
February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Dynamic data structures 489

16.3 Elementary search methods

In this chapter we have analyzed data structures on which we can efficiently
perform operations, such as inserting and removing an element. Still, these
structures are not adequate to search for one specific of their elements. We
now have a look at how to make this operation efficient, i.e., such that it
takes at most O(logN) elementary operations for a data set consisting of
N items.

16.3.1 Binary search trees

In Section 5.2.2 we saw how the binary search algorithm works. Although
the binary search on already sorted data is efficient, it is not such an inter-
esting problem because in practice the actual problem is precisely how to
get hold of a sorted structure. Usually, the problem consists in maintaining
a dynamic data set in a ordered structure to which elements can be added
to or removed from. This structure should be sorted enough to allow for
an efficient search of an element.

There exist many data structures allowing to store data such that
searching an element is an efficient operation. The majority of these struc-
tures have a tree-like topology. As we already partially discovered in Chap-
ter 13 and from what we will see here, the cost of managing a tree-like
data structure is at most proportional to its maximum depth. This is why
the algorithms that have been invented during the last 50 years mainly
aim at maintaining a tree as balanced as possible with the least number of
operations. To keep our discussion short and concise, we just focus on the
simplest structure, the binary tree. We refer the reader to more complete
textbooks [Cormen et al. (1990)] for the treatment of more complicated
algorithms, such as red-black trees or Fibonacci heaps.

In a binary tree, such as the one in Figure 16.11, each node has (apart
from the data item it contains) three pointers: the first one points to the
parent node, and the other two to the child nodes, if they exist. By conven-
tion, we assign the value NULL to the pointers pointing to nodes which are
not yet present in the tree (for example, the pointer pointing to the root’s
parent node and those pointing to the leaves’ child nodes). Considering the
fact that the node at the root could change when the tree is updated, it
is convenient to also keep a variable root pointing to the node serving as
root.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

490 Scientific Programming: C–Language, algorithms and models in science

13

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

5

7

11

10

root

2 8

��

Fig. 16.11 An example of a binary tree. Each node contains the to be stored data item
and three pointers defining its family ties. The data have been inserted in the nodes
such as to satisfy the fundamental property of a binary search tree.

The structure of the node could be as follows:

struct node {

dataType datum;

struct node *up , *left , *right ;

};

where datum is a data item stored in the node, up points to the parent
node, while left and right to the two child nodes. As usual, we prefer to
define a new type myNode with the command

typedef struct node myNode ;

to keep the program more concise.
The nodes of a heap structure have a well-defined position in the vec-

tor of elements, and therefore also in the physical computer memory. The
family ties in a heap are determined entirely by their position in the vector.
Instead, in a generic binary tree, the order in which the nodes are written
in the memory is irrelevant. Their family ties are made explicit by means of
the pointers of each node (analogous to what occurs in linked lists, shown
in Figure 16.4). For example, if we want to reserve memory for new tree
nodes, this new memory does not necessary have to be contiguous to the
already used one. Nevertheless, it is important to realize that once a node
has been saved in a certain memory location, it cannot be moved. This is
simply because the pointers pointing to that node use that memory loca-
tion’s address. Therefore, we strongly advise against using the command
to dynamically reallocate memory (realloc) when the data structure is
based on the use of pointers.

In order for the search of an element in a binary tree to be an efficient

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Dynamic data structures 491

operation, its elements should be sorted such that they satisfy the funda-
mental property of binary search trees: if the data item x is stored in the
node n, all data items stored in the subtree pointed2 by n.left are less
than or equal to x, while all those in the subtree pointed by n.right are
larger than or equal to x.

As in the case for a heap data structure, also this sorting property allows
us to store the same data set in different trees; see for example Figure 16.12.
Different trees can be obtained, for example, because the elements could be
inserted into or removed from the structure in a different order.

14 14

16

9

10

1

4

72 139

10 16

1

2

4

7

13

Fig. 16.12 Examples of binary search trees: the same data set can be stored in different
ways. Contrary to what occurs in a heap (compare with Figure 16.6), the tree topology
identifies the order of the data, whose values increase when read from left to right.

Note, however, that in a binary tree, contrary to what happens in a
heap, there is a very strong correlation between the value (or the property)
of the data and their position in the tree. Indeed, in both the trees of
Figure 16.12, the value of the data increases if the nodes are read from
left to right (without considering their depth in the tree). This correlation
between the value of the data and their position in the tree is what makes
the search for an element in a binary tree efficient.

In the following, we schematically show the main operations on a binary
search tree. Keep in mind that the described operations take at most a time
which is proportional to the tree’s maximum depth hmax (we leave it to the
reader to verify this statement), which is typically of the order O(logN).
So, on average they are efficient operations.

Moreover, none of the functions we are about to describe allocate mem-
ory for the tree nodes. Indeed, we assume a node has been “created”, i.e.,
memory space has been allocated, its data fields have been filled and the
NULL value has been assigned to its pointers, before any of the functions we
are about to describe are called.

2Slightly abusing notation, we indicate the subtree whose root is pointed by p as the
subtree pointed by p.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

492 Scientific Programming: C–Language, algorithms and models in science

16.3.2 Inserting and searching in a binary search tree

The insertion of a new data item in the tree is a relatively simple operation.
Compare the new element with the root of the tree and understand in which
subtree it should be placed. Repeat the same operation in the chosen
subtree, until you reach an empty subtree, i.e., a space to place the new
element. The recursive function in Listing 16.5 performs the insertion of a
new node *new, whose pointers already have been initialized to NULL, in a
tree with root *old.

To insert a new node *new in a tree, we just need to call the function
of Listing 16.5 with the pointer to the tree root as a second argument:
insertNode(new, root). In the particular case in which we want to insert
the first node of the tree, the pointer root would be NULL. So, we only need
to assign it the value new, without calling the function insertNode.

1 void insertNode (myNode *new , myNode *old) {

2 if (new ->datum <= old ->datum) {

3 if (old ->left == NULL) {

4 old ->left = new;

5 new ->up = old ;

6 } else {

7 insertNode (new , old ->left);

8 }

9 } else {

10 if (old ->right == NULL) {

11 old ->right = new ;

12 new ->up = old ;

13 } else {

14 insertNode (new , old ->right);

15 }

16 }

17 }

Listing 16.5 A recursive function to insert a node in a binary tree.

There is a fundamental difference between a heap (that can be repre-
sented by a binary tree) and a true binary tree. When representing a heap
as a binary tree, the tree topology is fixed and determined only by the
heap’s size N . Therefore, we immediately know, for example, which ele-
ments correspond to the leaves. Instead, a true binary tree has a dynamic
topology which is not fully determined by the number N of its nodes. In
this case, for example, the nodes without any children cannot immediately
be identified. They can be searched by running through the list of nodes or
traveling along the tree from the root down. In general, while algorithms

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Dynamic data structures 493

operating on a heap can start, in a completely equivalent way, both from
the root as from the leaves, those working on trees have a unique access
point, namely its root. Alternatively, we could access a tree from a generic
node, but this does not contain any information on the position of that
node in the tree.

Exercise 3 - Data insertion sequences in a tree

Figure 16.12 contains two different binary trees generated from
the same data set, which have been inserted in a different order.
Write, for each of the two trees, at least three possible data in-
sertion sequences leading to the filling given in the figure. Note

how the insertion sequences compatible with a given binary tree satisfy only
partial order relations (which ones?). This should clarify why the trees do
not depend only on the data they contain, but also on the way they have
been filled.

Exercise 4 - Unbalancing when filling a tree

In case we insert elements with the same value in a binary search
tree, the function insertNode shows a systematic error because
it always places these elements to the left of those already present
in the tree. This systematic error could result in very unbalanced

trees. How can this problem be solved by slightly changing the function
insertNode? The solution based on pseudorandom numbers is probably
the most obvious one. However, there exists an even easier one not using
(pseudo)random variables. Which one?

Hands on 6 - Depth of binary trees

q [

; ’

/

]

Write a function computing the depth of a node. After
filling a tree with N elements of random value by using the
function insertNode, measure its maximum depth and
the average node depth. Compute the expected value of

these two depths by averaging over many different noise samples, i.e., the
order in which the nodes are added to the tree. Estimate numerically how
these two depths grow with increasing N , by a fitting procedure (possibly
a linear fit if you choose the right variables!).

Next, consider only the nodes without children, i.e., the tree leaves. As
these nodes appear at the end of each branch, they should give a good esti-
mate of the tree depth. Compute numerically the probability distribution

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

494 Scientific Programming: C–Language, algorithms and models in science

of the leaves depth for various values of N (we suggest you to use values
in the interval 102 ≤ N ≤ 105 and to compute the averages considering at
least a thousand different noise samples). Numerically estimate the average
value 〈h〉 and the variance σ2

h ≡ 〈h2〉 − 〈h〉2 of these distributions. Ho do
they grow with N? What can you deduce when comparing them to how
the average and maximum value of the node increases? Finally, plot the
probability distribution of the variable z ≡ (h− 〈h〉)/σh for various values
of N . Observe how the distributions for various N are similar, even though
their profile is nontrivial as they are, for example, asymmetric with respect
to the origin.

1 myNode *searchItem (dataType item , myNode *pNode) {

2 if (pNode == NULL || item == pNode ->datum) {

3 return pNode ;

4 } else if (item < pNode ->datum) {

5 return searchItem (item , pNode ->left);

6 } else {

7 return searchItem (item , pNode ->right);

8 }

9 }

Listing 16.6 A recursive function to search a binary tree.

Given a binary search tree filled with data, we now consider a tree
search function. To search a given element item we can use, for example,
the recursive function, given in Listing 16.6. The function searchItem

returns either a pointer to the node containing the searched data item or
the value NULL if the tree does not contain any such data item. The number
of recursive calls is at most equal to the tree’s maximum depth in case the
function searchItem is called with second argument root.

Hands on 7 - Non-recursive functions on binary trees

q [

; ’

/

]

Write non-recursive versions of the functions inserting a
node and searching an element in a binary tree. Keep in
mind that for simple functions, such as insertNode and
searchItem, it is sometimes preferable to opt for their

non-recursive versions because they are faster and not more difficult to
program. Still, remember that the performance of an algorithm may depend
much on the computer and compiler one is using.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Dynamic data structures 495

An element which is easy to find in a binary search tree is the abso-
lute minimum, because it always coincides with the leftmost element. The
function of Listing 16.7 returns the pointer to the node containing the min-
imum element of the tree (or subtree) whose root is pointed by pNode. The
maximum element is found with a similar function maximumInTree.

1 myNode *minimumInTree(myNode *pNode) {

2 while (pNode ->left != NULL) {

3 pNode = pNode ->left;

4 }

5 return pNode;

6 }

Listing 16.7 A function finding the minimum element in a binary tree.

A last function we need finds the node containing the successive data
item respect to the one contained in the node given as input to the function.
A possible version of this function is given in Listing 16.8.

1 myNode *nextItem (myNode *pNode) {

2 myNode *pParent = pNode ->up;

3 if (pNode ->right != NULL) {

4 return minimumInTree(pNode ->right);

5 }

6 while (pParent != NULL && pNode == pParent ->right) {

7 pNode = pParent ;

8 pParent = pNode ->up;

9 }

10 return pParent ;

11 }

Listing 16.8 A function searching the node containing the immediately successive ele-
ment.

In the easy case (lines 3-5) the node pointed by pNode has a subtree on
the right and its successor is simply the minimum element of that subtree.
If the subtree on the right does not exist, it is slightly more complicated
because we need to search the successive element in a higher node. In this
case (lines 6-10) we need to climb the tree with the following rule. For as
long as we are climbing towards the left, smaller elements are found and
we need to continue to climb. We only stop when we either reach the root
(in this case pParent equals NULL) or if we climb towards the right (in
this case pParent->right is different from pNode). In the first case, we
may conclude that the element of which we are looking for the immediately
successive one is the largest among those present in the tree. Indeed, in

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

496 Scientific Programming: C–Language, algorithms and models in science

this case the next element does not exist and the function returns the value
NULL. Instead, in the second case, the next element exists. Namely, it is
the one that we find as soon as we start climbing towards to the right. By
analogy, it is easy to write the function previousItem returning the node
containing the immediately preceding element.

16.3.3 Deleting elements from a binary search tree

The last operation we need in order to fully be able to manage a binary
search tree is the removal or deletion of an element from the structure.
This operation is typically the most complicated one among those needed
to manage a data structure, and the binary search tree is no exception to
this rule.

Based on the number of children of the node to be removed, we need
some different strategies. A simple strategy takes care of the case when it
only has at most one child, while a more complicated strategy is needed in
case it has two children. In Figure 16.13 we schematically show the effect
of removing the gray node in the three possible cases.

In the simplest case, given Figure 16.13(a), the gray node does not have
any children and can be simply removed from the tree. The only thing
we need to do, is to update the pointer of the parent node, node 4 in the
example of Figure 16.13(a), assigning it the value NULL3.

In case the gray node has a single child node, as in Figure 16.13(b), the
child node, together with its possible subtree of which it is the root, takes its
place when it is deleted. This might seem like a lenghty operation, because
an entire subtree is involved. However, if the family ties are managed by
means of pointers, we can perform this operation by simply reassigning the
pointers of the parent and child nodes of the one we removed (nodes 9 and
4 in Figure 16.13(b)), such that they correctly point to each other. In the
subtree with root node 4, the family ties and, as a consequence, the relative
pointers remain unchanged. For example, nodes 2 and 7 continue to have
node 4 as a parent.

In the third, more complicated case, the node to be removed has two
child nodes, Figure 16.13(c), and we cannot simply delete it. Instead, we
need to substitute it with another node taking its place without violating

3If the tree does not contain any repeated numbers there is a one-to-one correspondence
between the tree nodes and the numbers they contain. So, to keep things short, we can
indicate the tree nodes by means of the number they contain.

