Dynamical large deviations and glass transitions

Juan P. Garrahan
(University of Nottingham)

D. Chandler, A. Keys (Berkeley)
R. Jack (Bath)
S. Genway, J. Hickey, R. Turner (Nottingham)
Dynamics is more than statics

Canonical example \rightarrow glass transition problem

Statistical mechanics of trajectories rather than states/configurations

Dynamical large-deviations \rightarrow s-ensemble method \rightarrow glasses

\{Ruelle, Derrida, Lebowitz-Spohn, Gartner-Ellis, Donsker-Varadhan, ...\}

Applications in quantum many-body systems?
Stylised facts about the glass transition

#1: Slowdown w/o structural change

\[t \ll \tau_\alpha \quad t \approx \tau_\alpha \quad t \gg \tau_\alpha \]

(e.g. 50:50 L-J mixture (Hedges 2009))

#2: Dynamical heterogeneity

#3: Anomalous response if driven out-of-equilibrium

\[
C_p \quad \text{cool -20 K/m} \quad \text{heat +20 K/m}
\]

\[
0.8 \quad 1.0 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2.0
\]

\[
0.8 \quad 220 \quad 240 \quad 260 \quad T (K)
\]

\[
1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0 \quad 3.5 \quad 4.0 \quad 4.5
\]

\[
340 \quad 345 \quad 350 \quad 355 \quad 360 \quad 365 \quad 370 \quad 375 \quad 380 \quad \text{Temperature (K)}
\]
Perspectives on glass transition

Thermodynamic

Statics \Rightarrow Dynamics

eg. RFOT

$\{\text{Parisi+Wolynes+many others}\}$

ideal models e.g. p-spin spin glass

Dynamic

Statics does not \Rightarrow Dynamics

metric \Rightarrow Dynamic facilitation

ideal models $K\text{CMs}$

$\{\text{Anderson+Andersen+Jackle+many others}\}$
#2: Dynamical heterogeneity

Cold/dense Lennard-Jones mixture
\{L. Hedges\}

\[N_A = N_B = 10^4 \ (1:1.4) \]
\[T = 1.1 < T_{\text{onset}} \]

Motion begets motion \(\rightarrow\) dynamical facilitation

Effective excitations are localised \{Keys-et-al, PRX 2011\}

Interesting structure in trajectories not in configurations/states
Dynamic facilitation \rightarrow kinetically constrained models

$\partial_t |P\rangle = W |P\rangle \rightarrow W = \sum_i (n_{i-1} + \delta) \left[\epsilon \sigma_i^+ + \sigma_i^- - \epsilon (1 - n_i) - n_i \right] + (i \leftrightarrow i - 1)$

constraint = operator valued rate

Trivial statics but heterogeneous & hierarchical dynamics

East model $\tau_{relax} \approx \tau_0 \exp \left(\frac{A}{T^2} + \frac{B}{T} \right)$ \quad \{Sollich-Evans 1999\}
Dynamic facilitation → kinetically constrained models

$\partial_t |P\rangle = \mathbb{W} |P\rangle$

$\exp \left(\frac{C}{T - T_0} \right)$

NB: no VFT

East model $\tau_{\text{relax}} \approx \tau_0 \exp \left(\frac{A}{T^2} + \frac{B}{T} \right)$

{Sollich-Evans 1999}

$\frac{J}{T_0} \left(\frac{T_0}{T} - 1 \right)$

{Elmatad-Chandler-JPG, JPCB 2009/2010}

$\log (\tau / \tau_0)$
“Thermodynamics” of trajectories: s-ensemble

- Time-integrated order parameter: $K = \text{activity}$
 - Active $K \gg 0$
 - Inactive $K \approx 0$
“Thermodynamics” of trajectories: s-ensemble

large-deviations of time-integrated observables

\[P(K) \]

\[P(K) \text{ against } K \text{ in the range from 0.02 to 0.04} \]

BMLJ

Time-integrated

East
“Thermodynamics” of trajectories: s-ensemble

\[\text{time-integrated order parameter: } K = \text{activity} \]

\[\text{active } K \gg 0 \]

\[\text{inactive } K \approx 0 \]

\[\text{large deviations} \]

\[\text{Prob}(K) \approx e^{-t \varphi(K)} \]

\[Z_t(s) \equiv \langle e^{-sK} \rangle \approx e^{t \theta(s)} \]

\[s \leftrightarrow K \quad \varphi = \text{“entropy”} \quad \theta = \text{“free-energy”} \quad t = \text{“volume”} \]

\[\mathbb{W} \rightarrow \mathbb{W}_s = \sum_i n_{i-1} \left[e^{-s} (\epsilon \sigma_i^+ + \sigma_i^-) - \epsilon (1 - n_i) - n_i \right] \theta(s) \text{ largest eigenvalue} \]

\[\mathbb{W}_s \text{ is “transfer matrix” of “partition sum” } Z_t(s) \]
“Thermodynamics” of trajectories: s-ensemble

East model

- **Order Parameter:**
 - $K(s)$
 - $\theta(s)$

Graphs:
- First-order dynamical transition at $s_c = 0$
- When $t_{obs} \to \infty$

Equation:
\[
W \to W_s = \sum_i n_{i-1} \left[e^{-s} \left(\epsilon \sigma_i^+ + \sigma_i^- \right) - \epsilon (1 - n_i) - n_i \right] \theta(s) \quad \text{largest eigenvalue}
\]

- W_s is “transfer matrix” of “partition sum” $Z_t(s)$

Additional Notes:
- Time-integrated order parameter: $K = \text{activity}$
- $K_0 = \text{inactive}$
- {e.g. Ruelle, Lebowitz-Spohn, Gartner-Ellis, Donsker-Varadhan, Lecomte+, many others}
- cf. Full Counting Statistics
“Thermodynamics” of trajectories: s-ensemble

\[\text{Prob}(K) \approx e^{-sK} \]

\[Z_t(s) \equiv \langle e^{-sK} \rangle \approx (s) \]

\[s \leftrightarrow K \quad \varphi = \text{“entropy”} \]

\[W \rightarrow W_s = \sum_i n_{i-1} \left[e^{-s} \right] \]

\(W_s \) is “transfer matrix” of “partition sum”

\[W_s(s) = \frac{1}{n} \sum_{i} \left[e^{-s} \right] \]

BMLJ (MD/TPS, N=150)

activity vs. counting field

first-order dynamical transition

at \(s_c \gtrsim 0 \)

when \(t_{\text{obs}} \gg \tau \)

\(\text{ cf. Full Counting Statistics } \}

\{see also,
Lecomte-Pitard-van Wijland 2011,
Speck-Chandler 2012
Speck-Malins-Royall 2012\}
“Thermodynamics” of trajectories: s-ensemble

dynamical phase-diagram

\[
(t_{\text{obs}} \to \infty, \, N \to \infty)
\]

equilibrium liquid

Active phase

Inactive phase

non-equilibrium “glass”

real dynamics \(s = 0 \rightarrow \text{can we access } s_c \gtrsim 0 ? \)

Accessible from normal dynamics via **cumulants** and **Lee-Yang zeros**

\{Flindt-JPG, PRL 2013; Hickey-Flindt-JPG 2014\}
Preparing glasses with s-ensemble

{Keys-JPG-Chandler, PNAS 2013 and arXiv:1401.7206}

East model

{cf. Sollich-Evans 2003}

space-time bubbles (active & equil.)

space-time stripes (inactive & noneq.)

non-equilibrium characteristic length in glassy state
Preparing glasses with s-ensemble

{Keys-JPG-Chandler, PNAS 2013 and arXiv:1401.7206}

East model

{cf. Sollich-Evans 2003}

space-time bubbles (active & equil.)

space-time stripes (inactive & noneq.)

non-equilibrium characteristic length in glassy state
Perspectives on glass transition

Thermodynamic

\[F(\xi) \]

Statics \(\Rightarrow\) Dynamics

eg. RFOT

\{Parisi+Wolynes+many others\}

ideal models e.g. \(p\)-spin spin glass

low overlap (liquid) \(\rightarrow\) high overlap (glass)

{Franz-Parisi}

numerical evidence \{Berthier 2013, Parisi-Seoane 2013\}

Dynamic

Statics does not \(\Rightarrow\) Dynamics

metric \(\rightarrow\) Dynamic facilitation

ideal models KCMs

\{Anderson+Andersen+Jackle+many others\}

transition in space of trajectories

active (liquid) \(\rightarrow\) inactive (glass)
Triangular plaquette model (TPM):

\[E = -\frac{J}{2} \sum_{\Delta} S_i S_j S_k \]

Thermodynamics:

1-1 mapping spins-plaquettes

free plaquettes \(\rightarrow\) free localised defects
\(\Rightarrow\) disordered \(\forall T\)

Dynamics: (effectively) kinetically constrained

Relaxation is hierarchical \(\longrightarrow\) \(\tau = e^{1/T^2}\)

cf. East facilitated model \{Sollich-Evans 1999\}

Statics trivial, dynamics complex & glassy, but singular only at \(T=0\) (cf. dynamic facilitation)
Two coupled TPMs (annealed):

\[E = -\frac{J}{2} \sum_{\Delta} (s_i^a s_j^a s_k^a + s_i^b s_j^b s_k^b) - \varepsilon \sum_i s_i^a s_i^b \]

{cf. Franz-Parisi}

Exact duality:

\[Z(K_J, K_\varepsilon) = (\sinh 2K_J \sinh K_\varepsilon)^N Z(K_J^*, K_\varepsilon^*) \quad (2K_J = \beta J, \ K_\varepsilon = \beta \varepsilon) \]

\[e^{-K_\varepsilon^*} = \tanh K_J, \quad \tanh K_J^* = e^{-K_\varepsilon} \]
Two coupled TPMs (annealed): \(E = -\frac{J}{2} \sum_{\Delta} (s_i^a s_j^a s_k^a + s_i^b s_j^b s_k^b) - \varepsilon \sum_i s_i^a s_i^b \)

Self-dual: \(\left(\sinh \frac{J}{T} \right) \left(\sinh \frac{\varepsilon}{T} \right) = 1 \)

Cf. TMP in field \{Sasa 2010\} & generalised Baxter-Wu \{Nienhuis 2010\}

1st order static transition at finite coupling ending at CP (*Ising*) \{Turner-Jack-JPG 2014\}

Transition vanishes at \(\varepsilon \to 0 \)
Classify trajectories of TPM according to dynamical activity \rightarrow s-ensemble

1st order transition in activity & overlap

$E = -J \sum_{py} S_i S_j S_k S_l S_m$

spins-pyramids 1-1

same dualities as TPM
Similar features in tilings / dimer coverings / “spin-ice”-like systems

Eg. molecular random tilings
{Beton+Champness+Blunt+Whitelam+Stannard+...+JPG}

“mosaics” for real

free → confined defects
random tiled

ordered

\[\text{dynamics facilitated by localised free defects} \]

\[\text{free → confined defects} \]

\[\text{random tiled} \]

\[\text{ordered} \]

\[\text{field} \]
Many-body localisation (MBL) transition:

\{Basko-Aleiner-Altshuler 2006, Huse+, many others\}

- Cf. Anderson localisation but for interacting system
- Singular change throughout spectrum
- Eigenstates change from “thermal” (ETH \{Deutsch, Sdrenicki\}) to MBL
- Observables do not relax in MBL phase
- Often thought of as “glass transition” but modelled with disorder

Can KCMs (as models for classical glasses) say anything about quantum MBL?
Recap: active-inactive “space-time” transitions in KCMs (eg. East/FA)

\[\mathcal{W} \to \mathcal{W}_s = \sum_{i} n_{i-1} \left[e^{-s} (\epsilon \sigma_i^+ + \sigma_i^-) - \epsilon (1 - n_i) - n_i \right] + (i \leftrightarrow i - 1) \]

Largest \(\epsilon \)/value = cumulant G.F. for activity \(\to \) 1st order phase transition

Can transform into **Hermitian** operator through equilibrium distribution

\[H_s \equiv -\mathcal{P}^{-1} \mathcal{W}_s \mathcal{P} = -\sum_{i} n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_i^x - \epsilon (1 - n_i) - n_i \right] + (i \leftrightarrow i - 1) \]

Consider as **Hamiltonian** and corresponding quantum unitary dynamics \(|\psi_t\rangle = e^{-itH_s} |\psi_0\rangle \)
KCMs and many-body localisation in closed quantum systems

\[H_s = - \sum_i n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_i^x - \epsilon (1 - n_i) - n_i \right] + (i \leftrightarrow i - 1) \quad |\psi_t\rangle = e^{-itH_s} |\psi_0\rangle \]

Signatures of MBP transition: (i) relaxation / non-relaxation of observables

\[\langle M \rangle_t = \sum_i \langle \psi_t | \sigma_i^z | \psi_t \rangle \]

- does not relax on inactive side \(s > 0 \)
- relaxes on active side \(s < 0 \)
KCMs and many-body localisation in closed quantum systems

\[
\mathcal{H}_s = - \sum_i n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_i^x - \epsilon (1 - n_i) - n_i \right] + (i \leftrightarrow i - 1) \quad |\psi_t\rangle = e^{-i \mathcal{H}_s t} |\psi_0\rangle
\]

Signatures of MBL transition: (ii) transitions throughout spectrum
KCMs and many-body localisation in closed quantum systems

\[\mathcal{H}_s = -\sum_i n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma^x_i - \epsilon (1 - n_i) - n_i \right] + (i \leftrightarrow i - 1) \quad |\psi_t\rangle = e^{-it\mathcal{H}_s} |\psi_0\rangle \]

Signatures of MBL transition: (iii) level spacing statistics

Many symmetries in clean system

Can remove with site disorder:
\[\epsilon \rightarrow |\epsilon - g\pi_i| \quad (g \ll \epsilon) \]

KCM dynamics unchanged

Many symmetries in clean system

Can remove with site disorder:
\[\epsilon \rightarrow |\epsilon - g\pi_i| \quad (g \ll \epsilon) \]

KCM dynamics unchanged
KCMs and many-body localisation in closed quantum systems

\[\mathcal{H}_s = -\sum_i n_{i-1} \left[e^{-s} \sqrt{\epsilon \sigma_i^x} - \epsilon(1-n_i) - n_i \right] + (i \leftrightarrow i-1) \quad |\psi_t\rangle = e^{-it\mathcal{H}_s}|\psi_0\rangle \]

Signatures of MBL transition: (iv) localisation onto classical basis

\[\text{IPR} \]

\[\text{LDOS} \]

\[\Rightarrow \text{active-inactive transition} \rightarrow \text{1st order MBL transition in whole spectrum} \]

MBL transition without disorder
“Thermodynamics of trajectories” based on LD theory

Glass transition as a active/inactive transition in trajectory space

KCM glass models as models for MBL without disorder