High-dimensional surprises near the glass and the jamming transitions: connecting spin glasses with reality

Patrick Charbonneau
Duke.........

Dimensional collaborators

Spin-based MF picture for glasses (RFOT)

Exact in $d=\infty$.

The dynamics gets infinitely sluggish at the onset of the breakdown in states φ_{d}.
Kirkpatrick, Thirumalai, Wolynes (1987-1989); Parisi et al.
Debenedetti and Stillinger, Nature (2001)
Franz, Parisi (1997); KPZ (2012)

Problem 0: Crystal nucleation

Radius

The crystal state is completely orthogonal to this description and it thought to interfere with its observation.

Typical solution: complex alloys Other possible solution: increase spatial dimension

$$
\Delta G(R)=\gamma S_{d-1} R^{d-1}-\Delta \mu \rho_{s} V_{d} R^{d}
$$

$$
\Delta G^{\dagger}\left(R^{*}\right) \sim \frac{(2 d \pi)^{d / 2} \gamma^{d}}{\Delta \mu^{d-1}}
$$

van Meel, Fortini, Charbonneau, Charbonneau, PRE (2009-2010)

Problem 1: Glass-glass nucleation and (facilitated) hopping

Radius
$\Delta G(R)=\gamma S_{d-1} R^{d-1}-s_{c} \rho V_{d} R^{d}$
$\Delta G^{\dagger}\left(R^{*}\right) \sim \frac{(2 d \pi)^{d / 2} \gamma^{d}}{s_{c}^{d-1}}$
Mean-field hopping: see Yuliang Jin's poster

Once replica symmetry is broken, nucleation from one state to another is still possible.

Typical solution: patch theory, look in crossover area
Other possible solution: increase spatial dimension

Problem 2: Below d_{u} fluctuations renormalize, or worse

For an Ising-type field theory $d_{u}=4$

For the RFOT dynamical transition $d_{u}=8$

Typical solutions: wave hands or throw everything away
Other possible solution: increase spatial dimension
Biroli, Bouchaud (2007); Franz et al. (2011)

Problem 3: Caging order parameter is non-trivial to describe

van Hove (1954)

Example 1: MF view of MCT The Mode-Coupling Theory of supercooled liquids Does it wear any clothes?

$\varphi_{\mathrm{RT}} \sim 4.8 d 2^{-d}$
 $\varphi_{\mathrm{MCT}} \sim 0.22 d^{2} 2^{-d}$

Glass transition of hard spheres in high dimensions,
Authors: Bernhard Schmid, Rolf Schilling
arXiv:1003.4559.

Mode-Coupling Theory as a Mean-Field Description of the Glass Transition
Authors: Atsushi Ikeda, Kunimasa Miyazaki
arXiv:1003.5472

Example 2: Jamming

Out-of-equilibrium critical transition, hence describing it requires a good microscopic glass theory.
->Stringent test of glass theories.

HS phase diagram (GP's talk tomorrow)

CKUPZ Nat. Comm. (2014) \& other papers PZ, KPZ, KPUZ, CKPUZ (2010-2014)

Evolving Density

Consistent with $d=3$ results Chaudhuri, Berthier, Sastry PRL (2010)

CIPZ PRL (2011); CCPZ PRL (2012)

Cage Collapse

Between the liquid and jamming, something must happen, because
$\bar{z}=2 d$ (isostaticity)
$\bar{z} \sim e^{d}$ (liquid shell)

How determined are the force contacts (and the rattlers)?

Jamming (marginally stable) cage

As proposed by Wyart PRL (2012), two critical regimes follow from marginality.

1RSB solution does not: power-law exponents are 0 .

$1^{\text {st }}$ power law: near contacts

Silbert, Liu, Nagel, PRE (2005)

Donev, Stillinger, Torquato, PRE (2005); Skoge et al. PRE (2006)

Near contacts: remove rattlers

CCPZ PRL (2012); Lerner, Duering, Wyart Soft Matter (2013)

$2^{\text {nd }}$ power law: force contacts

O'Hern et al. PRE (2003)

Embarrassingly different...

Lerner, Duering, Wyart Soft Matter (2013); DeGiuli et al. arXiv:1402.3834

Force contacts: remove bucklers

CCPZ unpublished (2014)

$3^{\text {rd }}$ power law: cage evolution

Brito and Wyart J. Chem. Phys. (2009)
1RSB solution gives 0 .

High pressure numerical challenges:
-eliminate rattlers -network and thus rattlers reorganize with time

CKUPZ Nat. Comm. (2014)

Problem 4: Can only approach dynamical transition from one side

Typical solutions: get out of equilibrium and pray
Other possible solution: High dimensions can't help much, so... plant a glass
instead!

Example 3: Mari-Kurchan (MK) model

HS interacting via shifted potential

$$
H_{\wedge}=\sum_{j>i=1, N} V\left(\left|x_{i}-x_{j}+\wedge_{i j}\right|\right)
$$

$\Lambda_{i j} \in[0, \mathrm{~L}]^{d}$ with a flat distribution. If A is near B and B is near C, A is not necessarily near C. In the liquid phase

$$
\begin{aligned}
& \qquad g(x)=\exp (-\beta V(x)) \\
& \text { i.e., } \quad p=\beta P / \rho=1+\beta B_{2} \rho
\end{aligned}
$$

- Same high d partition function as HS.
- Mean-field critical behavior.
- Nucleation suppressed.
- Critical fluctuations don't couple with displacements.
- No spatial notion -> limited facilitation.
- Ideal off-lattice finite d MF model!

MK, PRL (2009); JCP (2011)
Mézard, Parisi, Tarzia, Zamponi, J. Stat. Phys. (2011)

Cavity reconstruction

Finite d MF -> RFOT + hopping

Conclusions

- Some qualitative and quantitative features of the mean-field fullRSB solution persist all the way down to $d=2$. How ubiquitous is fullRSB?
- Refinement of critical exponents and of deviations is ongoing (robust?).
- Gardner transition may be experimentally testable (ask Yuliang or Bea).
- Much to do about the dynamical transition and connection with void percolation (Jin and PC, arXiv:1409.0688)

