February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Logic management 97

though we try to stick on the rules of structured programming. In particu-
lar, statements as break, continue and switch are subjects of discussion
as to whether or not they can be used in a structured program. We do not
enter this discussion, but rather avoid their use.

4.2 Taking a decision

The selection structure identified by the Bohm-Jacopini theorem allows
to choose the portion of code that is to be executed depending on the
truth value of a proposition. Let us call I, and I, two groups of mutually
exclusive statements, and C' the proposition which needs to be checked.
The control structure can be symbolically represented by the flow charts of
Figure 4.2 (a).

false true

\C/ 6 true
Ea E‘a false

5]

Fig. 4.2 (a) The general selection structure. (b) A simple selection structure, obtained
from the fundamental one by substituting the I; statement with the empty statement.

The program starts with the I; statement. Next, the truth value of
the proposition C' is evaluated: if it is true the group of statements I, is
executed, otherwise the block I}, is executed. At the end of the execution of
one or the other set of instructions, the program continues by executing the
statements I. The flow chart of Figure 4.2 (a) can be informally translated
into: «If C is true, execute I,, otherwise execute Ip».

The structure 4.2 (a) is the fundamental one, from which all others
can easily be generated. For example, under some circumstances, the set
of statements I, is empty. In this case a more simple selection structure,
not containing any alternatives, is generated, as the one shown in 4.2 (b).
In this case the program starts by executing the statements /1 and then
evaluates the proposition C'. If it results to be true, the commands in I, are



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

98 Scientific Programming: C-Language, algorithms and models in science

executed before the statements Is are executed. Otherwise, I is executed
immediately.

By combining several selection structures we obtain constructs allowing
more complicated choices, as the one shown in Figure 4.3 (a). This is a chain
of structures as the one shown in Figure 4.2 (a). By connecting the output
of a first control structure with the input of a successive one, the block Iy, is
effectively substituted by a selection structure. Between the statements I
and I a set of statements Iy, are executed depending on whether one of the
conditions C; occurs. In case all conditions are false, the statements J are
still executed (the set of these statements may be empty, of course). This
structure corresponds to the one generated by the switch statement of the
C language (Section 4.4). Another possibility, shown in Figure 4.3 (b), con-
sists of a chain of non-mutual exclusive structures, generated by a sequence

of the selection structures of Figure 4.2 (b), .

false
true
>
false

Fig. 4.3 To obtain multiple choice structures we can link several selection structures
together. In the structure on the left the choices are mutually exclusive, while in the one
on the right one choice does not exclude the others..

The difference between the two structures is only apparently small. In-
deed, the program execution may vary drastically. In case of 4.3 (a), one
true condition excludes all the others to occur. Once the statements cor-
responding to the true conditions are executed, the program immediately



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Logic management 99

continues to execute the Iy statements. Instead, in case of 4.3 (b), a true
condition does not exclude others to occur. Thus, it is possible that several
statement groups I, are executed. Also, while in the former case only the
conditions starting from C; up to the first true condition are evaluated, in
the latter all conditions are evaluated. Thus, if the clauses are mutually
exclusive, it is always convenient to choose a construct as the one shown
in Figure 4.3 (a). Moreover, to improve performance, it is better to first
insert the conditions which have a higher probability of occurring.

4.2.1 if/else

In C, the selection control structure can be achieved with the if construct,
as shown in the Listing 4.1.

18 printf ("Value in degrees Celsius= ");
19 scanf ("}%1f", &tc);
20 if (tc < -273.16) printf ("Warning! T<O0 K...\n");

Listing 4.1 A example of the if statement.

This Listing contains a part of the program of Listing 3.7. We inserted
line 20, to check the value of the variable tc, which must not be smaller
than —273.16 °C as it represents a temperature in degrees Celsius. The if
statement on line 20 checks the value of tc: if it is smaller than —273.16,
the program writes the message of the printf statement following it. The
syntax of the if statement is the following:

if (expression) statement_1 [else statement_ 2]

When this statement is executed, the expression is evaluated and the
corresponding result is interpreted as a logical value. If the expression is
true, the program executes statement_1. Otherwise, if the else clause
is present, statement_2 is executed. The alternative statements can be
compound, i.e., they may consist of several statements enclosed between
curly brackets. Despite each statement must end with the character ;, the
latter is not required after the curly bracket as they mark off the end of a
block.

A common error consists in inserting the ; character after the logical
condition®. In this case the compiler does not report any errors as the
statement if (expression); statement is syntactically correct. It

5This error almost always occurs when a condition is followed by a single statement
that is not enclosed between curly brackets (a good reason for using them...).



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

100 Scientific Programming: C—Language, algorithms and models in science

means that if the logical value of the expression is true, no statements
are executed. Indeed, the semicolon signals the end of the if statement
containing an empty statement. The next statement is interpreted as a
normal statement following the if. Thus, it is executed even in case the
logical value is false. Writing

if (tc < -273.16); printf ("Warning! T<O0 K...\n");

the program behaves the same way independently of the value of tc and
always prints the warning message even if tc has an acceptable value. This
error is usually avoided by using curly brackets. Therefore, we shall always
write

if (tc < -273.16) {
printf ("Warning! T<0 K...\n");

}

Another common error consists in mixing up the assignment = and the
comparison == operator. Indeed, quite often a condition like the following
is included

if (a = 5) {

.statements ...

}

In this case the error is due to the use of the assignment operator = instead of
the comparison operator ==. In C, every logical or mathematical expression
has a value equal to the result of the expression. In this case, the = operator
assigns the value 5 to the variable a. Therefore, the result of the expression
included between parentheses is 5. In Section 1.6 we saw that the logical
value true is represented in the memory by a bit sequence containing at
least one 1. Therefore, in this case the expression is always equal to true
and the condition is always satisfied. Moreover, the value of the variable a
is always changed into 5 after this statement is executed. Note that from
a syntactical point of view, the expression is correct. Indeed, the compiler
would easily finish its job without warning about any possible disaster this
expression might entail.

We now reformulate the Listing 3.7 with the selection control structure
in order to avoid recompilation each time we want to change the type of
conversion. Consider the Listing 4.2.



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Logic management 101
1 #include <stdio.h>
2
smain() {
4 double tIn, tOut, offset, conv;
5 int option = 0;
6
7 offset = 32.;
8 printf ("Press\n'l' to convert from F into C\n"
9 "'2' to convert from C into F\n\nChoice:");
10 scanf ("%d", &option);
11 if (option == 1) {
12 conv = 5./ 9.;
13 printf ("Value in degrees Fahrenheit= ");
14 scanf ("%1f",&tIn);
15 tO0ut = (tIn - offset) * conv;
16 printf ("Value in degrees Celsius= %f\n",tOut);
17 } else {
18 conv = 9./ 5.;
19 printf ("Value in degrees Celsius= ");
20 scanf ("%1f", &tIn);
21 tOut = tIn * conv + offset;
22 printf ("Value in degrees Fahrenheit= %f\n",tOut);
23 }
24 }

Listing 4.2 Temperature conversion with if/else.

First of all, note that we introduced an integer variable option allowing us
to store a conventional value defining the type of conversion (from Fahren-
heit into Celsius or vice versa). The value of the variable option is acquired
on line 10, after an initial message looking like the following (try to under-
stand why) appears on screen:

Press

'1' to convert from F into C
'2' to convert from C into F

Choice:

Note that the argument of printf on the preceding line is composed of a
single string. Indeed, the C compiler interprets two succeeding character
sets delimited by double quotes " as a single string (this technique is used
to obtain a more readable program). On line 11, the value of option is
compared to the constant 1. If the two values coincide, the lines starting
from 12 up to line 16 are executed. Otherwise, the lines 18 up to 22 are
executed. Even though it is not necessary, we changed the names tc and
tf of the variables into tIn and t0Out (in and out temperature). Indeed,



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

102 Scientific Programming: C—Language, algorithms and models in science

in this context the meaning of the variables is different from the one in
Listing 3.7. For coherence, it is appropriate to give names which reflect the
correct meaning.

4.2.2 The selection operator

When the selection control is used to determine the value of an expression
which depends on whether a condition occurs or not, it is sometimes prefer-
able to use a single, ternary C operator: the operator ?. For example, a
structure determining the maximum between two values a and b, could be
the following:

(a > b) ? (max = a) : (max = b);

First, the expression to the left of the question mark (a > b) is evaluated.
If this expression is true, the expression to the left of the colon is evalu-
ated. Otherwise, the one to the right. Note that we are not dealing with
statements, but rather with expressions. Therefore, the semicolon and the
parentheses are compulsory. Indeed, a completely analogue statement is

max = (a > b) ? a : b;

where the parentheses are not required as each expression simply consists
of the variable’s value. This statement can be read like this: «Is a larger
than b? If yes, evaluate the value of a, otherwise that of b». The expression
to the right of the = operator assumes the value of either a or b and the
result is assigned to max.

4.3 Iterations

The third structure foreseen by the B6hm-Jacopini theorem is the iteration
allowing the cyclic repetition of a block of statements. It can appear under
various forms, which are all equivalent to each other. Indeed, it is possible
to pass from one form to another by appropriately modifying the conditions.
A first case is shown in Figure 4.4 (a). In this so-called while-do form, once
the statement block I; has been executed, the condition C' is checked. If
the condition C is true, the block I, is executed, at the end of which the
program checks the validity of the condition C' again. If it is still true,
the statements I, are executed again. At a certain point, they may alter



