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this aspect, there are many ways to do this. Obviously, some graphical
representations supply us with more information than other ones. This can
be easily seen in Figure 17.2 which contains two different representations
of the same graph. Even though the two ways are topologically equivalent,
the right one immediately allows us to understand we are dealing with a
portion of a two-dimensional square lattice. It would have been even more
difficult to realize this, if we had chosen a representation in which the edges
intersected. Unfortunately, the latter is often inevitable when trying to
“project” a very connected graph on a piece of paper. Finally, we observe
that, in the worst possible case, recognizing whether two graphs are the
same apart from a permutation of their vertex names (graph isomorphism)
is an NP hard problem (see box on page 439). So, in general, it is not easy
to immediately know whether there exists a simple graphical representation
(for example, one in which only a small number of edges intersect) for a
given graph.

Exercise 2 - Drawing graphs

Which complete graphs can you draw on a piece of paper such
that none of its edges intersect with each other? If we could
use a hologram to represent graphs (i.e., if we could use a three-
dimensional space) which complete graphs could we possibly rep-

resent without any intersecting edges?

17.2 From graphs to data structures

To represent graph related information in a computer program, it would be
enough to write the set V of vertices and the set E of edges in the computer
memory. Without loss of generality, we can assume that for a graph of N
vertices, the set V is represented by the integer numbers between 0 and
N − 1. Nevertheless, we advise against representing the set E with the
mathematical notation used in equation (17.1). Indeed, simply writing the
vertex couples corresponding to the graph edges in an array complicates
the operations we typically want to perform on graphs. For example, to
locate the neighbors of a given vertex we would have to scroll through the
entire list.

There basically exist two efficient data structures to represent the set E
of edges of a graph. The first one uses an adjacency matrix and the second
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is based on adjacency lists. In the following sections, we study the merits
and flaws of these two data structures to represent a graph in a computer.
We also discuss which one is more convenient depending on the problem
under study.

17.2.1 Adjacency matrix

Given a graph with N vertices, the adjacency matrix A is an N×N matrix
such that:

Aij =

{
1 if the edge (i, j) ∈ E,
0 otherwise.

On the left side of Figure 17.3 an example of an undirected graph and
its corresponding adjacency matrix is given. The adjacency matrix of an
undirected graph is always symmetric. It is natural to store the elements
of A in a two-dimensional array A[][].
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Fig. 17.3 An undirected and unweighted graph (on the left) and a directed and weighted
graph (on the right), each with their corresponding adjacency matrix.

The main merit of the adjacency matrix is that it is very easy to write
a program using it. For instance, to find out whether two vertices i and
j are connected, we just have to read the content of the element A[i][j].
Instead, its main flaw is the memory needed to store such a matrix, which is
always N2, independently of the average degree of the graph. Moreover, to
determine the neighbors of site i we necessarily need to examin all elements
on the ith row. This is why we strongly advise against using it for sparse
graphs. Indeed, the matrix would be full of zeros, thus uselessly occupying
memory and making it unhandy to work. For these kinds of graphs it is
preferable to use adjacency lists (Section 17.2.2).

The adjacency matrix is convenient when working on dense graphs. In
this case, the nonzero matrix elements are a reasonable fraction of the total
and the size of the matrix, N2, has the same order of magnitude as the set
of edges. So, we are not truly “wasting” memory. Moreover, in case the
dense graph is also weighted, the adjacency matrix easily allows to include
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this information on the weights: the matrix element Aij is set equal to the
weight of the link (i, j) or zero1 if such a link does not exist. In case of
directed graphs, the adjacency matrix allows to easily distinguish between
the edges leaving the vertex i (those on the ith row) from those arriving
at vertex i (those on the ith column). On the right side of Figure 17.3
we included an example of a weighted, directed graph, together with its
adjacency matrix representation.

17.2.2 Adjacency lists

In order to obtain the adjacency list representing a graph, we build for each
of its vertices a list with its neighbors. Each list has a length equal to the
corresponding vertex degree. In general, the order in which the neighbors
of a given vertex are included in the list is unimportant. So, for each of
the N lists we can use the easiest data structure, for example, the bucket
described in Section 16.1. Figure 17.4 contains an example of a graph
and its representation in terms of adjacency lists: neigh[] is an array of
pointers (Section 6.5.1) with each element pointing to a list of neighbors.
It is convenient to also keep an array degree[] with the degrees of the
vertices, such that the element degree[i] indicates how many neighbors
we can read starting from the memory location pointed by neigh[i].
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Fig. 17.4 The same undirected and unweighted graph of Figure 17.3 and its represen-
tation in terms of adjacency lists.

In total, this graph representation takes 2(N +M) memory locations.
More precisely, a vector of length N for the degrees, another of the same
length for the pointers to the lists and N vectors for the adjacency lists,
occupying in total 2M memory locations, as for each edge we include two
vertices in the adjacency lists. As we already mentioned, the adjacency
matrix is typically less efficient to use compared to the adjacency lists.
This is why we generally advise to use the latter. In case of a weighted
graph, the adiacency lists should also keep hold of the edge weights. To

1The conventional value of the weight we choose to indicate the absence of a link can
be substituted by another one in case 0 is considered a valid weight.
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this purpose, we can simply transform each element of the adjacency lists in
a struct containing both the vertex nearest neighbor as the corresponding
edge weight.

Hands on 1 - Adjacency lists
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Write a program reading a graph from a file and creat-
ing the corresponding adjacency lists. The formatted file
contains, on the first line, the number of vertices, and on
the following lines, a couple of integer numbers per line

corresponding to the vertices joined by an edge. Print the histogram of the
vertices degrees.

Hamiltonian cycles

In 1858, the Irish mathematician and physicist Sir
William Rowan Hamilton (1805-1865) presented the fol-
lowing problem: given a dodecahedron, is it possible,
starting from a given vertex and moving along its edges,
to visit all vertices exactly once before returning to the
starting vertex? In terms of the equivalent graph, the
question is whether there exists a simple cycle passing
through all vertices of the graph. In case of the dodec-
ahedron the answer can be found by means of simply
trying (a possible solution is included in the figure). For
a generic graph it is much harder to answer this ques-
tion. Only in the firs half of the seventies, it was discov-
ered that finding Hamiltonian cycles is an NP-complete
problem, and thus, very difficult to solve in a worst case
scenario.

17.3 Graph algorithms

Many interesting problems can be transformed into problems on graphs.
For example, we already considered the traveling salesman problem, which


