, but a bit long. Therefore, we only describe the
essential features and do not discuss it in detail.

The type of union we need is

union experimentData {

double speed;
int num;

char *errorMessage;

};

The code simulating the experiment is of the form of the one given in Listing

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 373

13.1.

int main(void) {
int experimentOutput

I
O =

int experimentNumber H

while (experimentOutput < 4) {
union experimentData scratchData;

1
2
3
4
5 srand (MY_SEED) ;
6
7
8 experimentNumber++;
9

experimentOutput = setExperiment(experimentNumber);
10 scratchData = experimentBody(experimentOutput);
11 analyzeExperiment (experimentOutput , scratchData);
12 X
13 myEnd (experimentNumber) ;
14 }

Listing 13.1 The main function of the virtual experiment.

As we said before, we need to simulate the experiment, but do not want to
discuss it in detail: the parts relevant for this discussion are the analysis of
the experimentll and the final output of the results13. In the remainder
of the main function, we initialize the random number generator (line 5),
and we iterate the experiment to have several independent tests. The func-
tion setExperiment on line 9 asks the user to insert a number; the value
4 ends the experiment, while the input value 3 causes the type of result to
be random. The function setExperiment, which we do not report here,
decides the type of result of a single experiment, and experimentBody, on
line 10, randomly choses the output values (the particle’s velocity in case 0,
the number of particles in case 1 and the type of error in case 2). The ex-
periment’s output is defined by the union experimentData scratchData
and the value of experimentOutput, which is, respectively, equal to 0, 1 or
2 in the three cases.

The function analyzeExperiment of Listing 13.2 is very easy (thanks
to the fact that it uses a union!). Its input is scratchData and

experimentOutput.

1 void analyzeExperiment (unsigned long int experimentOutput ,
2 union experimentData newData) {

3 if (experimentOutput == EXP_SPEED) {

4 averageSpeed += newData.speed;

5 } else if (experimentOutput == EXP_JET) {

6 hystogramNumber [newData.num]++;

7 } else if (experimentOutput == EXP_ERROR) {

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

374 Scientific Programming: C—Language, algorithms and models in science

1 printf ("ERROR IN EXPERIMENT: %s\n", newData.errorMessage);
2}

3}

Listing 13.2 The function analyzeExperiment.

The variable experimentOutput tells us of which type the experiment’s
result is, and therefore, tells us which type of value is contained in
union experimentData newData. In case of a velocity it is a double, and
on line 4 the new velocity is added to the averageSpeed to compute the
average. In case of a group of particles it is an int, and on line 6 we update
a histogram. In case an error occurred, we just print the error message, on
line 1.

Finally, the function myEnd prints the average velocity, the histogram
of the distribution of particles produced during the interactions and the
number of errors made.

Hands on 2 - A virtual experiment

Describe a problem analogous to the previous one, related

%%%'I’o" """" W to the control of an industrial production line. Write a sim-
L

(Wl el
Nl LI
(el (b)ln il L)
)

ulator which takes various cases into account, and manage

" them with a union.

13.2 Linked lists

A problem appearing in many contexts and often leading to a dramatically
narrow bottleneck is the management of small or large quantities of data.
The interesting problems could be very different from each other: reading
a text, creating a dictionary, inserting and storing addresses, managing a
student database with time-dependent records. Also think of engineering
applications, such as collecting data of industrial processes, or the control or
analysis of experiments in any scientific field (signals obtained when treat-
ing biologically interesting molecules, information of chemical reactions,
controlling experiments of collisions between highly energetic particles gen-
erating a multitude of new particles).

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 375

13.2.1 Lists, strings and a dictionary

Let us discuss how to organize words in a structure which can easily be
consulted. We initially use a rather inefficient, though absolutely elemen-
tary structure, which helps us understand the concept of a linked list. We
read the words from a data file and we progressively add them to our list.
A first example consists in creating a list to which we add the words while
we read them. In a second example we eliminate the repeated words, thus
creating a dictionary starting from a text. The core of a structure referring
to a structure of the same type is shown in the following definition of the
struct of the word type,
struct word {
char *pointerToString;

struct word *pointerToNextWord;

};

The structure consists of two pointers. A first pointer points to a memory
location where we write the word we have read as a character string (this
is useful because the word length may vary and in this way the structure
word does not depend on these details). The second pointer, pointing to
a structure of the same type, is the crucial one. It points, in this case, to
the next word of the list. Note that we do not reserve any memory for the
data, but only the memory required for the two pointers. The memory for
the data is reserved separately. An even simpler case consists in recording
some sorted telephone numbers. In this case the memory space required to
contain the data (the telephone number) could have been included in the
structure itself,
struct phoneNumber {
unsigned long int thisNumber;

struct phoneNumber *pointerToNextPhoneNumber;

};

In this case the memory space needed to store the telephone number is
allocated when declaring the structure of the phoneNumber type as it always
has the same dimension. The fundamental feature of the linked list is still
present at least one member of the structure is a pointer to a structure of
the same type (in this case, the next element of the list). Figure 13.1 helps
to clarify how the data are organized in the case of telephone numbers, with
data containers and pointers to the next structure.

This type of list structure is more flexible than an array. In an array
the data are classified in necessarily consecutive memory locations. It is

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

376 Scientific Programming: C—Language, algorithms and models in science

not possible to change the order of the memory locations, as we need to do,
for example, for dynamic structures, whose order changes throughout the
execution. Adding memory locations to an array (by means of a realloc
for example) is possibly a rather burdensome task due to the fact that the
data need to be contiguous. It could be that the total space required by
the realloc is only available in a different area than the used one. In this
case, in order to be extended the array must be copied in a new part of the
memory. In case of a very large array this can take a lot of CPU time.

Tel. 1 P Tel. 2 ™ Tel. 3 ™ Tel. 4

PI H P2 H P H P4

Fig. 13.1 A linked list of telephone numbers. The numbers are stored in the containers
on top. The containers on the bottom store the pointer to the next structure.

Hands on 3 - A linked list

Write a code reading a text (for example a Shakespeare
I poem), which recognizes the words it contains and orga-
nizes them in a linked list. The detailed organization of
"~ the list can be chosen in different ways. It is instructive
to try several of these.

Let us take a look at the important points of the code analyzing a text.
First of all, we define a structure of the word type:
struct word {
char *pointerToString;

struct word *pointerToNextWord;
} *wordList = NULL;

Apart from defining a type of structure, word, we also declared a pointer
to this type of structure: wordList. Note we did not reserve a structure of
the word type, but only a pointer to a structure. Because we have not yet
read any word, our list is still empty. Therefore, the pointer is initialized to
NULL, a symbol defined by the compiler. The essential part of the program,
typically included in the main function, has the following form

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 377

myEnd = 0;

while (myEnd !'= 1) {
myEnd = readWord ();
buildInverseLlist ();

}

printInverseList ();

The function readWord reads a word, and the function buildInverselList
inserts it in the list. This is an inverse list, because the links between two
elements start from the last inserted element up to the first one. This is
the easiest way to create a list. Note that for simplicity we did not include
any arguments in the functions, and we rather use a certain number of
global variables. When programming we always need to find a compromise
between ease of writing and code robustness. In general, it is best to use as
little global variables as possible as any function of the code could change
their value, thus possibly causing programming errors.

The function readWord (Listing 13.3) reads the text from the global
variable £fInput (a pointer) to FILE and identifies the words. The function
identifying the objects (in this case the words) in a context is called the
lexical analysis function. It is an important component of the parsing pro-
cess, i.e., the analysis of the grammatical structure of a character flow by
decomposing the flow in more or less complex units (lexical elements) and
interpreting them with respect to the grammatical rules.

The lexical analysis is a complex process, also because a word can be
delimited in many ways inside a text. In most cases, one or more spaces
appear at the end of a word, but also a punctuation mark (a comma, a pe-
riod), parentheses or a simple “end of line” are allowed. Creating a complete
lexical analyzer is a difficult task that goes beyond the scope of this text-
book. For now, we only consider an elementary lexical analyzer. We leave
any improvement to it as an exercise to the reader. To simplify the memory
management, we assign a maximum number of characters per word, namely
MY_MAX to the function readWord. If for some reason this maximum is ex-
ceeded, the program terminates with an error. The variable myFlag is reset
when the word is complete. In this case the function transfers the control to
the main function, while returning the value 0 unless the end of the file has
been reached. In the latter case, the return value is 1. In our elementary
lexical analyzer a word can only end with a single space or with the end of
the file. We leave the case of more consecutive blank spaces as an exercise.
The end of line characters are ignored and we do not consider that they
can possibly signal the end of a word. Therefore, also the last word of a

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

378 Scientific Programming: C—Language, algorithms and models in science

line must be followed by a blank space. At the end of the word we add the
terminator “\0” to the string. The character array myString is declared
as a global variable, and can be seen by all functions of the program. The
variable myString is used to temporarily store the words we have read,
before they are inserted in the list.

The characters of the word are read one by one with the fgetc function.
The function fgetc (included in <stdio.h>) takes a file pointer argument
(the file must be opened and be accessible) and returns the character read
from the file as a char converted into an int, or, if the end of file has been
reached, the end of file signal, i.e. EOF, defined in the system headers. Its
prototype is

‘ int fgetc(FILE #*stream);

At this point, the function given in Listing 13.3 should be clear.

1 int readWord (void) {
2 char myFlag = 1;

3 int j, myEnd = 0;
4

j = 03
5 while ((j < MY_MAX) && (myFlag == 1)) {
6 myString [j] = fgetc(fInput);
7 if (myStringl[jl == ' ') {
8 myString [j]1 = '\0';
9 myFlag = 0;
10 } else if (myStringl[jl == '\n') {
11 j--; /*to ignore the end of a linex/
12 } else if (myStringl[j] == EOF) {
13 myEnd = 1;
14 myString [J] = '\0';
15 myFlag = 0;
16 }
17 jt++s
18}
19 if (j >= MY_MAX-1) {
20 printf ("Program interruption: "
21 "the word was too long.\n");
22 printf ("Recompile with a new value of MY_MAX "
23 "larger than %d\n", MY_MAX);
24 exit (EXIT_FAILURE);
25}
26 printf ("Word of length %d: %s\n",
27 strlen(myString), myString);
28 return myEnd;

Listing 13.3 The function readWord to lexically analyze a text.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 379

Note that it is much wiser to use the fgetc function than fscanf, which
is more complex and sometimes deceiving, leading to reading errors.

The buildInverseList function builds the list (Listing 13.4). It is an
easy and compact function calling malloc to reserve the required memory
for the string that has just been read and is stored in the array myString of
the global memory. The function strlen (included in <string.h>) takes
a string pointer argument and returns the string’s length:

‘ size_t strlen(const char *myString); ‘

(size_t is discussed in Section 10.2.2).

The pointer scratchPointer points to the new permanent memory
space (reserved by the program for as long as it is being executed) in which
we store the new word. To permanently (until the code has stopped ex-
ecuting) store the words, we copy the content of myString in a memory
location specifically allocated and pointed to by scratchPointer. If the
memory request is unsuccessful, the pointer scratchPointer is set to NULL,
and the program is terminated with an error. Once this is done, we store
the pointer to the last word structure that is in this moment stored in
wordScratchPointer (without this pointer the communication between
the various elements of the list would be broken). We then ask for new
memory for the new word structure to contain the new word. This is the
only moment in which we reserve a new word structure (before we only
reserved a pointer to a structure). Again, we check whether the malloc
was successful.

We are almost done now. We copy the word we just read from the
temporary buffer myString into the buffer pointed by scratchPointer.
This can be done by means of the system function strcpy (included in
<string.h>) copying a string (including its terminating character \0) from
one location to another. Its prototype has the form

char *strcpy(char *destination, const char *source); ‘

and the pointer it returns points to the destination string (which is left
unused in our code).

All we have to do now is fill the word structure we just created by
copying the pointer to the new word in wordList->pointerToString and
by copying the pointer to the second last structure (which we had wisely
saved on line 11) in wordList -> pointerToNextWord;. In this way the new
structure that we added contains a pointer to the word we have just found,

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

380 Scientific Programming: C—Language, algorithms and models in science

and a pointer to the structure we had created before. The first structure
we created points to the value NULL we used to initialize the first pointer
we declared in the beginning of the code. A pointer to NULL in the pointer
list wordList->pointerToNextWord indicates that the list is complete. At
this point the function buildInverseList should be clear to us.

1 void buildInverseList(void) {

2 char *scratchPointer;

3 struct word *wordScratchPointer;
4

5 scratchPointer = (char *)malloc(strlen(myString));
6 if (scratchPointer == NULL) {

7 printf ("Program interruption: "

8 "malloc failure number 1\n");

9 exit (EXIT_FAILURE);

10 ¥

11 wordScratchPointer = wordList;

12 wordList = (struct word *)malloc(sizeof (struct word));
13 if (wordList == NULL) {

14 printf ("Program interruption: "

15 "malloc failure number 2\n");

16 exit (EXIT_FAILURE);

17 }

18 strcpy(scratchPointer , myString);

19 wordList ->pointerToString = scratchPointer;

20 wordList ->pointerToNextWord = wordScratchPointer;
21 }

Listing 13.4 The function buildInverseList to build a linked list.

A Dbetter understanding of how the linking of this list works can be obtained
by looking at the function used to print it, given in Listing 13.5.

1 void printInverselList(void) {

2 struct word *wordScratchPointer = wordList;
3 while (wordScratchPointer != NULL) {
4 printf ("%s\n", wordScratchPointer ->pointerToString);

wordScratchPointer =

o

wordScratchPointer ->pointerToNextWord;

o N O
[

Listing 13.5 The function printInverseList printing a linked list.

The function’s mechanism is clear. The pointer wordList (a global vari-
able) points to the structure containing the last word that has been
read. We print it and we continue with the previous word, by means of

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 381

wordScratchPointer->pointerToNextWord, until we reach the pointer to
NULL, indicating that the word list is finished and that the reconstruction
has been completed.

Hands on 4 - More lists and dictionaries

The lexical analyzer we discussed is extremely simple. Im-
U prove it by taking into account possible punctuation marks

and uppercase and lowercase characters. Also consider

" that the “end of line” character terminates a word (un-
less a selected symbol, for example ‘-’; is present indicating the word has
been divided in two parts). Include letters with accents, apostrophes and
the fact that the accents are sometimes inserted by a symbol following the

word, into account. More generally, this is the right time to take another
look at the table of ASCII characters, discussed in Section 1.7.2 and in
Appendix20.4.2, in order to build a lexical analyzer which takes the most
interesting cases into account.

Write a code that implements a direct list, starting from the first read
word up to the last one read. The code is very similar to the one described
for the inverse list. Finally, change the code to eliminate repeated words.

To eliminate repeated words it suffices to add four simple lines of code at
the beginning of buildInverseList (Listing 13.4). A local pointer scrolls
through the words we found so far and compares them to the last one we
read. If it coincides with one of the previous ones, it is not recorded. The
two strings are compared by means of the system function strcmp, included
in <string.h>, which has as prototype

int strcmp (const char *stringl, const char *string2);

The function compares the two strings pointed by stringl and string?2.
With the ASCII encoding (Section 1.7.2 and Appendix 20.4.2), it basically
associates a numeric value to each string such that a string preceding it in
alphabetic order is assigned a smaller numeric value. Thus, the function
returns an integer smaller than, equal to or larger than zero if stringl
is, respectively, smaller, equal to or larger than string2. Note that, in
the following code, in this case the function is left by means of a return
statement placed inside a block. Not everybody considers this to be a
structured construct because it entails we have a block of statements that
we can access only in one way, but that we can quit in two different ways,

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

382 Scientific Programming: C—Language, algorithms and models in science

namely at the end or by means of the return. We should not abuse this
form, though sometimes it is useful. With this so-called safeguard clause,
we basically reserve the right to immediately quit the function if a certain
condition is verified (in our case if the word is already included in the list).

struct word *wordScratchPointer , *pointerCheck;

for (pointerCheck = wordList; pointerCheck != NULL;) {
if (strcmp(pointerCheck ->pointerToString , myString) == 0) {
return;
}

pointerCheck = pointerCheck ->pointerToNextWord;
}

A single link list is the easiest example among many possible cases. In
Figure 13.2 we give an example of a double link list. Thanks to the double
pointer structure it can be scrolled in both directions, from head to tail
and the other way around. In this case, each structure stores, apart from
the relevant data, also a pointer to the preceding structure and a pointer
to the next one.

Tel. 1 \l (Tel. 2 \l (Tel. 3 \l (Tel. 4
Q1 J Q2 J Q3 _J Q4
P1 P2 P3 P4

Fig. 13.2 A double link list. The structure is richer than a single link list. We can
easily scroll through it in both directions, form head to tail and the other way around.
The pointers P; point to the next structure, the pointers @; to the preceding one.

13.2.2 Recursive functions: computing the factorial

To continue our analysis about how to organize data and how to build and
manage lists, it is useful to briefly introduce the concept of recursion, which
is treated in detail in Section 15.3.1.

A function is said to be recursive if it can call itself. Not all programming
languages allow the use of this type of functions: C does, and this is one
of its particularly interesting features. As an example we consider how to
compute a factorial, n! =1-2-3-...-n, defined for integer, non-negative
values n. The Section 4.3.1 contains a simple non-recursive code computing

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 383

the factorial, while the recursive function is given in Listing 13.6.

1 unsigned long long int factorial (unsigned int n) {

2 if (n == 0) return 1;
3 return (n * factorial(n - 1));
4}

Listing 13.6 Computing the factorial with a recursive function.

The key is the mathematical identity n! = n - (n — 1)! . When called with
a positive integer, the function calls itself until it is called with the value
zero. In the latter case, it returns one. So, when the function is called
with argument 2 it returns in turn 2 = 2 - 1, when called with argument
3 it returns 6 = 3 - 2 and so on. A specific situation defines the condition
ending the recursive chain, which in this case is the call to the function
with argument equal to zero. Without this termination condition (or if the
condition is wrong or never encountered) the function will call itself until
it fills the computer’s memory and blocks it. A function like ours, based
on variables of the unsigned long long int type, can compute factorials
up to n = 20, i.e., until the result’s representation takes more than 64
bits. This is why the argument can be of the unsigned int type, which is
sufficiently large.

A recursive function calling itself is completely analogous to calling a
new function. The whole scope (local variables, parameters) must be stored,
such that it can be recovered when returning to the calling function. An
instructive way to think of a recursive function which is called many times
is as if we wrote the function the same number of times, reproducing the
same number of lines of code for each call to the function. In practice this
is obviously not possible, given that a function could call itself recursively
hundreds of times (and that we do not know this number a priori). Still,
it helps us to figure out how complex this mechanism is. One of the main
contexts in which a recursion is applied are tree-like data structures, which
we discuss in Section 13.2.3.

13.2.3 Binary trees and dictionaries

The way we built the list in Section 13.2.1, storing one by one the (non
repeated) words found in the text, may be very slow to sort. As the number
of words increases, organizing the list, to sort it in alphabetic order for
example, takes a large amount of computer resources. In the third part of
this textbook, we analyze scaling laws describing how the execution time

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

384 Scientific Programming: C—Language, algorithms and models in science

grows in function of the size of the input, which in this case is the number
of words composing the list.

Building and managing a tree with recursive functions helps to create
efficient dynamic structures. Trees are structures whose elements point to
other elements of the same structure, as in lists. The elements of the trees,
though, are organized in a more complex way. A list is a linear structure,
while a tree is a branched structure with a ramification in each node. The
initial node has k branches who all end in other nodes. Each of these k
nodes can have again k branches, and so on. For example, think of a binary
tree , i.e., a tree with £k = 2. The first part of a binary tree is shown in
Figure 13.3. The first word that has been read (word 1) occupies the first
node; the (non repeated) words read next are placed along the branches of
the tree. If, according to the alphabet, a new word precedes the word that
has found its place in the first node, it follows the left branch, while a word
following it in alphabetic order will follow in the branch on the right. This
is done on every occupied node, and eventually the new word is placed in
the first empty node along this path. This is a simple recipe to build a
binary tree. We always consider and discuss trees which are upside down
(as in Figure 13.3), i.e., with the root on top and the branches developing

SR

Fig. 13.3 The root of the tree. word 1 is the first read word. A word alphabetically
preceding word 1 moves along the left branch, while a word alphabetically following word
1 moves along the branch on the right. The word stops in the first empty node along this
path. The root of the tree is shown on top, while its leaves are shown at the bottom.

downward.

Hands on 5 - The binary tree

Write a code that reads a text and organizes it in a binary

aﬂ%%?ﬂ%?ﬂ%?ﬂ%?eo tree as the one we just discussed, eliminating the repeated
fm‘w words. Use a recursive algorithm. The task of the re-

cursive function is to place the new word in the tree. It
should call itself until it reaches the tree branch on which the word should
be stored. Write a function printing the word list in alphabetic order.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 385

The use of recursive functions makes the code reading a word list and
organizing it in a binary tree much more compact. We want to write a
function addToTree (Listing 13.7) calling itself up to when it has reached
the leaf of the tree where it can deposit the new word.

Organizing words in a tree is extremely efficient. If the N words are
read in a random order, the time it takes to sort them in alphabetic order
only grows like N log(N). In this case, the tree is said to be balanced. This
is for example also the case if the words were not picked in a random way,
but rather taken from a novel. Typically even in this case we will obtain a
balanced tree, since the author usually does not choose to only use words
starting with the letter “a” in the first chapter, with the letter “b” in the
second chapter, and so on. Instead, if the read words have a well-organized
order, the tree is unbalanced, and searching the tree is a lot slower. For
example, reading a dictionary which is already sorted, the words are all
placed on a single branch, producing a completely unbalanced tree, whose
depth grows linearly with the number of read words. In this case the tree
structure is as inefficient as a list.

The node’s structure has two pointers to nodes of the same type,

struct word {

char *pointerToString;
struct word *nextWordLeft;

struct word *nextWordRight;
} *treeRoot = NULL;

As usual, the first pointer points to the word stored in the corresponding
character array, while the second and the third pointers allow to find the
following word on the tree, respectively, along the left or right bifurcation.

Upon execution, we start by creating a pointer to a structure of the
word type pointing to NULL. The basic structure of the program is very

easy:
fWl.myEnd = 0;
while (fW1.myEnd != 1) {
fWl = readWord ();
treeRoot = addToTree (treeRoot, fWl.scratchPointer);
}

The structure £W1 contains the pointer to the word we have read and a con-
trol variable signaling when to terminate the program execution (because
the last word of the text file has been read). It has the form

February 14, 2013 14:41 World Scientific Book - 9in x 6in

386

ScientificProgramming

Scientific Programming: C—Language, algorithms and models in science

struct fromWord {

int myEnd;
char *scratchPointer;

} fwi;

The function declared as

struct fromWord readWord (void);

reads a word, whose pointer is returned, together with a control variable, or
flag, which is equal to one if the end of file is read. Also in the latter case, the
read word is a legitimate word and should be analyzed and possibly stored.
This function’s structure is the same as the one for the management of the
simple list discussed in Section 13.2.1. The function addToTree adds the
read word to the tree starting from its root and moving along its branches
until an empty node (a leaf) is found.

Note that in this simple example we are not treating lowercase or up-

percase letters any differently, and we simply assume we only have to deal
with lowercase letters. We leave the correct treatment of uppercase letters

as an exercise.

1 struct word* addToTree (struct word* inputWord,

© o N o oA W N

[I T T N N N N S S o S ~ S U SO SO
S R W N R O © W N Ok W N R O

{

char *localPointer)

int stringDifference;

if (inputWord == NULL){
inputWord =
(struct word *) malloc(sizeof (struct word));
if (inputWord == NULL){

printf ("Program interrupted: malloc failure 1\n");

exit (MY_RUIN);
}
inputWord ->pointerToString = localPointer;
inputWord ->nextWordLeft = NULL;
inputWord ->nextWordRight = NULL;
else if ((stringDifference =

strcmp (inputWord ->pointerToString ,
localPointer)) != 0){

if (stringDifference > 0) {

inputWord ->nextWordLeft =

addToTree (inputWord ->nextWordLeft ,localPointer);

} else {
inputWord ->nextWordRight =

addToTree (inputWord ->nextWordRight , localPointer);

return inputWord;

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Lists, dictionaries and percolation 387

Listing 13.7 The function addToTree adding a word to the tree.

Let us have a look at how this function, given in Listing 13.7, works. If
the function is called with an argument which is an empty location, the
word can be added to the tree. In this case thisWord == NULL. We add a
leaf to the tree, where we store the word and add a bifurcation leading to
two empty positions (lines 12-14). A malloc (line 7) reserves the memory
location required to store the word we just read, and we check whether
the memory has been allocated correctly (if not, the program is terminated
with an error). We assign to the string pointer the address of the word we
have read and the two pointers to the left and the right are initialized to
NULL. The latter information is then returned with a single return (line
26). The word has been inserted and all open calls in the recursive chain
are closed, in a cascade. Instead, if the considered location is occupied, the
function strcmp on line 16 (strcmp is discussed in Section 13.2.1) plays a
fundamental role. If the new word is equal to the one in the considered node,
nothing happens: the search is finished, without leading to any update of
our list. In this case the function returns the address of the word already
occupying the considered memory, and the recursive chain is closed.

Instead, if the considered tree node is not a leaf and does not contain
a word equal to the one we just read, we check whether the new word
alphabetically precedes or follows the one already present in the node. In
this case, the function is called recursively to check, respectively, the next
node on the left and the one on the right. For example, let us assume,
without loss of generality, that the new word alphabetically precedes the
one already contained in the node. In this case the recursive call has the
following form

thisWord->nextWordLeft =

addToTree (thisWord ->nextWordLeft ,localPointer);

Thus, we want to insert the new word in the next branch on the left. The
recursive procedure runs along the tree and stops either when it finds an
empty space (where it inserts the new word) or when a word equal to the
read one has already been inserted. In Chapter 14.5 we discuss the recursive
procedures in much better detail and we clarify how crucial the definition
of the return condition is.

The power of a recursive procedure is probably most clear in the function
that prints in alphabetic order the word list: this function is also recursive,
and it is shown in Listing 13.8.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

388 Scientific Programming: C—Language, algorithms and models in science

1 void printTreeInAlphabeticOrder (struct word* thisWord) {
if (thisWord != NULL) {

2
3 printTreeInAlphabeticOrder (thisWord->nextWordLeft);
4 printf ("%s\n", thisWord->pointerToString);

5 printTreeInAlphabeticOrder (thisWord->nextWordRight);
6 1}

7}

Listing 13.8 The function printTreeInAlphabeticOrder.

The function consists of only four short lines, accomplishing an absolutely
nontrivial task! Take your time to digest what is happening: this is the
only way to fully comprehend what the recursive approach entails. The
function first moves down along the left side of the tree. The word in the
leftmost leaf is certainly the first one in alphabetic order. We then travel
along all branches of the tree from left to right. Note that when printing a
tree, its left half is printed before its right half (the first read word occupies
the root of the tree and divides it in two). Moreover, this is true for each
subdivision of the tree.

Also note how powerful and compact this code is with respect to the
one discussed in Section 5.6.3, and to the one based on pointers discussed
in Section 6.5.1.

13.3 Connected clusters

We now consider a lattice problem. In particular we try to understand what
happens if we place objects on the sites of a lattice: when do they start to
form large connected clusters which become infinite if the lattice is infinite?
This leads us to the important subject of percolation. An algorithm based
on lists allows for an effective treatment of this problem.

In this Section we consider a two-dimensional square lattice (D = 2):
analogous considerations can be made for other lattice shapes, such as a
triangular lattice, also in a different number of physical dimensions (for
example in the D = 3 case). We place binary (or Boolean) variables on
the lattice sites. By convention, we assume that the two possible values of
these variables are (—1,+1), or (0,1), or red and green. The problem can
be interpreted in various ways and have different applications: however, the
values we choose for representing our variables do not change the problem’s
structure. For example, we could decide that the lattice represents our city’s
telephone network with, in each site, a telephone exchange which could be

