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The glass “transition™

Fluid Glass

e Activated dynamics: “super-Arrhenius” growth of viscosity.

e “No change of structure” accompanying dynamic arrest.



Dynamic heterogeneity

e Growth of spatio-temporal correlations.

[“Dynamical heterogeneities in glasses, colloids and granular materials”, Oxford, 2011]

e Major puzzle: Link with static length scales? Statics vs. dynamics.



Lessons from a simpler problem

e Liquid-gas transition: First-order transition ending at a critical point.
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e Van der Waals (1873): Mean-field equation of state predicts nature of

phase transition, and a simple “landscape” with (only) 2 states.

e Missing in mean-field: Nucleation ('27-°60) and critical fluctuations (’75).
-Convex free energy (interfaces); super-activated dynamics from CNT.
-Non-trivial finite d exponents, mean-field valid for d > 4(2> d = 3).



Less simple problems: disorder

e Random field Ising model (Imry-Ma *75): —JZS Si— Y hiS;.

 Edwards-Anderson spin glass model ('75): Z J;; S5,

e Some lessons:

- RFIM: Super-Arrhenius dynamics (7" = 0 critical point), non-trivial
exponents for the barriers, nonperturbative treatment needed for d < 6.

- SG: Mean-field solution using replica symmetry breaking (Parisi
"79-'83), encoding hierarchical free energy landscape.

- Below d = 6: Mean-field results vs. phenomenological ‘droplet’ (low
dimensional excitations) theory? Unsolved to this day.

- Numerical studies of critical properties and low-temperature phases
notoriously difficult (e.g. AT line...). Multiple models useful.

- Decisive experiments are difficult.



Structural glasses

e Hard spheres as a canonical glass model (Pusey - van Megen '86).

e Mean-field thermodynamic solution d — oo established in 2013. Solution
confirms density functional theory, Bethe lattice, etc.

[Kurchan, Parisi, Zamponi ’13-'14]
e Universality class identified earlier using models such as p-spin model.
H=— Z JiyiySiy 0+ Si, - [Kirkpatrick, Thirumalai, Wolynes '87-'89]
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e Mean-field dynamics unsolved to this day. This is probably not Gotze’s
mode-coupling theory.

e Lessons learnt from earlier problems:

- Well-defined path (vdW — Wilson)... possibly incorrect!

- Non-trivial critical fluctuations below d = 8 (or 6?) > d = 3;
- Difficulty of numerical simulations;

- Experiments not always decisive.



RFOT

e Random First Order Transition (RFOT) theory is a theoretical framework
constructed over the last 30 years using a diverse set of analytical
techn Iq ues. [Structural glasses and supercooled liquids, Wiley '12]

o Mean-field character now fully understood. Complex free energy
landscape gives rise to sharp transitions (‘guessed’ in experimental data):
- Onset (apparition of metastable states);
- “Mode-coupling” singularity (long-lived metastable states, A ~ eV*);
- Entropy crisis (X = & In N — 0).

e |deal glass = zero configurational entropy, replica symmetry breaking.

e Proliferation of ‘states’ identified by density profiles. Overlap between
(coarse-grained) density profiles is the order parameter:

N
1 :
Q12 = N Z 0(a — |r1,; —r2|), With a = 0.30.
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Landau free energy

e Effective potential V(@) is the free energy cost to have 2 configurations
at fixed overlap Q12:
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[Franz & Parisi, PRL '97]

e ‘'van der Waals’ picture of the
glass transition.

e Large () metastable state has
infinite lifetime in mean-field.

e First-order jump at Tk, when
‘driving force’ ¥ — 0.

e Finite d implies convex V(Q): Surface tension between ‘metastable’
states appears. Suggests to interpret relaxation as nucleation process
driven by entropic forces (super-Arrhenius). [KTW, '89]



Direct 3d measurement?

e V(Q) is a ‘large deviation’ function, mainly studied in mean-field RFOT

limit: P(Q) = (6(Q — Q12)) ~ exp[—BNV(Q)].

e Principle: Take two equilibrated configurations 1 and 2, measure their
overlap @12, record the histogram of Q.

e Problems:
- T > Tk typical configurations have @, < 1.

- Thermalizing near/below T ?
- Translational/rotational invariance: Q12 < 1 even in ideal glass.

e A possible solution: Seek large deviations using umbrella sampling
techniques for coupled copies with ¢ — 0: [e.g. Frenkel & Smit]

- Biased sampling using W;(Q12) = k;(Q12 — Q;)? to explore Q12 ~ Q;.
- Vary (k;,Q;) to explore entire QQ12-range with careful thermalization.
- Reconstruct P(Q) using histogram reweighting techniques.



Free energy measurements

e Thermalized MD simula-
tions of harmonic spheres
with N = 108; Tonset ~ 12.

e Linear part below T, set:
phase coexistence between
multiple metastable states in
3d bulk liquid.

e Non trivial thermodynamic
fluctuations accompany
slow dynamics.

e The ‘structure’ changes
dramatically with T — just
not g(r). Mirrors dynamical
large deviations.

[Berthier, PRE ’13]
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Link with dynamic heterogeneity

e Large deviations of global fluctua- —

tions of local activity 10% ]
me = [ dx fot dt'm(x;t',t" + At): . 0% ]
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e Phase coexistence in (d+1) dimen- m

sions: High and low activity phases.

[Jack et al., JCP "06]

e Equivalently, a field coupled to local dynamics induces a nonequilibrium
first-order phase transition in the “s-ensemble”. [Garrahan et al., PRL ’07]

e Also seen within mean-field RFOT [Jack & Garrahan, PRE ’10].

e Global thermodynamic and dynamic fluctuations behave very similarly.



Equilibrium phase transitions

e Non-convex V' (Q) implies that an equilibrium phase transition can be
induced by a field conjugated to ().  [Kurchan, Franz, Mézard, Cammarota, Biroli...]
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e Within RFOT: Different universality

classes for quenched and annealed.
[Biroli et al., Franz & Parisi, '14]
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Numerical evidence In 34 liquid
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— Equilibrium first-order phase
transition, Ising criticality.

[see also: Parisi & Seoane, PRE '14]



Spin plaquette models

e Plaguette models are spin models intermediate between KCM and spin
glass RFOT models: statics not fully trivial, localized defects and facilitated

dynamics. E.g. in d = 2 on square lattice: E = — ) " 51525354

[

e Plausible scenario for emergence of facilitated dynamics out of

interacting Hamiltonian with glassy dynamics.

e Dynamic heterogeneity similar to
standard KCM. [Jack et al, PRE "05]

e “High-order” or “multi-point” static
correlations develop without finite T
phase transitions.

e Triangular plaquette model, an-
nealed transition occurs [Garrahan, PRE
'14]. No quenched?

[Garrahan, JPCM 03]
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Quenched transition

e Important because transition not seen in lattice glass models or spin
plaguette models, but predicted within RFOT: Deep link with Kauzmann
transition? Several on-going works by Garrahan/Jack, Hukushima, etc.
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e Confirms smaller system size results for harmonic spheres.

e Naive first estimate for d = 3 Lennard-Jones binary mixture: T, < 0.6.



Quenched transition

e Important because transition not seen in lattice glass models or spin
plaguette models, but predicted within RFOT: Deep link with Kauzmann
transition? Several on-going works by Garrahan/Jack, Hukushima, etc.
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e Confirms smaller system size results for harmonic spheres.

e Naive first estimate for d = 3 Lennard-Jones binary mixture: T, < 0.6.



Overlap fluctuations

e Overlap distributions are Gaussian at 7' > T, look “critical” at T,., and
become bimodal at 7" < T..
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e Two types of fluctuations: xr = (@?)r — (Q)% and xais = (@)5 — (@)1 .

Simulations indicate xq;s ~ x4: Critical point is controlled by disorder.

e (Much) more work needed for exponents...




Configurational entropy > (7'

o X = k2 1og \ signals entropy crisis. Problem when d < oo, because
metastable states cannot be (rigorously) defined.

e Experiments and simulations use approximations: ¥ = Siot — Syib.

1 | | | | —] e Sensible estimate:
08 L Harmonic spheres N = 108 1 X = B[V(Qnign) — V(Qiow)]

e Free energy cost to local-
ize the system ‘near’ a given
configuration.

e Well-defined in finite d (T <
T.), consistent with mean-
field.

e Definition of ‘states’, ‘vibra-
tions’, exploration of energy
landscape not needed.

[Berthier & Coslovich, PNAS ’14]



Results for two liquids
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e Configurational entropy not defined in high-T" liquid.
e Discontinuous emergence of 3(7T") at T, signals slow dynamics.
e Strong temperature dependence, qualitatively correlated with dynamics.

e 3(T) can be used to study T directly in bulk systems.



More ideal glass transitions

e Random pinning of a fraction ¢ of par- QQ

ticles: unperturbed Hamiltonian. QQ 888
Jeje

e Slowing down observed numerically. Q

[Kim, Scheidler... '00’s]

AT

e Within RFOT, ideal glass transition line ex-
tends up to critical point.
[Cammarota & Biroli, PNAS '12]

e Pinning reduces multiplicity of states, i.e.
decreases configurational entropy: X(c,T) ~

Pinning (0, T) — cY (T). Equivalentto T — Tk.

-

e |deal glass transition with quenched disorder - overlap can be used.



Pinning in plaquette models

e Random pinning studies in spin plaquette models offer an alternative
scenario to RFOT. [Jack & Berthier, PRE '12]

e Crossover f*(T') from competition between bulk correlations and random
pinning: directly reveals growing static correlation lengthscale.
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Light blue: mobile. Deep blue: frozen. Black: pinned.



Smooth crossover

e Static overlap q increases rapidly with fraction f of pinned spins,
crossover f* = f*(T'), but no phase transition.

e Overlap fluctuations reveal growing static correlation length scale, but
susceptibility remains finite as N — .

e Dynamics barely slows down with f, unlike atomistic models.
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Random pinning in 3d liquid

e Challenge: fully exploring equilibrium configuration space in the
presence of random pinning: parallel tempering. Limited (for now) to small
system sizes: N = 64, 128. [Kob & Berthier, PRL 13]

Low-c fluid High-c glass

e From liquid to equilibrium glass: freezing of amorphous density profile.

e We performed a detailed investigation of the nature of this phase
change, in fully equilibrium conditions.



Order parameter

e We detect this ‘glass formation’ using an equilibrium, microscopic order
parameter: The global overlap Q@ = (Q12).
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e Gradual increase at high T" to more abrupt emergence of amorphous
order at low T' at well-defined ¢ value. First-order phase transition or
smooth crossover?



Fluctuations: Phase coexistence

e Probability distribution function of the overlap: P(Q) = (0(Q — Q12)).

&

e Bimodal distributions appear at low enough 7', suggestive of phase
coexistence at first-order transition, rounded by finite N effects. More work
needed to study N — oo...



Equilibrium phase diagram

e Location of the transition from liquid-to-glass determined from
equilibrium measurements of microscopic order parameter on both sides.
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e Glass formation induced by random pinning has clear equilibrium
thermodynamic signatures which can be studied directly.

e Results compatible with Kauzmann transition — this can now be decided.



Conclusion

e Non-trivial thermodynamic fluctuations of the overlap in 3d bulk
supercooled liquids: non-Gaussian V(Q) losing convexity below ~ Tt

e Statics and dynamics seem to go hand in hand.

e Adding a thermodynamic field can induce equilibrium phase transitions.

\/\/ ] e Theory: Mean-field limit well understood at
\\/\/\//\\J/’ \ 34 thermodynamic level, finite d (i.e. d = 3) will
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be difficult. Dynamics?

T—

A e Simulations have entered a new phase:
T equilibrium phase transitions, microscopic
order parameters.

e A genuine glass transition may exist, and
its existence can be studied directly.
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Thermodynamic limit?

e Phase transition can only be proven using finite-size scaling techniques
to extrapolate toward N — oc.

0.9

q

e Limited data support enhanced bimodality and larger susceptibility for
larger N. Encouraging, but not quite good enough: More work needed.
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