February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

80 Scientific Programming: C-Language, algorithms and models in science

Consider the following statements:

int i = 3;
double a;
a = (double) i / 2;

Without the (double) cast operator, the variable a would take the value 0.
Instead, by including the cast operator the integer variable i is converted
into a double only in the context of the expression where (double) oper-
ates, while the integer variable i itself remains equal to 3. The expression
is promoted to a double and a takes the value 1.5.

3.4 Input/Output for beginners

Let us compile the Listing 3.1. The compilation does not give any errors
and the program is executed without any problems. Nonetheless, we do not
observe any effect of this execution. The reason is simple: the Listing 3.1
does not contain any input/output statements, (I/0), i.e., statements which
receiving external data or return data from the program to an external
device. The most obvious extension of the program Listing 3.1 consists in
asking the user to supply a value of T for the variable tc and print the
computed value of T (tf) as this is simply the aim of a measurement unit
conversion program!

Before entering the details of the syntax of I/O statements, we briefly
discuss what receiving input or producing an output means in practice. In
today’s computers an interactive program can receive input from any device
that has been designed for this aim, for instance, from the keyboard or a
file on a disk. In both cases, the program receives data through a commu-
nication channel which is managed by the operating system. Programming
languages supply native functions which operate as an interface between
1/0 services of the system. The same holds for producing output. A pro-
gram may write on devices, such as a terminal or a file, by using output
functions of the language which depend on the operating system services.

The C language uses the scanf function to receive input from the key-
board and the fscanf function to receive input from a file. The output
functions are printf to write to a terminal and fprintf to write to a file.
These functions have a very well-constructed syntax which allows to use
a variety of formats. In the remainder of this section, we illustrate just a

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Basics of C' Programs 81

part of the existing options and refer the reader to a C language manual
for a complete overview [Kernighan and Ritchie (1988); Kelley and Pohl
(1996)]. We anticipate that when using the scanf function a symbol of the
C language is included whose meaning shall be clarified in Chapter 5.6.3.
For now it suffices to follow the syntax of the command.

1 main() {

2 double tc, tf, offset, conv;

3 offset = 32.;

4 conv = 5./ 9.;

5 printf ("Value in degrees Fahrenheit = ");

6 scanf ("%41f", &tf);

7 tc = (tf - offset) * conv;

8 printf ("Value in degrees Celsius = %f", tc);
9}

Listing 3.4 Measurement unit conversion with I/O.

Observe the Listing 3.1 with the I/O statements. and examine the printf
statement on line 5. Between the parentheses () there is a string of char-
acters which is delimited by double quotes on each side "---". On line 5,
the string is Value in degrees Fahrenheit =, and this string is printed
on the output device (for instance the terminal). The aim is to be able
to write informative messages that indicate what the program is comput-
ing, or what operations it is performing and similar information. On line
8 the syntax of the string included between the parentheses () is slightly
different: besides the message to be printed, it also includes a term %f.
This term is called a format specifier as it serves to specify the format of
the variable which follows the message. In this case the format specifier %£
informs the compiler that the variable tc is of the double type, such that it
can be correctly printed out onto the output. The printf function allows
a variable number of arguments, separated from each other by a comma .
Its generic format is

printf ("character string"[,expl, exp2,...]);

The character string is always enclosed between double quotes
"..." and, in case it is followed by one or more expressions which need to
be printed out, it contains a format specifier for each expression which fol-
lows: the format specifier has the form $characters and reflects the type
of the expression it corresponds to. The expressions expl, exp2, ...
are optional and their number may vary. We use the term expressions
as expl could be either a simple variable or a complex expression since

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

82 Scientific Programming: C-Language, algorithms and models in science

we could have written printf("Value in degrees Celsius = %f", (tf
- offset) * conv); i.e., we could have computed the value of tc directly
in the arguments of printf. The format specifier %f refers to a quan-
tity which is represented in floating-point format. In Table 3.4 the most
frequently used format specifiers are listed for printf.

Format specifier Type

Wt he,hg float,double
%d,%i int

he char (single)
hs char (string)

The scanf function, on line 6 of Listing 3.4, serves to read the value of
one or more input variables (for instance from the keyboard). Its format is
similar to that of the printf function. However, there are some important
differences between the two. A first difference is that in the scanf func-
tion only format specifiers of the variables which are to be acquired can
be included between the double quotes "---". A second difference is the
presence of the & symbol in the scanf function which must preceed every
such variable.

The general syntax of the scanf statement is

scanf ("character string",&varl|,&var2,...1);

The character string enclosed between double quotes "---" con-
tains all format specifiers of the variables which are to be acquired in var1,
var2,...and only those. Also in this case, the number of variables which
follow the character string are not fixed and each variable must be
preceded by the & character. On line 6 of Listing 3.4 the format specifier
%1f for the double type variable tf is used. Note that if a format specifier
%f corresponding to the float type were used, the program would behave
differently. In Table 3.4 we list the most frequently used format specifiers
for reading purposes.

The I/O functions for files are discussed in Chapter 5.6.3.

Finally, let us underline that the program Listing 3.4 actually does not
compile correctly?; The reason is connected to the considerations made
in Section 2.4, i.e. the necessity to link the code written by the pro-

2 As explained in the next section there do exist compilers configured in such a way that
they do not give any errors. However, in general, this affirmation is true.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Basics of C' Programs 83

Format specifier Type

ht float

%1t double

WLE, %11f long double

wd, %i int

yAs unsigned int

»Lu unsigned long long int
he char (single)

s char (string)

grammer (Listing 3.4) to the already existing code, which in this case
concerns the code for the printf and scanf functions. Indeed, the I/O
functions printf and scanf are not written by the person who encodes a
program to solve a given problem; rather they are already available from
the C compiler, which is why they are generally called system functions.

Exercise 2 - I/O statements

Write down printf and scanf statements to read the input from

a double type variable a and a long int type variable k, based

? on a message that is printed by the program. Next, print out the

o values of a and k multiplied by the constant 3.14, preceded by
an explanatory message.

However, the fact that these functions are available from the compiler does
not imply they are automatically linked to the remainder of the code. In
order to achieve this link between the "personal" code and the "system"
code, we at least need to include the file with all the references to external
code in the "personal" code. This file is a first example of a header file, i.e.,
a file consisting of generally used declarations and definitions which must
be included in the program to complete it. In Chapter 6.7.1 we discuss
the technical details of the functions in the C language, which clarifies
the necessity to include header files. There exist both library header files
for system functionalities or user header files for functionalities which are
specific to the application under consideration. The library header files
are defined by a name enclosed between angular brackets as in <stdio.h>;
for the user header files we need to specify their complete path between

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

84 Scientific Programming: C-Language, algorithms and models in science

double quotes as in "/home/include/myInclude.h"3. Thus, the program
of Listing 3.4 needs to be corrected as in Listing 3.5.

#include <stdio.h>

double tc, tf, offset, conv;

offset = 32.;

conv = 5./ 9.;

printf ("Value in degrees Fahrenheit= ");
scanf ("% 1f",&tf);

10 tc = (tf - offset) * conv;

11 printf ("Value in degrees Celsius= %f",tc);

12}

1
2
3
4
5
6
7
8
9

Listing 3.5 Measurement unit conversion with I/O.

The statement #include <stdio.h> on line 1 includes a system header file
which makes all I/O functions of the C language available to the program.
The format of this statement is discussed in Section 3.5. Note that in some
cases the inclusion of a header file is not always sufficient to link the user’s
code to the system code. In these cases specific options must be included
in the compilation command, such as the one given in Section 2.8.2 for the
Linux operating system, gcc -o program.exe program.c, following the
syntax of the operating system employed.

3.5 Preprocessor directives

Let us now discuss the statement #include <stdio.h> of Listing 3.5 in
more detail. It has quite a different format compared to the lexical rules
of the other C statements we have encountered so far since it starts with
the character # and does not end with the character ;. Indeed, as all
statements which start with the character #, it is not a C statement, but
rather a preprocessor directive.

The preprocessor is a software component which elaborates the C code
before it is compiled. The preprocessor directives are usually included for
two reasons:

e to include generally, though not necessarily, system declarations or
definitions; they are synthetically expressed in one line of code and

3The compiler searches for the header files enclosed between angular brackets in either
the predefined or the optionally specified directory.

