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Exact in d=!. 
 
The dynamics gets infinitely sluggish at the onset of the breakdown in states !d. 
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The crystal state is completely 
orthogonal to this description and it 
thought to interfere with its 
observation. 
 
Typical solution: complex alloys 
Other possible solution: increase 
spatial dimension 

van Meel, Fortini, Charbonneau, Charbonneau, PRE (2009-2010) 
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Once replica symmetry is broken, 
nucleation from one state to another 
is still possible. 
 
Typical solution: patch theory, look 
in crossover area 
Other possible solution: increase 
spatial dimension 
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For an Ising-type field theory du=4 For the RFOT dynamical transition du=8 

Typical solutions: wave hands or throw everything away 
Other possible solution: increase spatial dimension 
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van Hove (1954) 

Various treatments make different 
approximations => quantitatively 
different results at finite d. 
 
RT: static (free energy) description, 
assumes Gaussian cage 
MCT: (non-linear) dynamical description 
is not Gaussian  
 
But in a (simple) mean-field limit they 
should correspond.  
Typical solutions: hope that all is well in the 
mean-field limit 
Other possible solution: increase spatial 
dimension to check 
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The Mode-Coupling Theory (MCT) is considered by many to be the only

available “first principles” approach to account for the complex dynamics of

super-cooled liquids [1]. It is based on a somewhat uncontrolled closure scheme

of the exact equations of motion that describe the time evolution of the dynami-

cal structure function S(k, t) (i.e. the k-dependent density correlation function).

The resulting self-consistent equations have several remarkable properties. They

predict that as the temperature is reduced (or the density is increased) a plateau

appears in S(k, t) at intermediate times, before the final relaxation to zero on

time scales that diverge as one approaches the so-called MCT transition point,

beyond which the system should be in a dynamically arrested (glass) state. Al-

though this transition is now recognized to be an artefact of neglecting “activated

processes”, the promoters of MCT insist that the theory is quantitatively valid

in the weakly supercooled regime, i.e. the early stages of the slowdown of the

dynamics, where these activated processes should not play a major role.

There is indeed a vast body of experimental data that can be reasonably

well fitted by MCT, in a restricted regime of temperatures or densities where

the relaxation time increases by a factor 100 to 1000 from its value in the low-

viscosity liquid. One of the important features of the theory is that all dynamical

properties can be computed from the knowledge of the static structure factor,

S(k, t = 0). This leads to falsifiable predictions, concerning for example the

1

Bouchaud, Cond. Matt. J. Club, June 2010 

PQ-(1.)!G5!<=!O#)7!,>!<FB!

The Mode-Coupling Theory of supercooled liquids:
Does it wear any clothes?

Glass transition of hard spheres in high dimensions,

Authors: Bernhard Schmid, Rolf Schilling

arXiv:1003.4559.

Mode-Coupling Theory as a Mean-Field Description of the Glass Transition

Authors: Atsushi Ikeda, Kunimasa Miyazaki

arXiv:1003.5472

A critical test of the mode-coupling theory of the glass transition

Authors: Ludovic Berthier, Gilles Tarjus

arXiv:1005.0914

Recommended with a commentary by Jean-Philippe Bouchaud,
CFM, Paris

The Mode-Coupling Theory (MCT) is considered by many to be the only

available “first principles” approach to account for the complex dynamics of

super-cooled liquids [1]. It is based on a somewhat uncontrolled closure scheme

of the exact equations of motion that describe the time evolution of the dynami-

cal structure function S(k, t) (i.e. the k-dependent density correlation function).

The resulting self-consistent equations have several remarkable properties. They

predict that as the temperature is reduced (or the density is increased) a plateau

appears in S(k, t) at intermediate times, before the final relaxation to zero on

time scales that diverge as one approaches the so-called MCT transition point,

beyond which the system should be in a dynamically arrested (glass) state. Al-

though this transition is now recognized to be an artefact of neglecting “activated

processes”, the promoters of MCT insist that the theory is quantitatively valid

in the weakly supercooled regime, i.e. the early stages of the slowdown of the

dynamics, where these activated processes should not play a major role.

There is indeed a vast body of experimental data that can be reasonably

well fitted by MCT, in a restricted regime of temperatures or densities where

the relaxation time increases by a factor 100 to 1000 from its value in the low-

viscosity liquid. One of the important features of the theory is that all dynamical

properties can be computed from the knowledge of the static structure factor,

S(k, t = 0). This leads to falsifiable predictions, concerning for example the

1



<=!10,:.)(!7#2%!<FB!

CIPZ, PRL (2011); PNAS (2012) 

P
re

ss
ur

e,
β
P

ϕGCPϕth

ϕm

ϕFCC

ϕf

ϕd

ϕK

Packing fraction, ϕ



PQ-(1.)!I5!R-((#*$!

A/2&,>&)S/#.#:0#/(!60#46-.!
20-*+#4,*M!%)*6)!')+60#:#*$!#2!
0)S/#0)+!-!$,,'!(#60,+6,1#6!$.-++!
2%),08T!!

!

&U;20#*$)*2!2)+2!,>!$.-++!2%),0#)+T!



";!1%-+)!'#-$0-(!?HDV+!2-.W!2,(,00,7C!

CKUPZ Nat. Comm. (2014) & other papers PZ, KPZ, KPUZ, CKPUZ (2010-2014) 

equilibrium liquid

stable glass

marginal glass

J-line
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5
d/

p

4 5 6 7 8 9
2dϕ/d

4 5 6 7 8 9



PO,.O#*$!9)*+#28!

The observation that jammed packings’ properties are
independent of d suggests that a mean-field theory should
be able to capture the jamming phenomenology [18,23,24].
One such treatment, the Gaussian replica theory (G-RT)
[10,13], unifies the description of the glass transition and of
jamming by exploiting an analogy with discrete random
optimization problems [9,25]. In this treatment, the HS and
SS approaches to jamming are unified under the assump-
tion that jammed states are the infinite pressure (for HSs)
or zero temperature (for SSs) limit of long-lived metastable
glassy states [10,13]. The theory predicts a growing jam-
ming density range with d [13], the existence of scaling
relations for energy and pressure relating the two sides of
the jamming transition [10], and makes structural scaling
predictions that are remarkably satisfied at short distances
[10,13]. Yet we show here that (5) G-RT completely fails to
describe the structural regime that controls jammed pack-
ings’ mechanical stability. Our results (1)–(5) will thus
guide both theory and experiments (through high-precision
force measurements [26]) towards a better understanding
of the jamming transition.

Packing generation.—We consider a system of N !
8000 identical spherical particles of diameter ! in a fixed
volume V, under periodic boundary conditions. The pack-
ing fraction ’ ¼ NVdð!=2Þ=V, where Vdð!=2Þ is the vol-
ume of a d-dimensional ball of radius !=2, measures the
fraction of space occupied by particles. Jammed packings
are prepared using two different numerical protocols (see
Supplemental Material [27] for details and reduced units
definitions). (i) Approaching jamming from densities
below it by Lubachevsky-Stillinger compressions of HSs
undergoing Newtonian dynamics while ! grows at a fixed
rate " ¼ _! [4]. The compression, which is tuned to prevent
crystallization [20,28], stops when particles are very near
contact, defining the packing fraction ’"

p at which the HS
reduced pressure becomes infinite. (ii) Approaching
jamming from densities above or below it by minimizing
the energy E of a random configuration of harmonic SSs.
Initial bounds!% and !þ that bracket jamming are evolved
iteratively by choosing an intermediate value !m and
minimizing the energy of the current configuration at !þ
(procedure from above) or at !% (procedure from below).
The final jammed configurations at the onset of E ! 0 have
’#

e from above and ’"
e from below. From above, the energy

vanishes with e ¼ E=N ' !’2 and the static pressure
P' !’, where !’ is the distance from jamming [5].

We find the initial!( to have no measurable effect on’"
e.

We formally define ’min
e ¼ min!(’

"
eð!(Þ, but any reason-

able !( results in the same final density. By contrast, ’#
e is

independent of!%, but strongly depends on!þ (Fig. 1). We
therefore define ’max

e ¼ max!(’
#
eð!(Þ. A practical way of

constructing both ’min
e and ’max

e is to run the energy mini-
mization (respectively from below and from above) starting
from !% ¼ 0 and !þ large enough to saturate ’#

e to its
maximum. Intermediate packing fractions can then be

obtained by reducing !þ (Fig. 1). By varying !( in proto-
col (ii) we can thus construct packings over a density
interval ½’min

e ; ’max
e * that roughly corresponds in protocol

(i) to ½’"%
p ; ’"þ

p *with "% + 3, 10%2 and "þ + 3, 10%4

(larger " generate mechanically unstable packings). The
resulting density range is remarkably found to grow steadily
from about 2% in d ¼ 3 to nearly 10% in d ¼ 11 (Fig. 1).
We therefore confirm the similar observation made for
d ¼ 3 binary mixtures [14], where the limited available
density range and the subtle crystal order had left some
room for debate [6]. Note that this range is achieved by
only implementing procedures that compact liquid configu-
rations. Reference [21] has shown that enlarging the space
of procedures enlarges the range of jammed packings, but
the resulting packings likely have a different microstructure.
The similarity between the jamming density results of

the two protocols suggests an underlying physical connec-
tion between them. G-RT indeed predicts that packings
exist over a finite packing fraction range, whose upper
limit is the ‘‘glass close packing’’ ’GCP [13]. By analogy
with random combinatorial optimization problems [25],
the densest packing at ’GCP is conjectured to require a
time ' expðNaÞ to generate, the exponent being possibly
a + ðd% 1Þ=d, based on a nucleation analysis. The maxi-
mal density that can be reached by the protocols above,
which both run in polynomial time in N, should therefore
be strictly smaller than ’GCP. Figure 1 shows it to be the
case for all d, in agreement with G-RT.
Scaling functions.—To determine the universal structure

of disordered jammed structures, we consider the pair
correlation function gðrÞ ¼ ð#NÞ%1hPi!j$ðrþ ri % rjÞi,
which is the only relevant structural correlation in high

FIG. 1 (color online). The extrapolated jamming density ’"!0
p

following the protocol described in Ref. [28] is extended to
higher d (solid line and crosses), and compared with the G-RT
prediction for ’GCP (dashed line). (top inset) The range of
jamming densities ’"

p (squares) is compared to ’max
e (circles)

and ’min
e (triangles). Note that ’max

e ' ’"¼3,10%4

p and ’min
e '

’"¼3,10%2

p . (bottom inset) The d ¼ 3 increase of ’#
e with !þ, in

terms of the initial effective packing fraction.
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Numerical simulations.—We employ a modified
Lubachevsky-Stillinger algorithm to densify a low-density
gas ofN identical hard spheres of diameter!, enclosed in a
periodic box of volume V, by growing the particles at a
constant rate " ¼ _!, reported here in standard reduced
units [17,18]. Time evolution stops when the system
reaches a high reduced pressure p " #P=$ ¼ 103 mea-
sured by rescaling the mechanical pressure P by the num-
ber density $ " N=V and the inverse temperature#, which
is thermostated to unity. The packing fraction is ’ "
$Vdð!=2Þ, where VdðRÞ is the volume of a d-dimensional
ball of radius R. Our event-driven molecular dynamics
scheme complements Ref. [17]’s earlier implementation
of cubic blocking of space with spherical nearest-neighbor
lists [19]. Because the volume of a ball inscribed in a cube
tends to zero with growing d, remarkable efficiency gains
are obtained from considering collisions with fewer neigh-
bors. Up to d ¼ 10, particles are grown at rates as low as
" ¼ 3% 10&5, while rates of 10&4 and 10&3 are attained in
d ¼ 11 and 12, respectively. Systems with N ¼ 8000 are
simulated for d ' 9 and larger ones for d ¼ 10–12 [20].
These sizes ensure that, even when the system is in its
densest state, the box edge remains larger than 2!, which
prevents a particle from ever having two direct contacts
with another one. There are strong reasons to believe that,
although relatively small, these N nonetheless provide a
reliable approximation of bulk behavior. First, with in-
creasing d, the box edge becomes less representative of

the overall box size. The largest diagonals are
ffiffiffi
d

p
larger,

and there are many more diagonals than edges. Second, by
analogy to spin systems, mean-field arguments indicate
that, for d ! 1, a hypercube of side two is sufficient to
capture the full thermodynamic behavior. Even at the
critical point, finite-size corrections are proportional to
1=N%, where the exponent % is model-dependent (e.g.,
1=2 at the ferromagnetic transition), and do not directly
involve the edge length L [21]. Similar results hold for
dimensions greater than the upper critical dimension,
where the exponents coincide with the mean-field ones.
Third, the fluid structure is expected to become uniform at
ever smaller distances with increasing d [17,22]. Nearest-
neighbor ordering should thus mainly be influenced by
particles in contact or nearly so, with the rest of the fluid
acting as a continuum. Indeed, in the fluid phase, finite
volume corrections are proportional to the pair correlation
hðLÞ, and, at fixed L, hðLÞ goes to zero exponentially with
d [22]. The validity of these rationalizations, which are
consistent with the decorrelation property of high d sphere
packings proposed in [14], are satisfactorily tested by
simulations in d ¼ 8 [20].

Numerical results.—The compression results for d ¼ 9
shown in Fig. 1 are representative of the behavior observed
for all d > 3, where crystallization is not observed on
the time scale accessible to present computers [15,17]; in
d ¼ 3, crystallization is observed at small ", leading to a

drop in the pressure at intermediate density [17]. The
system first follows the equilibrium fluid equation of state
(EOS) at low density and falls out of equilibrium at high
density. Beyond this point, the pressure increases faster
than in the equilibrium fluid and ultimately diverges at the
packing fraction ’jð"Þ. A Carnahan-Starling form

pfluidð’Þ ¼ 1þ 2d&1’
1& Ad’

ð1& ’Þd (1)

captures well the pressure growth with ’ in the fluid
regime (Fig. 1), provided, for each d, that one fits Ad to
the data from the slowest compression rate available [23].
Note that the coefficients Afit

d are not identical to ACS
d

adjusted to recover the correct third virial coefficient [25]
(see [20]), but the values are quite close, and, in any case,
this contribution vanishes with increasing d.
In the high-density nonequilibrium regime, compaction

runs with different " follow separate branches, along
which the pressure evolution is dominated by the expulsion
of free volume [26,27]. Upon approaching jamming, the
pressure is well-approximated by

pfvð"; ’Þ ¼
d’jð"Þ½1& fð"Þ*

’jð"Þ & ’
; (2)

where both fð"Þ and ’jð"Þ are extracted from fitting the
simulation data for p + pmin (see the Table in [20]). Very
close to jamming (p * 105), fð"Þ can be interpreted as the
fraction of ‘‘rattlers’’ present, but, in the regime where the
fluid first becomes nonergodic, caging heterogeneity re-
sults in a larger effective f [26]. We find that, with decreas-
ing ", fð"Þ converges to values of order 10%, with only a
weak d dependence (Fig. 1).
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FIG. 1 (color online). Different compactions of N ¼ 8000
particles in d ¼ 9. With growing ’, the pressure first evolves
like the fluid EOS, then like a free-volume EOS. Extrapolated
threshold glass and theoretical ideal glass lines illustrate the
subsequent analysis (see text for details).
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The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem
The temperature-packing fraction phase diagram:

New difficulties:

Neighbors close to each others,
hence correlated

Mean field theory cannot be used

In large dimensions:
z = 2d (isostaticity)
z ≥ ed (− log sin(π/3)) (individual kissing number)

[Wyner, Bell System Tech. J. 46, 2111 (1967)]

Neighbors are “far” from each others

The liquid lacks any short range structure
The Van der Waals equation is exact
Parisi, Slanina, PRE 62, 6554 (2000)

Skoge et al., PRE 74, 041127 (2006)

Francesco Zamponi (LPTENS) Random CSP and packings Trieste, July 27, 2011 18 / 24

Between the liquid and jamming, something must 
happen, because 

How determined are the force 
contacts (and the rattlers)? 
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As proposed by Wyart PRL (2012), 
two critical regimes follow from 
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for Pf!f" is needed. Force networks in particle packings have
been the subject of intense theoretical and experimental in-
terest #13,15,16,29,30$, and it has been established that Pf
decays exponentially at large forces for a variety of models.
The behavior of Pf for small forces has not been agreed
upon, the central question being whether the infinite-system-
limit Pf!0" is nonzero. No theoretical model has been offered
yet that truly answers this question. We note that a recent
model reproduces all of the major characteristics of Pf that
we observe, including a positive Pf!0", even though it is
presently restricted to two dimensions #31$. Part of the diffi-
culty is that the answer likely depends not only on the system
in question, but also on the definition of f . In a true ideal
collectively jammed isostatic packing, which is necessarily
finite, all interparticle forces must be strictly positive and, in
fact, are determined uniquely through Eq. !8",

f = %AeT&!1%01 & , !8"

without any mention of interparticle potentials or influence
of external fields or loads like gravity or thermal dynamics.
The limiting probability distribution of these interparticle
forces as the packing becomes larger, if it exists, can be
positive at the origin, indicating that finite but large packings
have limiting polytopes with a few extremely small faces or,
equivalently, are very elongated along certain directions. We
have numerically studied the form of Pf!f" for almost
jammed random packings of N=1000 and N=10 000 spheres
by using molecular dynamics to observe the collisional
forces between first neighbors and also by directly using Eq.
!8" for the smaller packings9 !this offers better accuracy for
small forces". The results are shown in Fig. 7. We clearly see
a peak in P!f" for small forces, as observed in the literature
for jammed packings of soft particles #29$, and it appears
that there is a finite positive probability of observing zero
interparticle force. We will return to this point later.
The observed Pf!f" can be well fitted for medium and

large forces by Pf!f"= !Af2+B"e!Cf, with a small correction
needed to fit the small-force behavior, as used in Fig. 7. This
small correction has a negligible impact on the Laplace
transform of fPf!f", and in fact a very good approximation to
g2

!!"!l" in Eq. !7" is provided by just using

Lx#fPf!f"$ =
6A

!x + C"4
+

B
!x + C"2

. !9"

In the inset in Fig. 6, we show a comparison between the
g2

!!"!l" we observe computationally and the one given by Eqs.
!7" and !9" and the empirical fit to Pf!f" in Fig. 7. An essen-
tially perfect agreement is observed. Our focus here is on
small forces; however, we do wish to note that our data can-
not confidently rule out a Gaussian component to Pf for large
forces and that a slight quadratic component does seem to be
visible when Pf!f" is plotted on a log-log plot.

2. Near-contact contribution

In Fig. 8 we investigate the near-contact contribution to
g2!l". We have found that Z!b"!l" has a power-law behavior
over a surprisingly wide range of gaps, up to the first mini-
mum of g2 at l'0.25D, Z!b"!l"'11!l /D"0.6, as shown in the
figure. Note that this range is too wide for

g2
!b"!x" =

1
24"!1 + x"2

dZ!b"!x"
dx

to be a perfect power law, where x= l /D, as used to fit nu-
merical data in other studies !which have not investigated

9Efficiently inverting the rigidity matrix for very large three-
dimensional packings is a rather challenging numerical task which
we have not yet tackled.

FIG. 7. !Color online" Computational data on the interparticle
force distribution along with the best fit we could achieve. Packings
of both 1000 and 10 000 particles, using either molecular dynamics
to average the collisional forces or inversion of the rigidity matrix,
were used, consistently producing the same probability distribution.
Comparison to other data in the granular-media literature is beyond
the scope of this work.

FIG. 8. !Color online" The near-contact Z!b"!l" for a nearly
jammed 10 000–particle packing, along with a power-law fit for
small gaps, shown in both a linear-linear scale and a log-log scale
!inset". In this inset we also show a line with slope 0.5 !i.e., a
square-root dependence", which is clearly inconsistent with the nu-
merical data.

DONEV, TORQUATO, AND STILLINGER PHYSICAL REVIEW E 71, 011105 !2005"

011105-8

Donev, Stillinger, Torquato, PRE (2005); 
Skoge et al. PRE (2006) 

As we compress the system above !c we see that the
exponential behavior of the tail at r"1 gradually becomes
more Gaussian as the system is compressed above the tran-
sition. This is shown in Figs. 3!a"–3!d". We can still use Eq.
!3" to fit the shape, but with different coefficients #1 and #2.
In Fig. 4 we show the evolution of #1 and #2 with $!. This
evolution occurs more rapidly for Hertzian !not shown" than
for harmonic spheres.

The results for g!r"1" have implications for the distribu-
tion P!F" of interparticle normal forces F. This is shown in
Fig. 5. At high compressions, P!F" is well described by a
Gaussian, but the tail straightens out toward an exponential
as $! is lowered toward zero. These results are consistent
with previous results of Makse et al. #16,24$, who studied
sphere packings at fixed pressure. !As we noted above, con-
stant pressure corresponds to constant $!." The Gaussian
shape at high $! is consistent with expectations for equilib-
rium systems interacting with a harmonic potential #25$.
However, these systems are at zero temperature, and it is
unclear whether they can be described by a nonzero effective
temperature. The exponential behavior at small $! agrees
with experimental and simulation data on static granular
packings of hard particles, which necessarily exist at packing
fractions near !c #16,26,27$.

There is interesting behavior above the asymmetric
first peak in g!r" as well as below it. Figure 6!a" shows that
g!r%1" versus r−1 varies as a power law for a system just
above the transition at $!=10−8:

g!r % 1" & !r − 1"−' !4"

with '=0.48±0.03. This result was first reported for gravity-
sedimented, granular packings #28$, but over a much smaller
range in g!r" than presented here. We note that there is a very
slight knee that occurs near r−1=3(10−2. The asymptotic
power-law behavior near r=1 should be determined only
from the region below this knee. As we will show below, this
knee becomes more pronounced as $! increases.

The number of neighbors Z!!" that are separated by a
distance of at most ! #29$ is given by the integral

Z!!" = 24!%
0

!

g!r!"r!2dr!. !5"

This is shown in Fig. 6!b". Therefore, Fig. 6!a" and Eq. !4"
imply that for a system at the transition, Z should increase
with ! as

Z − Zcontact & !1−'=0.52±0.03 !6"

where ' is defined in Eq. !4" and Zcontact=5.88 is the average
number of neighbors per particle at contact at the transition.
This scaling is consistent with the one reported by O’Hern et
al. #12$, who looked at how the excess coordination number
increased as a system was incrementally compressed above
!c. We note that we have found a similar exponent of
0.50±0.03 using the Hertzian interaction potential, #=2.5, as
we found for the harmonic potential, #=2.

FIG. 4. Evolution of the parameters #1 and #2 !top" and g0
!bottom" in Eq. !3" with $!, for harmonic repulsions. The param-
eters #1,2 are clearly related to the pressure, while g0 is associated
with g!rpeak".

FIG. 5. The distribution of normal contact forces, P!F", for the
purely repulsive, harmonic potential, at different compressions $!.

FIG. 6. Behavior just above the first-neighbor peak for a system
at $!=10−8. !a" g!r%1" versus r−1. A power law with exponent of
−0.5 is indicated. !b" Z!!" vs !'r−1, computed by numerically
integrating g!r"%1. A power law with exponent of 0.5 is indicated.
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Supplementary Figure 6. Growth of the isostaticity z̄ ∼ 2d (solid lines) plateau with d=3–10 for (a) HS at p = 1010 and (b)
SS at e ∼ 10−20. The HS-SS contact regime (c)-(d) collapses remarkably well for all d, and the G-RT predictions (red line)
are similarly accurate as in d = 3. The plateau height also consistently decay from d=3 to 8 (insets). (e)-(f) The HS-SS
quasi-contact power-law growth is also robustly conserved, with a constant α = 0.42(2) (blue line). The fit to Eq. (B8) is also
provided (green line). (g) The quasi-contact coefficient C′ is such that the region where this regime can be observed shrinks
with increasing d.
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Supplementary Figure 7. (a) Fraction of rattlers in HS com-
pressions (dashed line) and in SS energy minimizations from
above (solid line). The fraction of particles left outside of the
force network, the rattlers, also vanish with increasing d. For
both protocols, the results suggest their fraction disappears
exponentially with d. (b) Diminishing fraction of 3-member
force loops (triangle) and growing fraction of 4-member force
loops (square) with d for the two protocols. The force net-
work, which is another observable for comparing the jammed
packings, supports their structural similarity. The length of
the force loops is also a simple measure of structural correla-
tions. In the mean-field high d limit these loops are expected
to become increasingly large, as the structural correlations
vanish. The decrease in the fraction of 3-member loops and
the growth of the fraction of 4-member loops, accompanied
by a constant growth of the average length of the loops, is
consistent with this scenario.

find u∗ = r > 1. Replacing these expressions for u∗ in
Eq. (C2) and taking the jamming limit we obtain

q(A, T ; r)m → e−
(1−r)2

4α+τ θ(1−r) , (C3)

and Eq. (C1) reduces to

S0(α, τ ;ϕ) = −
d

2
[log(2πα) + 1] + Sliq(τ,ϕ)

+ 2d−1ϕyHS
liq (ϕ)G0(α, τ) ,

G0(α, τ) = d

∫ 1

0
dr rd−1 [e−

(1−r)2

4α+τ − e−
(1−r)2

τ ] ,

(C4)

which replaces [10, Eqs. (D3) and (D4)].
The approach to jamming from above is described by

the small τ limit [10, Appendix D.2]. In this limit we can
consider the SS Mayer function as a small perturbation of
the HS one and use standard liquid perturbation theory
to write

Sliq(τ,ϕ) = SHS
liq (ϕ)+d 2d−1ϕyHS

liq (ϕ)

∫ 1

0
dr rd−1e−(1−r)2/τ .

(C5)
Plugging this result in Eq. (C4) we then get

S0(α, τ ;ϕ) = −
d

2
[log(2πα) + 1] + SHS

liq (ϕ)

+ 2d−1ϕyHS
liq (ϕ)d

∫ 1

0
dr rd−1 e−

(1−r)2

4α+τ .
(C6)

 
Suggest du=dl=2 (?) 
 
Agrees with finite-size scaling arguments 
of Goodrich and Liu PRL (2012). 
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Supplementary Figure 3: Growth of the isostaticity z̄ ∼ 2d (solid lines) plateau with d=3–10 for (a) HS at p = 10
10

and (b)
SS at e ∼ 10

−20
. The HS-SS contact regime (c)-(d) collapses remarkably well for all d, and the G-RT predictions (red line)

are similarly accurate as in d = 3. The plateau height also consistently decay from d=3 to 8 (insets). (e)-(f) The HS-SS

quasi-contact power-law growth is also robustly conserved, with a constant α = 0.42(2) (blue line). The fit to Eq. (B8) is also

provided (green line). (g) The quasi-contact coefficient C�
is such that the region where this regime can be observed shrinks

with increasing d.
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Supplementary Figure 4: (a) Fraction of rattlers in HS com-

pressions (dashed line) and in SS energy minimizations from

above (solid line). The fraction of particles left outside of the

force network, the rattlers, also vanish with increasing d. For

both protocols, the results suggest their fraction disappears

exponentially with d. (b) Diminishing fraction of 3-member

force loops (triangle) and growing fraction of 4-member force

loops (square) with d for the two protocols. The force net-

work, which is another observable for comparing the jammed

packings, supports their structural similarity. The length of

the force loops is also a simple measure of structural correla-

tions. In the mean-field high d limit these loops are expected

to become increasingly large, as the structural correlations

vanish. The decrease in the fraction of 3-member loops and

the growth of the fraction of 4-member loops, accompanied

by a constant growth of the average length of the loops, is

consistent with this scenario.

to the soft sphere potential v(r) = (1− r)2θ(1− r)

q(A, T ; r) =
� ∞

0
du e−βv(u)

�u

r

� d−1
2 e−

(r−u)2
4A

√
4πA

×

×
�
e−

ru
2A

�
π

ru

A
I d−2

2

� ru

2A

��
.

(C2)

The above equations (C1) and (C2) are the starting
point of all the needed replica calculations for our anal-
ysis, and because we focus on the “jamming limit” of
these equations, we take T → 0 with τ = T/m and
α = A/m held constant [7]. In Ref. [7] this limit was
taken using a simplified form of Eq. (C2) for d = 3, but
we here generalize the calculation to arbitrary d. The
crucial observation [11, Eq. (C21)] is that when z →∞,
e−z
√

2πzIn(z) → 1. In the jamming limit the term in
the second line of Eq. (C2) therefore disappears, be-
cause A → 0 while r and u are of order 1. The re-
maining integral can then be evaluated via the saddle
point approximation, because both β and 1/A diverge.
Consider first the case r < 1. Assuming that the sad-
dle point u∗ < 1, one has to maximize the function
−β(1−u)2− (r−u)2/(4A) which consistently maximizes
u∗ = (4βA + r)/(1 + 4βA) = (4α + τr)/(4α + τ) < 1.
Consider next the case r > 1. Assuming that in this
case u∗ > 1, we have v(u) = 0 and we thus consistently
find u∗ = r > 1. Replacing these expressions for u∗ in

g$
1

2þ q0
: (24)

Each of the bounds (23) and (24) can be seen as resulting
from the stability of a distinct relaxation process.

Extended-mode contacts correspond to contacts whose asso-
ciated oppy modes are extended in the system, i.e. b " 1 as
illustrated in Fig. 3a. The minimal contact force amplitude
fmin,ext encountered for such contacts in a system of size N is
simply fmin,ext " Wmin " N#1/(q0+1). The reduction of volume
stemming from non-linearities is dominated by the bulk, where
the displacements are of the order of the smallest gap hmin in
the system, and ca " 1. Thus following eqn (20) the stability
index of the weakest contact of this type is k " Ng/(1#g)#1/(1+q0),

and stability requires g$
1

2þ q0
. These modes strongly couple

with changes in the forces at the boundary, and are expected to
dominate the plastic response occurring, for example, when a
shear stress is applied, see Section 6.

Local-mode contacts correspond to contacts whose associated
oppy modes have small displacements in the far eld, i.e. b $
1 as illustrated in Fig. 3b and 3c. Local-mode contacts turn out
to be more numerous than extended-mode contacts at low
forces, and thus dominate P( f ) at small f. Their minimal force is
thus the minimal force in the packing and follows fmin,local "
bmin " N#1/(q+1). For these contacts the non-linear effect leading
to a reduction of volume is dominated by the local displace-
ments near the contact, i.e. c " 1/N, whereas in the bulk the
displacements are much smaller and of the order hmin. Thus a
local-mode contact corresponds to the local buckling event of a
few particles. This local buckling is, however, stabilized by the
creation of a new contact in the far eld. Eqn (20) for the
weakest contact of this sort leads to k " N1+g/(1#g)#2/(1+q), and

stability requires g$
1# q

2
. Local-mode contacts are weakly

coupled to external forces, and the frequency at which they yield
under an increasing applied shear stress is much smaller than
extended-mode contacts, see Discussion Section.

In the following we analyze numerically the structure and
geometry of jammed packings of hard spheres. We test the
relations between the exponents g, q, and q0 given by inequal-
ities (23) and (24), and nd that they are approximately satu-
rated. This supports the fact that the distribution of contact
forces and the pair distribution function are coupled at random
close packing. In addition, we verify the predicted existence of
two distinct modes of relaxation, namely extended modes and
local modes, and demonstrate their marginal stability.

5 Results from computer experiments

In this Section we numerically test the predictions made in
Section 4, namely the relations between the scaling exponents
g, q and q0 given in eqn (23) and (24), and assess the stability of
jammed packings. We produced an ensemble of jammed
packings of various system sizes, and directly measured all of
the structural and geometrical quantities discussed in the
previous sections. For a detailed description of the numerical
methods and calculations used in this work, see Appendix B.

5.1 Scaling relations

We begin our analyses with the distribution of gaps between
particles which are not in contact, g(h), which is plotted in
Fig. 6. This quantity is computed aer removing the small
fraction of rattlers that do not belong to the rigid structure. This
is the relevant observable in our problem, as explained in
Appendix B. We observe strong nite size effects in the shape of
the distributions in the small gaps range: the power law
behavior seems to break down at some system-size dependent
gap which decreases with increasing the system size. In the
range in which the distributions agree, they obey a power law.
The divergence of the distribution at small gaps follows g(h) "
h#g with g z 0.38. We note, however, that larger jammed

Fig. 5 Stability of contacts against opening: the color map corresponds to
contours having equal values of P(b, W) z P(W)P(b), which are assumed to take
power-law forms, see eqn (11). The dashed lines are deduced from eqn (20) and
(21), and correspond to the boundary separating stable contacts a having ka $ 1,
to unstable contacts having ka # 1, for different system sizes N.

Fig. 6 Distributions of gaps between particles which are not in contact,
measured in our ensemble of jammed packings for different system sizes. The
continuous line represents the power law g(h) " h#0.38. Inset: distributions of
gaps measured in jammed configurations before eliminating rattlers. The tails of
the distributions are different compared to those of the rattler-free jammed
packings, and seem to follow g(h)" h#0.5 (which is represented by the continuous
line in the inset). This means that rattler-free packings have much less small gaps
compared to packings with rattlers, as previously known.10,11
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The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem
The temperature-packing fraction phase diagram:

New difficulties:

Neighbors close to each others,
hence correlated

Mean field theory cannot be used

In large dimensions:
z = 2d (isostaticity)
z ≥ ed (− log sin(π/3)) (individual kissing number)

[Wyner, Bell System Tech. J. 46, 2111 (1967)]

Neighbors are “far” from each others

The liquid lacks any short range structure
The Van der Waals equation is exact
Parisi, Slanina, PRE 62, 6554 (2000)

Skoge et al., PRE 74, 041127 (2006)
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congurations are required to improve our estimation of this
exponent.

We next turn to the distribution of ba (see eqn (8) for de-
nition) which represents the magnitude of the far-eld
displacements of the oppy mode emanating from pushing
apart the contact a, see Appendix B for details about the
numerical calculations. Fig. 7 presents the distribution P(b)
measured in our jammed packings of size N ¼ 1000. We indeed
nd that P(b)" bq follows a power law for small b, with qz 0.17.

In Fig. 8 we plot the distribution of the couplings Wa of the
oppy modes ~Va to a compressive strain, dened in eqn (9).
Here too we nd that P(W) " W q0 follows a power law for small
W, with q0 z 0.44.

With numerical measurements for the scaling exponents g, q
and q0 in hand, we now turn to validate relations (23) and (24);
for eqn (23) we nd 0.38 z g $ (1 # q)/2 z 0.41, whereas for
eqn (24) we nd 0.38 z g $ 1/(2 + q0) z 0.41. The very slight
violations of the bounds are within the numerical errors, and
our measures support that the bounds are in fact saturated.

In Fig. 9 we plot the distribution of the contact forces P(f) in
our jammed packings. We nd (as shown before in ref. 13 for
jammed congurations obtained during shear ows) that the
distribution behaves at small forces as P( f )" f q/h f iq+1 with qz
0.18, a power-law that appears to hold nicely over three decades.

Another test of this exponent appears in the inset of Fig. 9 that
displays the dependence of the mean minimal force with a
system size N. We observe h fmini" N#0.86, corresponding to q¼
1/0.86 # 1 z 0.16, in good agreement with our direct t. These
ndings validate our prediction spelled out in eqn (12)
according to which P( f ) " f min(q,q0). In Appendix A we demon-
strate the independence of the variables b and W, which is
assumed to make the prediction of eqn (12).

Note that P ( f ) and g(h) apparently do not depend on the
spatial dimension,12 although data presented in this reference
suggest that they may depend on the protocol by which jammed
packings are generated. For hard sphere packings obtained via
a Stillinger algorithm Charbonneau et al.12 found that P( f ) "
f 0.28 and g (h) " h#0.42, i.e. g z 0.42, and to q ¼ 0.28 assuming
that q < q0. This allows us to test eqn (23): 0.42z g$ (1# q)/2z
0.36; i.e. a satised bound but again quite close to saturation.

For so decompressed particles at jamming these authors
found P( f ) " f 0.42 and g z 0.39. If q < q0 the bound of eqn (23)
gives 0.39 z g $ (1 # q)/2 z 0.29, i.e. a satised bound but
now somewhat further away from marginality. If q0 < q then
the bound eqn (24) should be used instead, and reads 0.39 z
g $ 1/(2 + q0) z 0.41, i.e. consistent with the marginality of
extended modes.

5.2 Distinct modes of instability

With the measurements of ba,s†a,ca, and Wa in hand, we can
directly measure the stability index ka of each contact a in each
jammed packing of our ensemble via eqn (18). The stability of
contacts on the (b–W) plane is visualized in Fig. 10. We nd a
consistent picture to that described in Fig. 5. Two distinct
modes of relaxation emerge from this analysis: extended
modes, which are associated with contacts a having ba " 1 and
Wa $ 1, and local modes, which are associated with contacts a
having ba $ 1 and Wa " 1. This result demonstrates that
contacts carrying small forces fa " baWa are potentially
unstable, though the mechanical nature of the instability can
belong to either one of the two distinct modes.

Fig. 7 Distribution P(b) characterizing the mechanical decoupling of contacts.

Fig. 8 Distribution P(W) characterizing the angle made between a floppy mode
and a compressive strain.

Fig. 9 Distribution P(f) of contact forces fmeasured in our ensemble of jammed
packings of systems with N ¼ 1000 particles, under a pressure p ¼ 1. We do not
observe any systematic system-size dependence in the same distributions
measured for different N. Inset: the mean minimal contact force in a packing vs.
packing size N.
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gets γ = 0.41269, κ = 1.41574 and θf = 0.42311. These
results are consistent with our newly derived Eq.(8),
which appears to be exactly satisfied.

However, the numerical value we found previously
[18, 37] for θf ≈ 0.17 in two and three dimensions differs
from the replica computation at d = ∞. It was argued
based on numerics [38] that exponents weakly depend on
spatial dimensions up to d = 10, leading to the suggestion
that dimension does not play a role. The same work also
reported that θf depends somewhat on system prepara-
tion. To check that our value of θf is not due to the
specific methods we used (in [37] results were obtained
in two dimensions by shear-jamming hard disks, while
in [18] hard spheres were compressed in an over-damped
medium), we repeat the measurement of force distribu-
tion by decompressing soft spheres as done in [38], but
with much higher statistics for the dimension considered.
Figure 4 shows P(f) in 3 dimensions, and again we find
θf = 0.17 ± 0.02 (details appear in the Supplementary
Information). Our results therefore support that system
preparation does not affect the exponent θf [39], and that
its value is indeed about 0.17.

10−6 10−4 10−2 100 10210−4

10−3

10−2

10−1

f

P
(f
)

 

 

1
0.17

N = 8000
N = 1000
N = 124

FIG. 4. Probability distribution of forces P(f) for isostatic
packings of soft spheres at indicated system sizes, showing the
small-force exponent θf = 0.17.

We propose the following explanation for the distinc-
tion between small and infinite dimension. In addition
to the soft modes discussed above, two distinct nonlinear
excitations characterizing jammed packings at φc have
been identified [17, 18], each corresponding to opening a
contact at low force. If the contact force is very small,
triggering these excitations can lead to the rewiring of
the contact network. In some cases, the resulting motion
of the particles is mostly local. The density of these local
excitations as a function of contact forces f follows fθ.
Particle displacements can also be extended; the density
of these extended excitations follows fθ�

. In two and three
dimensions it was observed that at low-forces most con-
tacts are associated to localized excitations (θ < θ�), and
the distribution of forces thus follows P(f) ∼ fθf with
θf = θ. Stability of the system to extensive avalanches

of rewiring was shown to imply [17, 18]

γ ≥ 1− θ

2
(10)

γ ≥ 1

2 + θ�
(11)

In [18] it was argued that nonlinear excitations in pack-
ings are marginally stable with γ ≈ 0.4, θ ≈ 0.17 and
θ� ≈ 0.44. Equations (8) with θf = θ, (10), and (11)
lead to a description of jammed packings and glasses
in low dimensions based on 4 exponents, with three
scaling relations between them. We have in particular
κ = 2 − 1/(2 − γ), and using γ = 0.41 (the numerical
estimate that agrees well with the d = ∞ replica calcu-
lation), we get the prediction κ ≈ 1.37.
This description is thus inconsistent with the d = ∞

result for the values of κ and θf . However, if it is as-
sumed that localized excitations do not exist for d = ∞,
one is left with 3 exponents constrained by two scaling
relations: Eq.(11) (where θf = θ�), and Eq.(8). The scal-
ing description we propose based on the marginality of
real space excitations (both linear and non-linear) is thus
fully consistent with the replica calculation, as these two
scaling relations are satisfied. The fact that localized ex-
citations appear to be absent in large dimension seems
plausible, as their existence depends on the presence of
local arrangements of particles that are very soft, which
may become unlikely when each particle shares many
contacts. This situation may be similar to the behavior
of ‘rattlers’, particles which are trapped in a packing but
do not contribute to mechanical stability. The fraction
of rattlers is observed to decay exponentially with d [38],
so that in large dimension, it is extremely rare to find a
gap that is large enough to hold a particle. The same
exponential decay may occur for localized excitations.
Conclusion: We have shown that the stability of hard

spheres glasses is affected by heterogeneity in contact
strengths. If the glass is marginally stable, the mean
square displacement must diverge with an exponent κ =
2 − 2/(3 + θf ) ≈ 1.37 at jamming, and the density of
states follows D(ω) ∼ ω(θf−1)/(3+θf ), an experimentally
testable result in good agreement with our numerics.
Overall, our approach leads to a description of jamming
in finite dimensions based on the marginal stability of
two distinct types of excitations. It remains to be seen
if the cause of marginal stability in finite dimension is
of dynamical [6, 9] or entropic origin [16], and if plastic
flow under shear and thermally activated process near
the glass transition can be expressed in terms of the re-
laxation of these excitations.
Acknowledgments: We thank the authors of [16]

for sharing their preprint and for discussions, and Jie
Lin, Le Yan, Gustavo Düring and Marija Vucelja for dis-
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for Pf!f" is needed. Force networks in particle packings have
been the subject of intense theoretical and experimental in-
terest #13,15,16,29,30$, and it has been established that Pf
decays exponentially at large forces for a variety of models.
The behavior of Pf for small forces has not been agreed
upon, the central question being whether the infinite-system-
limit Pf!0" is nonzero. No theoretical model has been offered
yet that truly answers this question. We note that a recent
model reproduces all of the major characteristics of Pf that
we observe, including a positive Pf!0", even though it is
presently restricted to two dimensions #31$. Part of the diffi-
culty is that the answer likely depends not only on the system
in question, but also on the definition of f . In a true ideal
collectively jammed isostatic packing, which is necessarily
finite, all interparticle forces must be strictly positive and, in
fact, are determined uniquely through Eq. !8",

f = %AeT&!1%01 & , !8"

without any mention of interparticle potentials or influence
of external fields or loads like gravity or thermal dynamics.
The limiting probability distribution of these interparticle
forces as the packing becomes larger, if it exists, can be
positive at the origin, indicating that finite but large packings
have limiting polytopes with a few extremely small faces or,
equivalently, are very elongated along certain directions. We
have numerically studied the form of Pf!f" for almost
jammed random packings of N=1000 and N=10 000 spheres
by using molecular dynamics to observe the collisional
forces between first neighbors and also by directly using Eq.
!8" for the smaller packings9 !this offers better accuracy for
small forces". The results are shown in Fig. 7. We clearly see
a peak in P!f" for small forces, as observed in the literature
for jammed packings of soft particles #29$, and it appears
that there is a finite positive probability of observing zero
interparticle force. We will return to this point later.
The observed Pf!f" can be well fitted for medium and

large forces by Pf!f"= !Af2+B"e!Cf, with a small correction
needed to fit the small-force behavior, as used in Fig. 7. This
small correction has a negligible impact on the Laplace
transform of fPf!f", and in fact a very good approximation to
g2

!!"!l" in Eq. !7" is provided by just using

Lx#fPf!f"$ =
6A

!x + C"4
+

B
!x + C"2

. !9"

In the inset in Fig. 6, we show a comparison between the
g2

!!"!l" we observe computationally and the one given by Eqs.
!7" and !9" and the empirical fit to Pf!f" in Fig. 7. An essen-
tially perfect agreement is observed. Our focus here is on
small forces; however, we do wish to note that our data can-
not confidently rule out a Gaussian component to Pf for large
forces and that a slight quadratic component does seem to be
visible when Pf!f" is plotted on a log-log plot.

2. Near-contact contribution

In Fig. 8 we investigate the near-contact contribution to
g2!l". We have found that Z!b"!l" has a power-law behavior
over a surprisingly wide range of gaps, up to the first mini-
mum of g2 at l'0.25D, Z!b"!l"'11!l /D"0.6, as shown in the
figure. Note that this range is too wide for

g2
!b"!x" =

1
24"!1 + x"2

dZ!b"!x"
dx

to be a perfect power law, where x= l /D, as used to fit nu-
merical data in other studies !which have not investigated

9Efficiently inverting the rigidity matrix for very large three-
dimensional packings is a rather challenging numerical task which
we have not yet tackled.

FIG. 7. !Color online" Computational data on the interparticle
force distribution along with the best fit we could achieve. Packings
of both 1000 and 10 000 particles, using either molecular dynamics
to average the collisional forces or inversion of the rigidity matrix,
were used, consistently producing the same probability distribution.
Comparison to other data in the granular-media literature is beyond
the scope of this work.

FIG. 8. !Color online" The near-contact Z!b"!l" for a nearly
jammed 10 000–particle packing, along with a power-law fit for
small gaps, shown in both a linear-linear scale and a log-log scale
!inset". In this inset we also show a line with slope 0.5 !i.e., a
square-root dependence", which is clearly inconsistent with the nu-
merical data.
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2. Discussion of finite-size scaling exponents

We have found that there are very strong system-size ef-
fects. As N diverges, the width of the distribution of jamming
thresholds vanishes as N!!, leaving a "-function distribu-
tion at point J. We find that ! is very close to 1/2 #see Eq.
$16%&. It is not obvious that this result can be explained by a
simple central limit theorem argument because the packing
density is a subtle property of the packing geometry. Inde-
pendent of the explanation for this exponent, there are still
correlations extending across the entire system once it is
jammed.
The peak position shifts toward the random-close-packing

density as L!1/'. This result suggests that there is a long
length scale appearing in the problem near the onset of jam-
ming, which scales as ((!(c)!'. Note that our result '
"0.71#0.08 is a typical value for a correlation length expo-
nent.

I. Lack of self-averaging at point J

At point J, there is no self-averaging in the sense that the
average properties of a very large system are not the same as
the average over an ensemble of many smaller systems at the
same packing fraction. This property can be understood by
considering a system of size N and the behavior as N di-
verges. For a finite-sized system, Fig. 6 shows that there is a
distribution of jamming thresholds (c . Consider a given
packing fraction ( which is within this distribution. Some of
the configurations at this ( will be jammed, and others will
be unjammed with p"0. For an unjammed configuration p
"0 for every subregion of the configuration, as well. $This is
exact even in the infinite system-size limit.% However, at the
same ( , there will exist jammed configurations for which
p$0. For those configurations, we have found p$0 for al-
most all subregions. There are only small clusters of rattlers
that have zero local pressures. The number of such clusters
decreases rapidly with the size of the cluster #see Fig. 10$c%&.
Thus, the value of the pressure averaged over all configura-
tions cannot be the same as the value of the pressure aver-
aged over an arbitrary given configuration. As a result, there
is no self-averaging. As the system size N increases, the dis-
tribution of jamming thresholds narrows. As a result, the lack
of self-averaging will be observed over a smaller region of (
that eventually narrows to a point $point J) in the infinite N
limit.
The lack of self-averaging is evident in the distribution of

interparticle normal forces between particles, P(F) #27&. For
a given configuration, the average interparticle force )F* is
directly proportional to the pressure of that configuration as
shown in Fig. 15 for a 3D monodisperse system with har-
monic repulsions. Depending on whether one normalizes the
forces in a given configuration to )F*, the average within
that configuration, and then averages P(F/)F*) over many
configurations, or whether one normalizes the forces of all
configurations to the same global average force ))F**, and
then calculates P(F/))F**), one will get a different distribu-
tion function. This is shown in Fig. 16 for a 3D monodis-
perse system with harmonic repulsions. Note that the differ-
ence between P(F/)F*) and P(F/))F**) is largest near (

"0.636, which is near the peak (0 of the distribution of
jamming thresholds for the three-dimensional system shown
(N"1024). As the packing fraction is increased above (0,
the curves for P(F/)F*) and P(F/))F**) look more and more
similar. This is consistent with the argument above that the
lack of self-averaging is most pronounced near the peak of
the distribution of jamming thresholds. A simple argument
for the shape of the tail of P(F/))F**) was given earlier #27&.

FIG. 15. Pressure p vs average interparticle force )F* for a 3D
monodisperse system (N"512) with harmonic repulsions. The
solid line has slope equal to 1.

FIG. 16. Distribution of interparticle normal forces for a 3D
monodisperse (N"1024) system with harmonic repulsions. $a%
P(F/)F*) vs F/)F* and $b% P(F/))F**) vs F/))F**.
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Supplementary Figure 2: Cumulative force distribution G(f)

in d=3–10 (a) for HS with θ = 0.28(3) and (b) for SS with

θ = 0.42(2). The force distribution in higher d is essentially

the same as in d = 3 and the high force behavior agrees

equivalently well with the G-RT predictions. The exponents

extracted from the small force tail are also numerically in-

distinguishable. (inset) Test of Eq. (B7) from the numerical

results for Z−(x) (points) and plugging the numerical G(f)

in Eq. (B7) (solid line)

is verified in Supplementary Fig. 2. It follows that if

Z−(x) ∼ 1− Cx−1−θ
for x→∞, then G−(y) ∼ y1+θ

for

y → 0, which is here observed for all d ≥ 3 (Supplemen-

tary Fig. 2). When SS approach jamming from above,

the interaction potential gives f = 2(σ−r) for 0 ≤ r ≤ σ

and zero otherwise, so G(f) = 1− Z(σ−f/2)

Z(σ)
. In the jam-

ming limit G(2y ε σ)→ G+(y) = 1−Z+(y), and therefore

G+(y) ∼ y1+θ
, as in the previous case. This behavior is

here observed in all d ≥ 3 (Supplementary Fig. 2).

3. High d Structure

In the contact regime r − σ ∼ ∆ϕ, G-RT predicts

that scaling functions ZRT

± should describe the growth of

Z(r) from 0 to the isostatic value, as given in Eqs. (C10)

and (C17). Both results are tested in Supplementary

Fig. 3 for d=3–10. The collapse is remarkably good for

all x. The agreement with the G-RT scaling form is

also remarkable for small x, but start to deviate from

the theoretical prediction when Z(r) approaches the iso-

static z̄ ≈ 2d plateau. The type of deviation is different

from each protocol, but is similar from one dimension

to the next for a given protocol. For larger x in the

near-contact region, the two protocols robustly produce

the same power-law growth, Z(r) ∼ (r − σ)
1−α

with

α ∼ 0.40(1) (Supplementary Fig. 3), which is not pre-

dicted by G-RT. Because the number of rattlers vanishes

with dimension neither of these phenomena can be as-

cribed to their presence. But because G-RT predictions

rely on the individual cages to be Gaussian, which pre-

sumably they are not [8–10], it is natural to ascribe the

discrepancy to the breakdown of that assumption.

At very large distances, the pair correlation function of

any disordered systems trivially has g(r � σ) = 1, which

corresponds to Z(r � 1) ≈ 2
dϕ[(r/σ)

d − 1]. Unsurpris-

ingly this scaling form captures well the behavior of Z(r)
for both protocols and all d at large r, but the range of

validity also extends with d (Supplementary Fig. 3). In

order to quantify this effect, we fit the curves of Z(r) for

r > σ using the form

Z(r) = C �
(r − σ)

1−α
+ 2

dϕ[(r/σ)
d − 1)

�
. (B8)

When d grows, the region where the second term is much

bigger than the first is

C �
(r− σ)

1−α < 2
dϕ[(r/σ)

d − 1) ∼ d 2
dϕ(r− σ)/σ (B9)

hence (r−σ) > [σ C �/(d 2
dϕ)]

1/α
. The fitted values of C �

indicate that the crossover point indeed decreases slowly

with d.

APPENDIX C: REPLICA THEORY
CALCULATIONS

The predictions of G-RT presented in this work are

based on earlier results [7, 11]. Yet because the calcu-

lations in Ref. [7] have only been explicitly carried out

for d = 3, and because different observables are consid-

ered, additional results are here presented. They are re-

ported in this section and incidentally provide a somehow

simplified derivation of the results of Ref. [7]. Nonethe-

less, reading this section requires a detailed knowledge

of Refs [7, 11], so the reader who is not interested in

the theoretical details can safely skip it. Note that as in

the main text, this section uses reduced units � = 1 and

σ = 1.

1. General expressions

The approximation scheme used is based on [7,

Eq. (22) and (23)], which give the replicated free entropy

separated between the harmonic and the liquid contribu-

tions

S(m,A; T,ϕ) = Sh(m,A) + Sliq(T/m,ϕ)

+ 2
d−1ϕyHS

liq
(ϕ)G(m,A;T ) , with

G(m,A; T ) = d

� ∞

0

dr rd−1
[q(A, T ; r)m − e−βmv(r)

]

(C1)

for m replicas at temperature T , in a Gaussian

cage of variance 2A. The function q(A, T ; r) =�
ddr�γ2A(�r�)e−βv(|�r−�r�|)

is defined in [7, just after

Eq. (16)] where γ2A is a normalized and centered Gaus-

sian of variance 2A, and yHS

liq
is the HS cavity function.

Introducing bipolar coordinates, as in [11, Appendix

C.2.a], we obtain the generalization of [11, Eq. (C16)]

"=0.28(3) 
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scale of contact forces in the system. Microscopically, the
boundaries apply external forces ~Fi on all the particles i in
contact with them. We denote the ith particle's position by ~Ri,
the pairwise vector of differences by ~Rij h ~Rj ! ~Ri, and the bare

pairwise distance by rijh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~Rij$~Rij

q
.

Mechanical stability in such a packing requires that there
exist no oppymodes, i.e. no collectivemotions of the degrees of
freedomof the system (that include theNd degrees of freedomof
the particles and changes in the box size) for which the distances
between objects in contact (including both the particles and the
box) are xed. If such a oppy mode existed, the system would
ow along it. Rapidly compressed or poly-disperse packings of
hard frictionless spherical particles are in fact isostatic:9,29,40,43–45

the average number of contacts between particles, known as the
coordination number z, is just sufficient to guaranteemechanical
stability and to avoid the presence of oppy modes, corre-
sponding to z¼ zc¼ 2d.43–45 In an isostatic system the removal of
any contact leads to the creation of one oppy mode, whose
properties govern the magnitude of the force found in the same
contact before its removal, as we shall exemplify below.

Floppy modes can be generated as follows:44 two particles 1
and 2, forming a contact labelled a, are pushed apart while all

the other contacts remain closed, as represented in Fig. 2 and 3.
We denote by d~R(a)

i (s) the displacement of particle i following the
opening of the contact a by a distance s. This displacement eld
is uniquely dened, because only one oppy mode appears
when a contact is broken, and exists for sufficiently small
openings s, so as to ensure that no new contacts are formed in
the system. It satises the following equation that embodies the
fact that contacts hiji other than a remain closed:

d~R(a)
ij (s)$~nij + O (s2) ¼ sda,ij, (1)

where da,ij ¼ 1 if and only if the pair hiji is equal to the pair a,
and is zero otherwise, and ~nij h ~Rij/rij is the director pointing
from particle i to particle j.

On the other hand, force balance in the unperturbed packing
can be written as:

ci; ~Fi þ
X

jðiÞ
fij~nij ¼ 0; (2)

where the sum is on all particles j(i) in contact with i, ~Fi is the
force exerted by the wall on particle i (and is thus zero for
particles in the bulk), and fij > 0 is the magnitude of the (purely
repulsive) force in the contact hiji. Multiplying eqn (2) by any
displacement eld d~Ri and summing on all particles leads to the
virtual work theorem:

X

i

~Fi$d~Ri þ
X

hiji
d~Rij$~nijfij ¼ 0: (3)

where
P

hiji denotes the summation over all contacts hiji. In our
system external forces only stem from the boundaries, and the
work associated with the displacement eld d~R is

P
i~Fi$d~Ri ¼

!pdU.
Applying eqn (3) with the vector eld d~R(a)

i (s), we obtain:1

pdUðaÞ ¼ !
X

i

~Fi$d~R
ðaÞ
i ¼ sfa þ O

"
s2
#
: (4)Fig. 2 Illustration of the perturbation considered in this work. We select the

contact a (left panel), and displace the pair of particles that form the contact a by
a distance s.

Fig. 3 Examples of two floppy modes, i.e. displacement fields resulting from pushing apart a pair of particles carrying a weak contact force, represented as shaded.
Panel (a) exemplifies the case where the displacements of the rest of the particles are of the same order of the displacements of the pushed pair (corresponding in our
notation to b& 1), and the contact force is small because the floppy mode is almost orthogonal to a compression of the box. Panel (b) displays a different displacement
field generated in the same configuration as in panel (a) by pushing apart a different pair of particles. This time the pushed pair's displacement is significantly larger
than the displacements in the rest of the system, i.e. b ' 1. Such contacts are very weakly coupled to external stresses applied on the boundary, i.e. they are
mechanically isolated. Panel (c) displays a local configuration of particles that gives rise to small displacements when opening the vertical contact. Even if f0 & hf i, the
force in the vertical contact can be small if the angle q is small, and displacements resulting from opening that contact will be of the order b & sinq.
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These results hold true even for the low-frequency part of the
spectrum, although more scattering is found there.31

As a consequence, our computation of D"!# gives a
rather faithful distribution of relaxation time scales of the
microscopic dynamics, supporting further the approximation
we used to compute the free energy in Eq. "13#, a priori
strictly valid only at infinite pressure. This allows us to iden-
tify the peak apparent in the inset of Fig. 6 as the boson peak,
which appears as a similar hump in Raman or neutron spec-
tra in molecular liquids.32–34 Near the glass transition, this
peak appears at a frequency significantly smaller than !!, as
shown by the inset in Fig. 6.

C. Mean squared displacement

In this section we use D"!# to compute the mean square
displacement around an equilibrium position inside a meta-
stable state when !f$ is varied. This quantity is directly re-
lated to the Debye–Waller factor accessible empirically with
scattering experiments.

We define #R! i=R! i−R! i
eq, where R! i

eq is the average posi-
tion of particle i in a given metastable state as defined in Eq.
"16#. Assuming that the dynamics of different modes is inde-
pendent, the fluctuations of particle positions !#R! i

2$ can be
written as a sum of the fluctuation of all modes,

!#R! i
2$ = &

!

!A2"!#$!#R! i"!#2$ , "25#

where A2"!# is the average square amplitude of the ampli-
tude of the mode ! and #R! i"!# is the displacement of par-
ticle i for the mode !. We then average on all particles and
define !#R! 2$=1 /N&i!#R! i

2$, where N is the system size. Using
the mode normalization !#R! i"!#2$i=1 /N and applying Eq.
"24# lead to

!#R! 2$ % '
0

D"!#
!2 d! $ '

!!

D"!#
!2 d! . "26#

The inequality accounts for the modes with frequency be-
tween !=0 and !! that we have neglected. Accounting for
those modes would not change our conclusion as long as the
soft mode density grows sublinearly at low frequency. As can
be checked for the square lattice, D"!# reaches a typical
value of 1 /(k "%1 / !f$ for hard spheres# for !$!!. This is
more generally true for amorphous packing, as proven in
Ref. 14. Using this fact, the last integral is dominated by the
lowest bound and one gets

!#R! 2$ $
D"!!#

!! % !f$−3/2 % h3/2, "27#

which holds in any dimension d$2 "with corrections of or-
der h2 log N for d=2 due to plane waves#. We have used the
scaling of the frequency scale !! confirmed in Fig. 8. In

crystals, the fluctuations around a particle position is of the
order of the interparticle gap h: !#R! 2$%h2 "with log N cor-
rections in two dimensions#. Equation "27# shows that near
maximum packing, the amplitude of particle motions is infi-
nitely smaller in the crystal than in the glass. Because of the
marginal stability of the glass, these fluctuations have an
anomalous scaling with the packing fraction.

To check numerically this prediction, we consider vari-
ous metastable states. In each of them, we measure R! i

eq and
the mean square displacement around the equilibrium posi-
tion !#R! 2$= !1 /N&i#R! i

2"t#$t1
, where the average is made on

the time interval t1. Figure 11 shows this quantity for various
packing fractions. Our numerical result agrees well with our
prediction !#R! 2$%!f$−3/2%h3/2 throughout the glass phase.

VII. !-RELAXATION

One long-lasting challenge in our understanding of the
glass transition is the elaboration of a spatial description of
activated events, the rare and sudden rearrangements of par-
ticles corresponding to jumps between metastable states.
These events are collective rearrangements of particles, but
the cause and the nature of this collective aspect are un-
known. Our observation that the glass structure is marginally
stable suggests that the softest, barely stable modes may play
a key role in the activated events that relax the structures. In
what follows we investigate this possibility by projecting the
sudden rearrangements on the normal modes of the free en-
ergy.

A. Aging

During aging, sudden rearrangements or “earthquakes”
appear as drops in the self-scattering function, see Fig. 2"a#.
Such earthquakes correspond to collective motions of a large
number of particles and have been observed in various other
aging systems such as colloidal paste or laponite35 and in
Lennard-Jones simulations.26,36,37 Even for our largest nu-
merical box of N=1024 particles, deep in the glass phase
these events generally span the entire system. Examples of
earthquakes in real space are shown in Fig. 14.
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FIG. 11. Mean square displacement !#R! 2$ vs average contact force !f$ for
N=1024 "circles# and N=256 "squares# particles. Diamonds correspond to
the supercooled liquid phase and were computed for a system with N
=256 particles. Slashed line corresponds to the best fit agreeing with our
prediction !#R! i

2$%!f$−3/2.
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High pressure numerical 
challenges: 
-eliminate rattlers 
-network and thus rattlers 
reorganize with time 

CKUPZ Nat. Comm. (2014) 

1RSB solution gives 0. 



D0,:.)(![5!F-*!,*.8!-110,-6%!
'8*-(#6-.!20-*+#4,*!>0,(!,*)!+#')#

Typical solutions: get out of equilibrium and 
pray 
Other possible solution: High dimensions 
can’t help much, so… plant a glass 
instead! 



HS interacting via shifted potential 
 
 
 
 #ij "[0,L]d with a flat distribution. If A is near B 
and B is near C, A is not necessarily near C. In 
the liquid phase 
 
 
i.e.,  
•  Same high d partition function as HS. 
•  Mean-field critical behavior.  
•  Nucleation suppressed. 
•  Critical fluctuations don’t couple with 

displacements. 
•  No spatial notion -> limited facilitation. 
•  Ideal off-lattice finite d MF model!  

PQ-(1.)!N5!<-0#&^/06%-*!?<^C!(,').!

MK, PRL (2009); JCP (2011) 
Mézard, Parisi, Tarzia, Zamponi, J. Stat. Phys. (2011) 
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Planting possible! 



F-O#28!0)6,*+20/64,*!

CJPZ, PNAS (in press), arXiv:1407.5677 
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