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Anderson Localization:
One quantum particle 
in a random potential

 Strong enough disorder – the eigenstates are localized
 Weak disorder – maybe the eigenstates are extended
 Localization – Delocalization – in real space

Many-Body Localization:
Isolated quantum system, 
many degrees of freedom 

 Close to the integrability – the eigenstates are localized
 Far from the integrability –the eigenstates are extended
 Localized – Extended: – space of quantum numbers  



Finite T Metal-Insulator Transition (Basko, Aleiner, BA (2006))
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1. All one-electron states are localized

2. Electrons interact with each other

3. The system is closed (no phonons)

4. Temperature is low but finite

Phononless DC conductivity



Conventional Anderson Model
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Anderson Model for a General Many-Body system
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Hamiltonian: 0
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What is the geometry/topology 

of the effective lattice 

Hamiltonian of an integrable system
- a set of quantum numbers

 eigenstates of    ,

- eigenenergies

0Ĥ

E

Perturbation, 
which violates 
the integrability

 labels sites of the 
effective lattice

,V 
hoping matrix 
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Finite T Metal-Insulator Transition (Basko, Aleiner, BA (2006))
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Localized one-electron states 

Electron - electron interaction

The system is closed 

Finite temperature

Phononless DC conductivity
0Ĥ E



 =  One-particle 
Hamiltonian

 Many-Body Eigenstates of 
0Ĥ

 Set of the occupation ## of 
the one-particle eigenstates 

,

V̂ V
 

 =  E-e interactions  -
Transitions between    and 



Equipartition – the basic postulate of Statistical Physics 

States of a system, which have the same 
energy are realized with the same probability

A particle located at time t at some particular 
point after long enough time can be found at 
any point with the same probability 

This is not always correct: Anderson Localization

Many-Body Localization No equipartition

Q: Is the equipartition rule always valid 
for the extended many-body states ?



Localization and Ergodicity – one particle,       
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Anderson transition in terms of level statistics 
3D 

P(s)



3D Anderson transition

Disorder, W

Ergodic Non-ergodic

Disorder, W



Q:
Can extended many-body wave 
functions be non-ergodic outside 
the critical region ?

Why this is an interesting question ?

Lack of the ergodicity of the many-body wave 
functions would imply the violation the 
equipartition theorem of an isolated 
macroscopic system and thus
• no thermalization
• glassy like behavior
• etc.



Finite T Metal-Insulator Transition (Basko, Aleiner, BA (2006))
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Classical 

Dynamical 

Systems

Arnold diffusion is strongly non-ergodic.

Is the dynamics ergodic 
outside the KAM regime ?

?



Classical Dynamical Systems:

Are the dynamics ergodic outside the KAM regime?

For some low-dimensional systems one can prove the 
ergodicity: Sinai billiard, Bunimovich billiard, etc.

At least some systems with high number of 
dimensions are known to be non-ergodic:
 Solar System
 Fermi-Pasta-Ulam system of connected non-linear 

oscillators
 .. . 



“The results of the calculations (performed on the old 
MANIAC machine) were interesting and quite 
surprising to Fermi. He expressed to me the opinion 
that they really constituted a little discovery in 
providing limitations that the prevalent beliefs in the 
universality of “mixing and thermalization in non-linear 
systems may not always be justified.”
[S.Ulam]



Age: ~4.5 Billion years
Sun dies in ~8 Billion years
Mass 1.0014 Solar masses

Newton: 
Motion of a single planet around the Sun.
However, there are 8 planets (Newton 
knew 6). Each one exerts forces on the 
others – small and periodically varying,.

Newton: “…the Planets move one and the same way in Orbs
concentric, some inconsiderable Irregularities excepted, which 
may have arisen from the mutual Actions of Comets and Planets
upon one another, and which will be apt to increase, till this 
System wants a Reformation.”,

God has to intervene continuously to stabilize the world?!

Leibniz sneered at Newton’s conception, as being that God so 
incompetent as to be reduced to miracles in order to rescue his 
machinery from collapse.



Age: ~4.5 Billion years
Sun dies in ~8 Billion years
Mass 1.0014 Solar masses

Isaac Newton: 
Motion of a single planet around the Sun.
However, there are 8 planets (Newton 
knew 6). Each one exerts small and 
periodically varying forces on the others

 The positions of the planets in >108 years are unpredictable: they 
are too sensitive to initial condition - chaos. 

 In 8 billion years (just before the Sun dies) the orbits will most 
likely be similar to their present ones. 

 The unpredictability is mostly in the orbital phases, collisions 
between planets are unlikely in spite of the chaos. 

 Ensemble of solar systems with slightly different parameters at the 
present time (random shifts ~1mm): ~1% percent probability that 
Mercury collides with Venus before the death of the Sun. 

The solar system is neither absolutely stable nor ergodic



Multifractality

Moments of the 
inverse participation 
ratio:
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Spectrum of 
fractal 

dimensions

Statistics of the 
onsite values of the 
eigenfunctions
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Support set exponent

Shannon Entropy
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f for a d-dimensional lattice
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Fermi Sea

generations

1 2 3 4 5 6

. . . .

Delocalization 
in Fock space
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Can be mapped (approximately) 
to the problem of localization 
on Bethe lattice

From Many–Body Systems to Bethe Lattice

1 2 3 4 5

Chaos in Nuclei – Delocalization?



Bethe Lattice

Cayley tree
not good for numeric:
most of the sites are 
on the boundary

Random Regular Graph
with a fixed connectivity K+1
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Q:
Can extended eigenstates of the 
Anderson model on the Bethe-Lattice be 
non-ergodic outside the critical region ?

A: YES
Localized states –
triangular shape of

Extended states –
gradually approach 
the ergodic limit, 
but reach it only 
at 
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Problem:

N is finite! 32000N 
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We trust this extrapolation:

1)               is very close to 1, much closer 

than                are

2)         satisfies the symmetry relation  
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Extended – non-ergodic  regime, W<17,5:



Extended – non-ergodic  regime, W<17,5:

The spectrum of the fractal dimensions        is 

gradually evolving with the strength of disorder W , 

but does not collapse to the ergodic limit:          and  

( )f 

( 1)f   = 

(1) 1f =

This is not a finite size effect:

1) Two fixed points

2) This is not a critical behavior:              depends 

on both N and W. 

( , , )f N W



Q:
Can extended eigenstates of the 
Anderson model on the Bethe-Lattice be 
non-ergodic outside the critical region ?

A: YES
Localized states –
triangular shape of

Extended states –
gradually approach 
the ergodic limit, 
but reach it only 
at 
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0W =



Extended – non-ergodic  regime, W<Wc=17,5:

The spectrum of the fractal dimensions        is 

gradually evolving with the strength of disorder W , 

but does not collapse to the ergodic limit, which is

( )f 

( 1)f   = (1) 1f =

It is unlikely that this is a finite size effect:

1) Two fixed points

2) This is not a critical behavior:              depends 

on both N and W. 

( , , )f N W



Ideal (no disorder) 1D Josephson array
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Small entropy at infinite temperature.
M. G. Pino, L.B. Ioffe, BA, to be completed
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Ideal (no disorder) 1D Josephson array
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Quantum (1+1) 
BKT - transition



Matrix element of the 

transition is

Localized phase at 
high temperatures!

Quantum Transition:
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equations 
of motion: 

Dimensionless 
energy per island. 

Classical limit:
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Slow relaxation in the classical limit
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Quantum problem

Limit the number of charge states 
Consider only (random initial conditions)

0, 1, 2q =  

T = 



Charge relaxation in Good and Bad metals

As the size increases the 
characteristic time of the 
charge relaxation stays 
roughly constant on log scale

Good metal Bad metal

As the size increases 
the characteristic 
time of the charge 
relaxation in the 
insulator grows 
exponentially. 

Insulator



Charge relaxation in Good and Bad metals

characteristic times in good and bad metals vs. insulator. 



Conclusion:

Multifractality of the eigen-functions of the Anderson 
Model on the Bethe lattice (random regular graph) 
persists in a broad interval of the disorder strengths.

This suggests that many-body systems should 
demonstrate non-ergodic behavior even outside the 
critical regime of the Many-Body Localization.

Conventional Statistical mechanics might be not fully 
applicable



Conclusion:
Multifractality of the eigen-functions of the Anderson Model on the 
Bethe lattice (random regular graph) persists in a broad interval of 
the disorder strengths.

This suggests that many-body systems should demonstrate non-
ergodic behavior even outside the critical regime of the Many-Body 
Localization.

Conventional Statistical mechanics might be not fully applicable

Ergodic – Non-ergodic: crossover of phase transition?

Analytical description of the deviation from the 
ergodicity (Weak Many-Body Localization)

Non-ergodic time evolution

Driven systems with dissipation

Open problems:


