
February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

116 Scientific Programming: C–Language, algorithms and models in science

printf ("%d", S);

This piece of code allows to get integer numbers from the keyboard and sum
only the even ones. Indeed, the condition of the if statement is true when
the remainder of the division by two of the inserted number is 1. In this
case, the continue statement allows to skip the remaining lines and return
to the evaluation of the control expression (n > 0). Also this construct can
easily be substituted. It is enough to rewrite the condition with a different
structure:

int n = 1, S = 0;

while (n > 0) {

scanf ("% d", &n);

if (!(n % 2)) {

S += n;

}

}

printf ("%d", S);

In this way everybody considers it a good program snippet.

4.5 A rounding problem

In this section we discuss an apparently trivial problem which turns out to
be particularly instructive: adding N numbers xj , j = 0 . . .N − 1. It is not
a coincidence that we postponed this problem till the end of this chapter.
Indeed, the numerical problems we want to discuss occur when the result
implies performing many iterations.

1 #include <stdio.h>

2

3 #define N 10000000

4

5 main () {

6 float S = 0., x = 7.;

7 unsigned int i, iS = 0, ix = 7;

8 for (i = 0; i < N; i++) {

9 S += x;

10 iS += ix;

11 }

12 printf (" Using floats : %.0f x %d = %.0f\n", x, N, S);

13 printf (" Using integers : %d x %d = %d\n", ix , N, iS);

14 }

Listing 4.11 A program with unexpected results.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Logic management 117

To simplify things we assume the numbers we want to add are all equal
to each other. In particular, we consider the case where N = 10 000 000
and xj = 7, ∀j. The expected result S is trivially S = 70 000 000. Let us
consider the Listing 4.11.

Before discussing the algorithm, note the format of the printf state-
ment on line 12: %.0f x %d = %.0f. The standard behavior of the format
specifiers can be changed by placing modifiers between the % character and
the specifier (f in this case). The modifier of rational variables’ specifiers
generally have the form n.m, where n is the minimum number of characters
required to print the result (including the possible decimal point) and can
be omitted. In case the number consists of less than n characters, blank
spaces are automatically added to its left such that it occupies exactly n

characters. If n is omitted, the necessary digits are printed and aligned
on the left. Instead, m represents the maximum number of digits that are
printed after the decimal point. In this case, we are asking the rational
values to be printed without any digits after the decimal point. In case
of integers, the modifier is usually an integer number n representing the
minimum number of characters that are to be printed. The possibilities
offered by the modifiers are obviously many more and we refer the reader
to the references for more details.

If we compile and execute the program of Listing 4.11, we get the fol-
lowing result:

Using floats : 7 x 10000000 = 77603248

Using integers : 7 x 10000000 = 70000000

What happened? How come the sum S is wrong by more than 10 percent
in case we compute it with rational numbers? The answer is easy: due to
rounding errors (Section 1.4). Contrary to what happens with integers, the
computer memory representation of rational numbers is not exact, as only
a limited number of digits are available. Remember that rational numbers
are represented as IEEE 754 floating-point numbers.

Following the program step by step, we discover that the first deviation
from the true value already occurs at i = 2396 746, when the variable S

representing the sum S should be 16 777 229. At the previous step, S =
16 777 222 which in standard IEEE 754 notation is represented as

0 1001 0111 (1) 000 0000 0000 0000 0000 0011

The number between parentheses is implicit (i.e. not represented), the
mantissa consists of 23 digits, the exponent of 2 is obtained by interpreting

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

118 Scientific Programming: C–Language, algorithms and models in science

the 8 bits on the left in excess–127 and the sign is given by the first bit. In
this case the exponent is 24 (151 − 127) and the mantissa is obtained by
summing 1 + 2−22 + 2−23, from which S = 224(1 + 2−22 + 2−23). Instead,
the number 7 is simply written as 1.75× 22 = (1 + 0.5 + 0.25)× 22, i.e.,

0 1000 0001 (1) 110 0000 0000 0000 0000 0000

When this number is to be added to S = 16 777 222, it must be expressed
as a multiple of 224. The mantissa’s bits (including the implicit bit 1) must
be translated by 22 places. In this way, the rightmost digit is lost as there
is no room for it in the 4 bytes provided for a float. The result is

0 1001 0111 (0) 000 0000 0000 0000 0000 0011= 6

Summing the two numbers, we have

0 1001 0111 (1) 000 0000 0000 0000 0000 0011= 16 777 222 +
0 1001 0111 (0) 000 0000 0000 0000 0000 0011= 6 =
0 1001 0111 (1) 000 0000 0000 0000 0000 0110= 16 777 228

We obtain a number which differs by one unit from the correct result.
Though the difference is quite contained, the final result is disastrous. This
is because the error is accumulated many times during the iterations and
finally leads to an error of the size shown. From what we just saw, one
might expect the final result to be smaller than the correct one. Indeed,
the loss of bits should lead to summing smaller numbers (first, several times
6 and then 2) to the variable S. However, modern CPUs contain an FPU
(Floating Point Unit) responsible for treating floating-point numbers. To
reduce the possibility that these type of errors occur, the FPU uses 80 bits
to represent results internally. When they are returned to the memory,
these are truncated to 32 bits, in case of a float.

i R7 S P

2396 745 16 777 222 16 777 222 0
2396 746 16 777 229 16 777 228 1
2396 747 16 777 235 16 777 236 1
2396 748 16 777 243 16 777 244 1
2396 749 16 777 251 16 777 252 1

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Logic management 119

Let us have a look at Table 4.5 listing the values of the variables i

and S, the contents of the FPU register R7, keeping the result of the last
performed operation, and the value of the FPU bit P, indicating whether a
precision error occurred. When i = 2396 745, R7 = 16 777 222, representing
the correct value, is copied in the variable S. As shown above, during the
next iteration the last bit is lost. However, the result in the FPU is correct
as it has 80 bits, namely R7 = 16 777 229. When this value is copied into
the memory, the truncation to 32 bits causes the variable S to take on the
value 16 777 228 and the bit P is assigned the value 1. During the next
iteration the (wrong) value of S is copied into the FPU. Adding the value
7, the register R7 takes on the value 16 777 235. Again, this value is not
representable in an exact way with 32 bits, and the variable S takes on
the value 16 777 236, which is the closest one near it. Due to rounding, P
again equals 1. The successive iterations have an analogous effect. At each
step, the value of S resulting from the previous iteration is copied into R7,
to which 7 is added. The result is never representable with just 32 bits
and must be approximated by the closest value when expressed in terms of
powers of two, i.e., the correct one increased by 1. Analyzing all successive
steps, we discover that almost always the value 8, and in one sole case, the
value 4, is added to the variable S, instead of 7. Finally, the obtained result
is

S = 7× 2396 746+ 4 + 6 + 8× (10 000 000− 2396 746− 1− 1) =

= 16 777 222+ 4 + 6 + 8× 7603 252 =

= 77 603 248 .

The essential cause of this unexpected result is that the addends are too
different from each other (16 777 222 against 7). Obviously, the same might
occur if the numbers xj which are to be added were all different from each
other, but small. The only difference is that in the latter case the result is
more difficult to check and understand. The danger can be avoided if

log2 S − log2 xj $ p ,

where p is the mantissa’s precision in numbers of bit. In the case under
examination p = 23, N = 107 and xj = 7, ∀j, and therefore

log2 7× 107 − log2 7 % 23.253 ,

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

120 Scientific Programming: C–Language, algorithms and models in science

which is of the order of p. Using a double variable, the problem would
have emerged for larger N , of the order of 1016. Still, it would not have
disappeared. Note that integers instead are never approximated. However,
as the interval of representable numbers is highly reduced, it is not always
possible to use them.

It is useful to note that modern compilers can optimize a code making it
faster or consume less memory. In some cases, this optimization may hide
this type of problem. For example, compiling the program in Listing 4.11
on a Linux system, using the 3.3.3 (or higher) version of the gcc compiler
with the option -O1, the problem vanishes.

The reason is that the optimization consists, among other things, in
extracting the cycle invariants,i.e., it extracts all quantities that do not
depend on the cycle. Indeed, the optimization directly transforms the cycle
in

S = x * N;

iS = ix * N;

Note that we used a constant value for x to simplify our discussion, while
in practice all values xj are different from each other. In the latter case the
optimization is not beneficial.

To avoid this inconvenience we must try to limit the difference between
the addends. One way is to perform the additions in various steps (e.g.,
first summing M values xj at a time and then summing these K results,
with K×M = N). The most extreme choice would then be to first sum all
couples of adjacent numbers xj and xj+1 (M = 2), then add these results
by iterating this operation until we end up with one single result. To this
purpose, we set xi = x2i + x2i+1, i = 0 . . .N/2 at each iteration9, thus
reducing the number of components which are to be added by a factor 2.

1 float sum =0., corr=0., x = 7.;

2 int i;

3 for(i=0; i<N; i++) {

4 float tmp , y;

5 y = corr + x;

6 tmp = sum + y;

7 corr = (sum - tmp) + y;

8 sum = tmp ;

9 }

10 sum += corr;

Listing 4.12 Kahan summation algorithm.

9Care needs to be taken when the number of addends are odd.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Logic management 121

A more general method is the Kahan summation algorithm [Kahan (1965)],
given in Listing 4.12.

Obviously, from an algebraical point of view, the sequence of operations
performed by the algorithm is completely equivalent to that of Listing 4.11.
In Listing 4.12, the variable corr represents, at each step, the correction
which is to be made to the element x that is to be summed as it compensates
for the error made during the previous step. The error on this correction
value is negligible (asymptotically zero) as the numbers which are to be
subtracted have the same order of magnitude.

Until the sums are exact, the value of corr remains zero and thus y =

x. The variable tmp represents the temporary approximation to the sum.
Indeed, in this variable it is possible that the precision is not maintained
due to the information loss we discussed above. If the result were exact,
the difference (sum - tmp) evaluated on line 7 would be exactly -y and
thus corr would continue to remain zero. Instead, in case the result is
approximated, the latter takes on a value equal to the quantity lost due to
this approximation10.

For the example discussed above, when sum = 16 777 222, tmp =
16 777 228. In this case corr = (sum− tmp) + y = (16 777 222 −
16 777 228) + 7 = −6 + 7 = 1. At the next step, instead of the value
7, the value 8 is added to the sum, compensating for the error.

Always keep in mind that computer arithmetic is not so easy.
Special care needs to be taken when treating numerical prob-
lems, particularly when a program contains many iterations.

Hands on 5 - Summing many small numbers

q [

; ’

/

]

Write an algorithm computing the sum of 107 numbers x
all equal to each other. Analyze how the error behaves
as a function of x. For which values of x is the result
exact? Why? Compute the sums again with the Kahan

summation algorithm. Can you predict how the execution time increases
with respect to the direct algorithm? When you know how to use arrays
(Chapter 4.5), you can rewrite the algorithm such that it sums N different
numbers xj . Then compare the performance of Kahan’s algorithm with the
iterative one summing pairs of numbers as described above.

10This value cannot always be fully recovered. However, it can be proven[Goldberg
(1991)] that the final obtainable result with the Kahan summation algorithm can be
expressed as

∑
xj(1 + δj) +O(Np2)

∑
|xj |, with |δj | ≤ 2p.

February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

122 Scientific Programming: C–Language, algorithms and models in science

