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The glass “transition”

Fluid Glass

• Activated dynamics: “super-Arrhenius” growth of viscosity.

• “No change of structure” accompanying dynamic arrest.
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Dynamic heterogeneity

• Growth of spatio-temporal correlations. fast

[“Dynamical heterogeneities in glasses, colloids and granular materials”, Oxford, 2011]

• Major puzzle: Link with static length scales? Statics vs. dynamics.
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Lessons from a simpler problem

• Liquid-gas transition: First-order transition ending at a critical point.

[H. Callen]

• Van der Waals (1873): Mean-field equation of state predicts nature of
phase transition, and a simple “landscape” with (only) 2 states.

• Missing in mean-field: Nucleation (’27-’60) and critical fluctuations (’75).

-Convex free energy (interfaces); super-activated dynamics from CNT.

-Non-trivial finite d exponents, mean-field valid for d ≥ 4(& d = 3).
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Less simple problems: disorder

• Random field Ising model (Imry-Ma ’75): H = −J
∑
ij

SiSj −
∑
i

hiSi.

• Edwards-Anderson spin glass model (’75): H = −
∑
ij

JijSiSj .

• Some lessons:

- RFIM: Super-Arrhenius dynamics (T = 0 critical point), non-trivial
exponents for the barriers, nonperturbative treatment needed for d < 6.

- SG: Mean-field solution using replica symmetry breaking (Parisi
’79-’83), encoding hierarchical free energy landscape.

- Below d = 6: Mean-field results vs. phenomenological ‘droplet’ (low
dimensional excitations) theory? Unsolved to this day.

- Numerical studies of critical properties and low-temperature phases
notoriously difficult (e.g. AT line...). Multiple models useful.

- Decisive experiments are difficult.
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Structural glasses

• Hard spheres as a canonical glass model (Pusey - van Megen ’86).

• Mean-field thermodynamic solution d → ∞ established in 2013. Solution
confirms density functional theory, Bethe lattice, etc.

[Kurchan, Parisi, Zamponi ’13-’14]

• Universality class identified earlier using models such as p-spin model.

H = −
∑
i1···ip

Ji1···ipSi1 · · ·Sip . [Kirkpatrick, Thirumalai, Wolynes ’87-’89]

• Mean-field dynamics unsolved to this day. This is probably not Götze’s
mode-coupling theory.

• Lessons learnt from earlier problems:

- Well-defined path (vdW → Wilson)... possibly incorrect!

- Non-trivial critical fluctuations below d = 8 (or 6?) ≫ d = 3;

- Difficulty of numerical simulations;

- Experiments not always decisive.
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RFOT

• Random First Order Transition (RFOT) theory is a theoretical framework
constructed over the last 30 years using a diverse set of analytical
techniques. [Structural glasses and supercooled liquids, Wiley ’12]

• Mean-field character now fully understood. Complex free energy
landscape gives rise to sharp transitions (‘guessed’ in experimental data):

- Onset (apparition of metastable states);

- “Mode-coupling” singularity (long-lived metastable states, N ∼ eNΣ);

- Entropy crisis (Σ = 1
N
lnN → 0).

• Ideal glass = zero configurational entropy, replica symmetry breaking.

• Proliferation of ‘states’ identified by density profiles. Overlap between
(coarse-grained) density profiles is the order parameter:

Q12 =
1

N

N∑
i,j=1

θ(a− |r1,i − r2,j |), with a ≈ 0.3σ.
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Landau free energy

• Effective potential V (Q) is the free energy cost to have 2 configurations

at fixed overlap Q12: [Franz & Parisi, PRL ’97]

V (Q) = −(T/N)

∫
dr2e

−βH(r2) log

∫
dr1e

−βH(r1)δ(Q−Q12)

Σ(T )TK
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• ‘van der Waals’ picture of the
glass transition.

• Large Q metastable state has
infinite lifetime in mean-field.

• First-order jump at TK , when
‘driving force’ Σ → 0.

• Finite d implies convex V (Q): Surface tension between ‘metastable’

states appears. Suggests to interpret relaxation as nucleation process
driven by entropic forces (super-Arrhenius). [KTW, ’89]
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Direct 3d measurement?

• V (Q) is a ‘large deviation’ function, mainly studied in mean-field RFOT

limit: P (Q) = 〈δ(Q−Q12)〉T ∼ exp[−βNV (Q)].

• Principle: Take two equilibrated configurations 1 and 2, measure their
overlap Q12, record the histogram of Q12.

• Problems:

- T > TK : typical configurations have Q12 ≪ 1.

- Thermalizing near/below TK?

- Translational/rotational invariance: Q12 ≪ 1 even in ideal glass.

• A possible solution: Seek large deviations using umbrella sampling
techniques for coupled copies with ǫ → 0: [e.g. Frenkel & Smit]

- Biased sampling using Wi(Q12) = ki(Q12 −Qi)
2 to explore Q12 ≈ Qi.

- Vary (ki, Qi) to explore entire Q12-range with careful thermalization.

- Reconstruct P (Q) using histogram reweighting techniques.
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Free energy measurements

• Thermalized MD simula-
tions of harmonic spheres
with N = 108; Tonset ≈ 12.

• Linear part below Tonset:
phase coexistence between
multiple metastable states in
3d bulk liquid.

• Non trivial thermodynamic
fluctuations accompany
slow dynamics.

• The ‘structure’ changes
dramatically with T – just
not g(r). Mirrors dynamical
large deviations.

[Berthier, PRE ’13]
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Link with dynamic heterogeneity

• Large deviations of global fluctua-
tions of local activity

mt =
∫
dx

∫ t
0
dt′m(x; t′, t′ +∆t):

P (m) = 〈δ(m−mt)〉 ∼ e−tNψ(m).

• Dynamic heterogeneity seen as
exponential tail in P (m).

• Phase coexistence in (d+1) dimen-
sions: High and low activity phases.
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[Jack et al., JCP ’06]

• Equivalently, a field coupled to local dynamics induces a nonequilibrium
first-order phase transition in the “s-ensemble”. [Garrahan et al., PRL ’07]

• Also seen within mean-field RFOT [Jack & Garrahan, PRE ’10].

• Global thermodynamic and dynamic fluctuations behave very similarly.
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Equilibrium phase transitions

• Non-convex V (Q) implies that an equilibrium phase transition can be

induced by a field conjugated to Q. [Kurchan, Franz, Mézard, Cammarota, Biroli...]

• Annealed: 2 coupled copies.

εa

H = H1 +H2 − ǫaQ12

• Quenched: copy 2 is frozen.

εq

H = H1 − ǫqQ12

TK

Tonset

T

ε

Critical point

• Within RFOT: Different universality
classes for quenched and annealed.

[Biroli et al., Franz & Parisi, ’14]

• First order transition emerges from TK ,
ending at a critical point near Tonset.

• Extended phase diagrams as useful
probe of RFOT/glass physics.
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Numerical evidence in 3d liquid

• (T, ǫ) plan for annealed case.
[Berthier, PRE ’13]

• Sharp jump of the overlap be-
low Tonset ≈ 10.

• Suggests coexistence region
ending at critical point.
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• P (Q) bimodal for finite N .

• Bimodality and static suscep-
tibility enhanced at larger N for
T . Tc ≈ 9.8.

→ Equilibrium first-order phase
transition, Ising criticality.

[see also: Parisi & Seoane, PRE ’14]
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Spin plaquette models

• Plaquette models are spin models intermediate between KCM and spin
glass RFOT models: statics not fully trivial, localized defects and facilitated

dynamics. E.g. in d = 2 on square lattice: E = −
∑
�

s1s2s3s4.

• Plausible scenario for emergence of facilitated dynamics out of
interacting Hamiltonian with glassy dynamics. [Garrahan, JPCM ’03]

• Dynamic heterogeneity similar to
standard KCM. [Jack et al., PRE ’05]

• “High-order” or “multi-point” static
correlations develop without finite T
phase transitions.

• Triangular plaquette model, an-
nealed transition occurs [Garrahan, PRE

’14]. No quenched?
0 0.5 1 1.5 2

ε

0

0.5

1

1.5

2

T

high 
overlap

low 
overlap

critical 
endpoint

self-dual 
line

title – p.15



Quenched transition

• Important because transition not seen in lattice glass models or spin
plaquette models, but predicted within RFOT: Deep link with Kauzmann
transition? Several on-going works by Garrahan/Jack, Hukushima, etc.
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• Confirms smaller system size results for harmonic spheres.

• Naive first estimate for d = 3 Lennard-Jones binary mixture: Tc . 0.6.
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Overlap fluctuations

• Overlap distributions are Gaussian at T > Tc, look “critical” at Tc, and
become bimodal at T . Tc.

3d LJ, N = 256, T = 0.55
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• Two types of fluctuations: χT = 〈Q2〉T − 〈Q〉2T and χdis = 〈Q〉2T − 〈Q〉T
2
.

Simulations indicate χdis ≈ χ2
T : Critical point is controlled by disorder.

• (Much) more work needed for exponents...
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Configurational entropy Σ(T )

• Σ = kB
N

logN signals entropy crisis. Problem when d < ∞, because

metastable states cannot be (rigorously) defined.

• Experiments and simulations use approximations: Σ ≈ Stot − Svib.
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• Sensible estimate:
Σ ≈ β[V (Qhigh)− V (Qlow)]

• Free energy cost to local-
ize the system ‘near’ a given
configuration.

• Well-defined in finite d (T <
Tc), consistent with mean-
field.

• Definition of ‘states’, ‘vibra-
tions’, exploration of energy
landscape not needed.

[Berthier & Coslovich, PNAS ’14] title – p.19



Results for two liquids

This work
Ref. [12]
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• Configurational entropy not defined in high-T liquid.

• Discontinuous emergence of Σ(T ) at Tc signals slow dynamics.

• Strong temperature dependence, qualitatively correlated with dynamics.

• Σ(T ) can be used to study TK directly in bulk systems.
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More ideal glass transitions

• Random pinning of a fraction c of par-
ticles: unperturbed Hamiltonian.

• Slowing down observed numerically.
[Kim, Scheidler... ’00’s]

TK

Tonset

T
Critical point

Pinning

• Within RFOT, ideal glass transition line ex-
tends up to critical point.

[Cammarota & Biroli, PNAS ’12]

• Pinning reduces multiplicity of states, i.e.
decreases configurational entropy: Σ(c, T ) ≃
Σ(0, T )− cY (T ). Equivalent to T → TK .

• Ideal glass transition with quenched disorder - overlap can be used.
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Pinning in plaquette models

• Random pinning studies in spin plaquette models offer an alternative
scenario to RFOT. [Jack & Berthier, PRE ’12]

• Crossover f⋆(T ) from competition between bulk correlations and random
pinning: directly reveals growing static correlation lengthscale.

Light blue: mobile. Deep blue: frozen. Black: pinned.
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Smooth crossover

• Static overlap q increases rapidly with fraction f of pinned spins,
crossover f⋆ = f⋆(T ), but no phase transition.

• Overlap fluctuations reveal growing static correlation length scale, but
susceptibility remains finite as N → ∞.

• Dynamics barely slows down with f , unlike atomistic models.
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Random pinning in 3d liquid

• Challenge: fully exploring equilibrium configuration space in the
presence of random pinning: parallel tempering. Limited (for now) to small
system sizes: N = 64, 128. [Kob & Berthier, PRL ’13]

Low-c fluid High-c glass

• From liquid to equilibrium glass: freezing of amorphous density profile.

• We performed a detailed investigation of the nature of this phase
change, in fully equilibrium conditions.
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Order parameter

• We detect this ‘glass formation’ using an equilibrium, microscopic order
parameter: The global overlap Q = 〈Q12〉.
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• Gradual increase at high T to more abrupt emergence of amorphous
order at low T at well-defined c value. First-order phase transition or
smooth crossover?
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Fluctuations: Phase coexistence

• Probability distribution function of the overlap: P (Q) = 〈δ(Q−Q12)〉.
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• Bimodal distributions appear at low enough T , suggestive of phase
coexistence at first-order transition, rounded by finite N effects. More work
needed to study N → ∞...
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Equilibrium phase diagram

• Location of the transition from liquid-to-glass determined from
equilibrium measurements of microscopic order parameter on both sides.
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• Glass formation induced by random pinning has clear equilibrium
thermodynamic signatures which can be studied directly.

• Results compatible with Kauzmann transition – this can now be decided.
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Conclusion

• Non-trivial thermodynamic fluctuations of the overlap in 3d bulk
supercooled liquids: non-Gaussian V (Q) losing convexity below ≈ Tonset.

• Statics and dynamics seem to go hand in hand.

• Adding a thermodynamic field can induce equilibrium phase transitions.
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ε

Critical point

• Theory: Mean-field limit well understood at
thermodynamic level, finite d (i.e. d = 3) will
be difficult. Dynamics?

• Simulations have entered a new phase:
equilibrium phase transitions, microscopic
order parameters.

• A genuine glass transition may exist, and
its existence can be studied directly.
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May 4-7, 2015

http://www.viscous-liquids.de/2015/

Liquids, colloids, glasses, gels, active & living matter, melts, grains...

No invited speaker: Apply and get selected!
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Thermodynamic limit?

• Phase transition can only be proven using finite-size scaling techniques
to extrapolate toward N → ∞.

• Limited data support enhanced bimodality and larger susceptibility for
larger N . Encouraging, but not quite good enough: More work needed.
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