Thermodynamic fluctuations in model glasses

Ludovic Berthier

Laboratoire Charles Coulomb Université Montpellier 2 & CNRS

Critical Phenomena in Random and Complex Systems – Capri, September 12, 2014

Coworkers

• With:

D. Coslovich (Montpellier) R. Jack (Bath) W. Kob (Montpellier)

The glass "transition"

- Activated dynamics: "super-Arrhenius" growth of viscosity.
- "No change of structure" accompanying dynamic arrest.

Dynamic heterogeneity

• Growth of spatio-temporal correlations.

["Dynamical heterogeneities in glasses, colloids and granular materials", Oxford, 2011]

• Major puzzle: Link with static length scales? Statics vs. dynamics.

fast

Lessons from a simpler problem

• Liquid-gas transition: First-order transition ending at a critical point.

- Van der Waals (1873): Mean-field equation of state predicts nature of phase transition, and a simple "landscape" with (only) 2 states.
- Missing in mean-field: Nucleation ('27-'60) and critical fluctuations ('75).
 -Convex free energy (interfaces); super-activated dynamics from CNT.
 -Non-trivial finite *d* exponents, mean-field valid for *d* ≥ 4(≥ *d* = 3).

Less simple problems: disorder

- Random field Ising model (Imry-Ma '75): $H = -J \sum_{ij} S_i S_j \sum_i h_i S_i$.
- Edwards-Anderson spin glass model ('75): $H = -\sum_{ij} J_{ij}S_iS_j$.

• Some lessons:

- RFIM: Super-Arrhenius dynamics (T = 0 critical point), non-trivial exponents for the barriers, nonperturbative treatment needed for d < 6.

- SG: Mean-field solution using replica symmetry breaking (Parisi '79-'83), encoding hierarchical free energy landscape.

- Below d = 6: Mean-field results vs. phenomenological 'droplet' (low dimensional excitations) theory? Unsolved to this day.

- Numerical studies of critical properties and low-temperature phases notoriously difficult (e.g. AT line...). Multiple models useful.

- Decisive experiments are difficult.

Structural glasses

- Hard spheres as a canonical glass model (Pusey van Megen '86).
- Mean-field thermodynamic solution $d \rightarrow \infty$ established in 2013. Solution confirms density functional theory, Bethe lattice, etc.

[Kurchan, Parisi, Zamponi '13-'14]

• Universality class identified earlier using models such as *p*-spin model.

 $H = -\sum_{i_1 \cdots i_p} J_{i_1 \cdots i_p} S_{i_1} \cdots S_{i_p}.$ [Kirkpatrick, Thirumalai, Wolynes '87-'89]

 Mean-field dynamics unsolved to this day. This is probably not Götze's mode-coupling theory.

- Lessons learnt from earlier problems:
 - Well-defined path (vdW \rightarrow Wilson)... possibly incorrect!
 - Non-trivial critical fluctuations below d = 8 (or 6?) $\gg d = 3$;
 - Difficulty of numerical simulations;
 - Experiments not always decisive.

RFOT

- Random First Order Transition (RFOT) theory is a theoretical framework constructed over the last 30 years using a diverse set of analytical techniques. [Structural glasses and supercooled liquids, Wiley '12]
- Mean-field character now fully understood. Complex free energy landscape gives rise to sharp transitions ('guessed' in experimental data):
 - Onset (apparition of metastable states);
 - "Mode-coupling" singularity (long-lived metastable states, $\mathcal{N} \sim e^{N\Sigma}$);
 - Entropy crisis ($\Sigma = \frac{1}{N} \ln \mathcal{N} \to 0$).
- Ideal glass = zero configurational entropy, replica symmetry breaking.
- Proliferation of 'states' identified by density profiles. Overlap between (coarse-grained) density profiles is the order parameter:

$$Q_{12} = \frac{1}{N} \sum_{i,j=1}^{N} \theta(a - |\mathbf{r}_{1,i} - \mathbf{r}_{2,j}|), \text{ with } a \approx 0.3\sigma.$$

Landau free energy

• Effective potential V(Q) is the free energy cost to have 2 configurations at fixed overlap Q_{12} : [Franz & Parisi, PRL '97]

$$V(Q) = -(T/N) \int d\mathbf{r}_2 e^{-\beta H(\mathbf{r}_2)} \log \int d\mathbf{r}_1 e^{-\beta H(\mathbf{r}_1)} \delta(Q - Q_{12})$$

• 'van der Waals' picture of the glass transition.

• Large *Q* metastable state has infinite lifetime in mean-field.

• First-order jump at T_K , when 'driving force' $\Sigma \rightarrow 0$.

• Finite *d* implies convex V(Q): Surface tension between 'metastable' states appears. Suggests to interpret relaxation as nucleation process driven by entropic forces (super-Arrhenius). [KTW, '89]

Direct 3d measurement?

• V(Q) is a 'large deviation' function, mainly studied in mean-field RFOT limit: $P(Q) = \overline{\langle \delta(Q - Q_{12}) \rangle_T} \sim \exp[-\beta NV(Q)].$

• Principle: Take two equilibrated configurations 1 and 2, measure their overlap Q_{12} , record the histogram of Q_{12} .

• Problems:

- $T > T_K$: typical configurations have $Q_{12} \ll 1$.
- Thermalizing near/below T_K ?
- Translational/rotational invariance: $Q_{12} \ll 1$ even in ideal glass.

• A possible solution: Seek large deviations using umbrella sampling techniques for coupled copies with $\epsilon \to 0$: [e.g. Frenkel & Smit]

- Biased sampling using $W_i(Q_{12}) = k_i(Q_{12} Q_i)^2$ to explore $Q_{12} \approx Q_i$.
- Vary (k_i, Q_i) to explore entire Q_{12} -range with careful thermalization.
- Reconstruct P(Q) using histogram reweighting techniques.

Free energy measurements

• Thermalized MD simulations of harmonic spheres with N = 108; $T_{\text{onset}} \approx 12$.

• Linear part below T_{onset} : phase coexistence between multiple metastable states in 3d bulk liquid.

• Non trivial thermodynamic fluctuations accompany slow dynamics.

• The 'structure' changes dramatically with T – just not g(r). Mirrors dynamical large deviations.

[Berthier, PRE '13]

Link with dynamic heterogeneity

- Large deviations of global fluctuations of local activity $m_t = \int dx \int_0^t dt' m(x; t', t' + \Delta t)$: $P(m) = \langle \delta(m - m_t) \rangle \sim e^{-tN\psi(m)}.$
- Dynamic heterogeneity seen as exponential tail in P(m).
- Phase coexistence in (d+1) dimensions: High and low activity phases.
- 10^{0} 10^{-3} $(m)_{d}$ 10⁻⁶ $- t_{obs} = 320$ $t_{obs} = 640$ 10^{-9} $\rightarrow t_{obs} = 960$ $t_{obs} = 1280$ 10^{-12} 0.1 0.00.2 0.3 m [Jack et al., JCP '06]
- Equivalently, a field coupled to local dynamics induces a nonequilibrium first-order phase transition in the "s-ensemble". [Garrahan et al., PRL '07]
- Also seen within mean-field RFOT [Jack & Garrahan, PRE '10].
- Global thermodynamic and dynamic fluctuations behave very similarly.

Equilibrium phase transitions

• Non-convex V(Q) implies that an equilibrium phase transition can be induced by a field conjugated to Q. [Kurchan, Franz, Mézard, Cammarota, Biroli...]

• Annealed: 2 coupled copies.

• Quenched: copy 2 is frozen.

• Within RFOT: Different universality classes for quenched and annealed.

[Biroli et al., Franz & Parisi, '14]

- First order transition emerges from T_K , ending at a critical point near T_{onset} .
- Extended phase diagrams as useful probe of RFOT/glass physics.

Numerical evidence in 3d liquid

Spin plaquette models

• Plaquette models are spin models intermediate between KCM and spin glass RFOT models: statics not fully trivial, localized defects and facilitated dynamics. E.g. in d = 2 on square lattice: $E = -\sum_{n=1}^{\infty} s_1 s_2 s_3 s_4$.

 Plausible scenario for emergence of facilitated dynamics out of interacting Hamiltonian with glassy dynamics.
 [Garrahan, JPCM '03]

• Dynamic heterogeneity similar to standard KCM. [Jack *et al.*, PRE '05]

• "High-order" or "multi-point" static correlations develop without finite T phase transitions.

• Triangular plaquette model, annealed transition occurs [Garrahan, PRE '14]. No quenched?

Quenched transition

• Important because transition not seen in lattice glass models or spin plaquette models, but predicted within RFOT: Deep link with Kauzmann transition? Several on-going works by Garrahan/Jack, Hukushima, etc.

Confirms smaller system size results for harmonic spheres.

• Naive first estimate for d = 3 Lennard-Jones binary mixture: $T_c \leq 0.6$.

Quenched transition

• Important because transition not seen in lattice glass models or spin plaquette models, but predicted within RFOT: Deep link with Kauzmann transition? Several on-going works by Garrahan/Jack, Hukushima, etc.

Confirms smaller system size results for harmonic spheres.

• Naive first estimate for d = 3 Lennard-Jones binary mixture: $T_c \leq 0.6$.

Overlap fluctuations

• Overlap distributions are Gaussian at $T > T_c$, look "critical" at T_c , and become bimodal at $T \leq T_c$.

• Two types of fluctuations: $\chi_T = \overline{\langle Q^2 \rangle_T - \langle Q \rangle_T^2}$ and $\chi_{\text{dis}} = \overline{\langle Q \rangle_T^2} - \overline{\langle Q \rangle_T^2}^2$. Simulations indicate $\chi_{\text{dis}} \approx \chi_T^2$: Critical point is controlled by disorder.

• (Much) more work needed for exponents...

Configurational entropy $\Sigma(T)$

• $\Sigma = \frac{k_B}{N} \log N$ signals entropy crisis. Problem when $d < \infty$, because metastable states cannot be (rigorously) defined.

• Experiments and simulations use approximations: $\Sigma \approx S_{tot} - S_{vib}$.

[Berthier & Coslovich, PNAS '14]

• Sensible estimate: $\Sigma \approx \beta [V(Q_{\text{high}}) - V(Q_{\text{low}})]$

• Free energy cost to localize the system 'near' a given configuration.

• Well-defined in finite d ($T < T_c$), consistent with mean-field.

• Definition of 'states', 'vibrations', exploration of energy landscape not needed.

Results for two liquids

- Configurational entropy not defined in high-T liquid.
- Discontinuous emergence of $\Sigma(T)$ at T_c signals slow dynamics.
- Strong temperature dependence, qualitatively correlated with dynamics.
- $\Sigma(T)$ can be used to study T_K directly in bulk systems.

More ideal glass transitions

• Random pinning of a fraction *c* of particles: unperturbed Hamiltonian.

Slowing down observed numerically.
 [Kim, Scheidler... '00's]

• Within RFOT, ideal glass transition line extends up to critical point.

[Cammarota & Biroli, PNAS '12]

• Pinning reduces multiplicity of states, i.e. decreases configurational entropy: $\Sigma(c,T) \simeq \Sigma(0,T) - cY(T)$. Equivalent to $T \to T_K$.

• Ideal glass transition with quenched disorder - overlap can be used.

Pinning in plaquette models

 Random pinning studies in spin plaquette models offer an alternative scenario to RFOT. [Jack & Berthier, PRE '12]

• Crossover $f^{\star}(T)$ from competition between bulk correlations and random pinning: directly reveals growing static correlation lengthscale.

Light blue: mobile. Deep blue: frozen. Black: pinned.

Smooth crossover

• Static overlap q increases rapidly with fraction f of pinned spins, crossover $f^* = f^*(T)$, but no phase transition.

• Overlap fluctuations reveal growing static correlation length scale, but susceptibility remains finite as $N \to \infty$.

• Dynamics barely slows down with f, unlike atomistic models.

Random pinning in 3*d* liquid

• Challenge: fully exploring equilibrium configuration space in the presence of random pinning: parallel tempering. Limited (for now) to small system sizes: N = 64, 128. [Kob & Berthier, PRL '13]

Low-c fluid

High-c glass

- From liquid to equilibrium glass: freezing of amorphous density profile.
- We performed a detailed investigation of the nature of this phase change, in fully equilibrium conditions.

Order parameter

• We detect this 'glass formation' using an equilibrium, microscopic order parameter: The global overlap $Q = \langle Q_{12} \rangle$.

• Gradual increase at high T to more abrupt emergence of amorphous order at low T at well-defined c value. First-order phase transition or smooth crossover?

Fluctuations: Phase coexistence

• Probability distribution function of the overlap: $P(Q) = \overline{\langle \delta(Q - Q_{12}) \rangle}$.

N = 64

• Bimodal distributions appear at low enough T, suggestive of phase coexistence at first-order transition, rounded by finite N effects. More work needed to study $N \rightarrow \infty$...

Equilibrium phase diagram

 Location of the transition from liquid-to-glass determined from equilibrium measurements of microscopic order parameter on both sides.

• Glass formation induced by random pinning has clear equilibrium thermodynamic signatures which can be studied directly.

Results compatible with Kauzmann transition – this can now be decided.

Conclusion

• Non-trivial thermodynamic fluctuations of the overlap in 3*d* bulk supercooled liquids: non-Gaussian V(Q) losing convexity below $\approx T_{\text{onset}}$.

- Statics and dynamics seem to go hand in hand.
- Adding a thermodynamic field can induce equilibrium phase transitions.

- Theory: Mean-field limit well understood at thermodynamic level, finite d (i.e. d = 3) will be difficult. Dynamics?
- Simulations have entered a new phase: equilibrium phase transitions, microscopic order parameters.
- A genuine glass transition may exist, and its existence can be studied directly.

May 4-7, 2015

http://www.viscous-liquids.de/2015/

Liquids, colloids, glasses, gels, active & living matter, melts, grains...

No invited speaker: Apply and get selected!

Thermodynamic limit?

• Phase transition can only be proven using finite-size scaling techniques to extrapolate toward $N \rightarrow \infty$.

• Limited data support enhanced bimodality and larger susceptibility for larger N. Encouraging, but not quite good enough: More work needed.