High-dimensional surprises near the glass and the jamming transitions: connecting spin glasses with reality

Patrick Charbonneau

Dimensional collaborators

Carolina Brito (Porto Alegre) Benoit Charbonneau (Waterloo) Eric Corwin (Oregon) Daan Frenkel (Cambridge) Andrea Fortini (Bayreuth) Atsushi Ikeda (Montpellier) Yuliang Jin (Duke/La Sapienza/ENS) Jorge Kurchan (ENS Paris) Kunimasa Miyazaki (Nagoya) Koos van Meel (Vienna) Giorgio Parisi (La Sapienza) Gilles Tarjus (UPMC) Pierfrancesco Urbani (CEA) Francesco Zamponi (ENS Paris)

Established by the European Commission

Spin-based MF picture for glasses (RFOT)

Exact in $d=\infty$.

The dynamics gets infinitely sluggish at the onset of the breakdown in states $\phi_{\text{d}}.$

Kirkpatrick, Thirumalai, Wolynes (1987-1989); Parisi *et al.* Debenedetti and Stillinger, Nature (2001) Franz, Parisi (1997); KPZ (2012)

Problem 0: Crystal nucleation

The crystal state is completely orthogonal to this description and it thought to interfere with its observation.

Typical solution: complex alloys Other possible solution: increase spatial dimension

Radius

$$\Delta G(R) = \gamma S_{d-1} R^{d-1} - \Delta \mu \rho_s V_d R^d$$
$$\Delta G^{\dagger}(R^*) \sim \frac{(2d\pi)^{d/2} \gamma^d}{\Delta \mu^{d-1}}$$

van Meel, Fortini, Charbonneau, Charbonneau, PRE (2009-2010)

Problem 1: Glass-glass nucleation and (facilitated) hopping

Mean-field hopping: see Yuliang Jin's poster

Once replica symmetry is broken, nucleation from one state to another is still possible.

Typical solution: patch theory, look in crossover area Other possible solution: increase spatial dimension

Problem 2: Below d_u fluctuations renormalize, or worse

For an Ising-type field theory d_u =4

For the RFOT dynamical transition d_u =8

Typical solutions: wave hands or throw everything away Other possible solution: increase spatial dimension

Biroli, Bouchaud (2007); Franz et al. (2011)

Problem 3: Caging order parameter is non-trivial to describe

$$\underline{\ll \tau_{\alpha}} G_s(r;t) \propto \frac{1}{N} \sum_{i=1}^{N} \langle \delta(|\mathbf{r}_i(t) - \mathbf{r}_i(0)| + r) \rangle$$

Various treatments make different approximations => quantitatively different results at finite *d*.

RT: static (free energy) description, assumes Gaussian cage MCT: (non-linear) dynamical description is not Gaussian

But in a (simple) mean-field limit they should correspond.

Typical solutions: hope that all is well in the mean-field limit Other possible solution: increase spatial dimension to check

van Hove (1954)

Example 1: MF view of MCT The Mode-Coupling Theory of supercooled liquids *Does it wear any clothes?*

 $\varphi_{\rm RT} \sim 4.8 d2^{-d}$ $\varphi_{\rm MCT} \sim 0.22 d^2 2^{-d}$

Glass transition of hard spheres in high dimensions, Authors: Bernhard Schmid, Rolf Schilling arXiv:1003.4559.

Mode-Coupling Theory as a Mean-Field Description of the Glass Transition Authors: Atsushi Ikeda, Kunimasa Miyazaki arXiv:1003.5472

Bouchaud, Cond. Matt. J. Club, June 2010

Example 2: Jamming

Out-of-equilibrium critical transition, hence describing it requires a good microscopic glass theory.

->Stringent test of glass theories.

HS phase diagram (GP's talk tomorrow)

CKUPZ Nat. Comm. (2014) & other papers PZ, KPZ, KPUZ, CKPUZ (2010-2014)

Evolving Density

CIPZ PRL (2011); CCPZ PRL (2012)

Cage Collapse

Between the liquid and jamming, something must happen, because

$$\overline{z} = 2d$$
 (isostaticity)

$$ar{z}_{-} \sim e^d$$
 (liquid shell)

Jamming (marginally stable) cage $r/\sigma - 1$

 10^{-12}

 10^{-6}

 10^{-9}

 10^{-3}

As proposed by Wyart PRL (2012), (a) two critical regimes follow from 20marginality. 151RSB solution does not: power-law Z(r)exponents are 0. Z(r)10 $\sim \Delta \phi^0$ $\sim \Delta \phi$ $\sim \Delta \phi^{\mu}$ afte o Ib IIb IIIb $\mathbf{5}$ d = 3 - 10 $\bar{z} = 2d$ r $\sigma + O(p^{-\mu})$ σ **CCPZ PRL (2012)**

1st power law: near contacts

Donev, Stillinger, Torquato, PRE (2005); Skoge *et al.* PRE (2006)

Near contacts: remove rattlers

Force contacts: remove bucklers

CCPZ unpublished (2014)

CKUPZ Nat. Comm. (2014)

Problem 4: Can only approach dynamical transition from one side

Typical solutions: get out of equilibrium and pray Other possible solution: High dimensions can't help much, so... plant a glass instead!

Example 3: Mari-Kurchan (MK) model

HS interacting via shifted potential

$$H_{\Lambda} = \sum_{j>i=1,N} V(|x_i - x_j + \Lambda_{ij}|)$$

 $\Lambda_{ij} \in [0,L]^d$ with a flat distribution. If A is near B and B is near C, A is not necessarily near C. In the liquid phase

 $g(x) = \exp(-\beta V(x))$

i.e.,
$$p = \beta P / \rho = 1 + \beta B_2 \rho$$

- Same high *d* partition function as HS.
- Mean-field critical behavior.
- Nucleation suppressed.
- Critical fluctuations don't couple with displacements.
- No spatial notion -> limited facilitation.
- Ideal off-lattice finite *d* MF model!

0.5 $arphi_{\mathsf{d}}$ equilibrium liquid 0.4Planting possible! 0.3 d/p0.2stable glass 0.1 marginal glass 0.0 8 J-line 9 5 6 4 $2^d \varphi/d$ MK, PRL (2009); JCP (2011) Mézard, Parisi, Tarzia, Zamponi, J. Stat. Phys. (2011)

CJPZ, PNAS (in press), arXiv:1407.5677

Conclusions

- Some qualitative and quantitative features of the mean-field fullRSB solution persist all the way down to *d*=2. How ubiquitous is fullRSB?
- Refinement of critical exponents and of deviations is ongoing (robust?).
- Gardner transition may be experimentally testable (ask Yuliang or Bea).
- Much to do about the dynamical transition and connection with void percolation (Jin and PC, arXiv:1409.0688)