
Juan P. Garrahan 
(University of Nottingham)

Dynamical large deviations  
and glass transitions

D. Chandler, A. Keys (Berkeley) 
R. Jack (Bath) 
S. Genway, J. Hickey, R. Turner (Nottingham) £



Dynamics is more than statics 
!

Canonical example → glass transition problem

Dynamical large-deviations→ s-ensemble method ➙ glasses
{Ruelle, Derrida, Lebowitz-Spohn, Gartner-Ellis, Donsker-Varadhan, ...}

Statistical mechanics of trajectories rather than states/configurations

Applications in quantum many-body systems?



Stylised facts about the glass transition

#2:  

Dynamical 

heterogeneity
e.g.  

50:50 L-J mixture  
{Hedges 2009}

t� ⇥� t � ⇥� t� ⇥�

#3:  
Anomalous response if 

driven out-of-equilibrium

This scan was continued beyond the melting
point, after which the sample was cooled into the
glass and then scanned again to yield the black
curve. This latter curve represents the behavior of
an ordinary glass of TNB, with Tg = 347 K, as
defined by the onset temperature; it is consistent
with previously reported results for TNB (13–15).

Remarkably, the vapor-deposited sample
has a substantially higher onset temperature
of 363 K. This result indicates that the vapor-
deposited material is kinetically much more
stable, because higher temperatures are required
to dislodge the molecules from their glassy con-
figurations. For comparison, we isothermally an-
nealed the ordinary glass for 6 months at 296 K
and up to 15 days at 328 K (equilibrium was
reached at 328 K). Vapor-deposited samples
created in only a few hours have much greater
kinetic stability than ordinary glasses aged for
many days or months below Tg.

To quantify the thermodynamic stability of
the vapor-deposited materials, we calculate the
fictive temperature (Tf), as defined below. Lower
Tf values indicate a lower position in the energy
landscape. The enthalpy for TNB and IMC sam-
ples, obtained by integrating the heat capacity Cp,
is plotted in Fig. 1B. The intersection between
these data and the extrapolated supercooled
liquid enthalpy (red curve) defines Tf for each
sample. For both TNB and IMC, samples pre-
pared by vapor deposition have considerably
lower enthalpies and Tf values. On the basis of
aging experiments on TNB, we estimate that it
would require at least 40 years of annealing an
ordinary glass to match Tf for the vapor-deposited
sample shown in Fig. 1 (12). The similarity of
the results for TNB and IMC suggests that vapor
deposition can generally produce highly stable
glasses.

The thermodynamic stability of these films
can also be quantified in comparison with the
Kauzmann temperature (TK), the temperature at
which the extrapolated entropy of the super-
cooled liquid equals that of the crystal (4, 5). We
define a figure of merit:

qK ¼
Tg − Tf
Tg − TK

ð1Þ

For fragile glassformers such as TNB and IMC,
qK is a measure of position on the energy
landscape, with a value of 1 (Tf = TK) indicating
the lowest possible position on the landscape. For
TNB, Magill estimated TK = 270 K (14). Vapor
deposition of TNB at Tg – 50 K created films
with qK = 0.43; by this measure, we have pro-
ceeded 43% toward the bottom of the energy
landscape for amorphous configurations. In com-
parison, annealing the ordinary glass at 296 K
(qK = 0.09) or 328 K (qK = 0.22) is relatively
ineffective. Similar results were observed for
IMC deposited at Tg – 50 K, with qK = 0.23 to
0.44, depending on deposition rate. These re-

sults can be put into context by comparison
with Kovac’s seminal aging experiments on
poly(vinylacetate), where 2 months of anneal-
ing achieved qK ≤ 0.17 (16).

Vapor deposition can also create unusually
dense glasses. The ratio of the density of vapor-
deposited TNB (rVD) to that of the ordinary glass
(ro, prepared by cooling from the liquid) in-
creases as the deposition temperature is lowered
toward Tg – 50 K (Fig. 2). Also shown as the
solid line is a prediction of the density if vapor
deposition produced an equilibrium supercooled
liquid at the deposition temperature (12). For this
range of deposition temperatures, our samples
nearly achieve this upper bound for the density. If
we define a fictive temperature based on density,
deposition at 296 K produces Tf ≈ 300 K, slight-
ly lower than the fictive temperature based on
the enthalpy (15).

We have used neutron reflectivity to charac-
terize diffusion in glasses of TNB. The high spa-
tial resolution and large contrast in the scattering
length of neutrons for hydrogen and deuterium
nuclei make this an excellent technique for quan-
tifyingmolecular motion.As schematically shown
in the inset of Fig. 3, 300-nm films were prepared
by alternately vapor-depositing 30-nm-thick lay-
ers of protio TNB (h-TNB) and deuterio TNB
(d-TNB) (17). The specular reflectivity R was
measured as a function of beam angle relative to
the sample surface. This value, multiplied by q4

for clarity, is plotted as a function of the wave
vector q. Reflectivity curves for samples vapor-
deposited at different temperatures display dif-
fraction peaks; as expected for our symmetric
multilayer samples, only odd diffraction orders
are present. For samples deposited at low tem-
perature, diffraction can be observed up to the
13th order, indicating very sharp h-TNB/d-TNB
interfaces (15).

Time series of neutron reflectivity curves
were obtained for two vapor-deposited samples
during annealing at 342 K for samples deposited
at 330 K (Fig. 4A) or 296 K (Fig. 4B). During 8
hours of annealing, all diffraction peaks (except
the first-order peak) for sample A decayed to
zero, indicating that substantial interfacial broad-
ening had occurred because of interdiffusion of
h-TNB/d-TNB. During the 16 hours of anneal-
ing at 342 K for sample B, no detectable inter-
diffusion occurred, even on the single-nanometer
length scale. We emphasize that the only differ-
ence between these two samples was the temper-
ature at which the substrate was held during
deposition.

Figure 4A illustrates the behavior of an or-
dinary glass annealed near Tg; as shown else-
where (17), interdiffusion in this sample is
characteristic of the equilibrium liquid. In con-
trast, the sample deposited near Tg – 50 K (Fig.
4B) is kineticallymuchmore stable, in qualitative
agreement with the high onset temperature shown
for the vapor-deposited sample in Fig. 1A. We
can quantify the magnitude of this stability in
terms of the equilibrium structural relaxation time

Fig. 1. (A) Heat capacity, Cp, of TNB samples: vapor-
deposited directly into a DSC pan at 296 K at a rate
of ~5 nm/s (blue); ordinary glass produced by cooling
the liquid at 40 K/min (black); ordinary glass annealed at 296 K for 174 days (violet), 328 K for 9 days
(gold), and 328 K for 15 days (green). (Inset) Structure of TNB. (B) Enthalpy of TNB and IMC samples.
Heat capacities of the samples shown in (A) are integrated to obtain the curves shown for TNB. Similar
experimental conditions were used for IMC (15).

Fig. 2. Density of vapor-deposited TNB films
(rVD) normalized to the density of the ordinary
glass (ro), with both measured at room temper-
ature. Experimental density ratios (filled squares)
were calculated from x-ray reflectivity measure-
ments on 100- to 300-nm films by measuring film
thickness before and after annealing above Tg
(15). The solid line indicates the expected density
if the samples were prepared in thermal equilib-
rium with Tf = Tdeposit.
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Fig. 6. The growth of the viscosity close to the glass transition—Logarithmof the viscosity of several substances as a function of the inverse temperature.
The horizontal line marks the value � = 1013 Poise, which conventionally defines the dynamic glass transition. (Reprinted with permission from [39];
copyright of Societa’ Italiana di Fisica.)
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Fig. 7. Specific heat vs. temperature at the dynamic glass transition — The specific heat drops at the dynamic glass transition to approximately the
same value it has in the crystal phase. This is because below Tg we are not giving the system enough time to be ergodic. Roughly speaking, a glass is stuck
in a single potential energy minimum for a long time, so that it looses all the configurational degrees of freedom.

we sharply cut the number of degrees of freedom accessible to the system. This causes a sharp drop (up to a factor 2) of
the constant pressure specific heat cp at Tg [1]. A schematic view of the typical behaviour of cp(T ) is reported in Fig. 7. The
experimental time is smaller than the ergodicity time, i.e. the time needed by the system to explore a representative fraction
of the phase space. In this dynamic sense, we can say that the system is no longer ergodic.

This phenomenon becomes all the more clear when we notice that the specific heat below Tg drops to a value very
close to that of the crystalline phase. In a crystal the motion of all particles consists of vibrations around their (ordered)
equilibrium positions, without any kind of rearrangement. Ergodicity is broken and the system is confined to one (absolute)
energy minimum in the phase space. The behaviour of the specific heat thus suggests that also in a glass at low temperature
particles vibrate around their (disordered) equilibrium positions, with almost no structural rearrangement. Ergodicity is
dynamically broken and the glass is confined to one (local) energy minimum in the phase space. For this reason, the specific
heat is approximately the same in the crystal as in the low temperature glass.

Even though the view of a glass stuck in a local minimum is good enough to understand the behaviour of static quantities
as the specific heat, it is unfortunately far too simplistic if we want to understand the dynamic properties of the off-
equilibrium phase. This is not our focus, but we nevertheless must be a bit more precise here. A glass is something more
complicated than a system vibrating around an amorphous minimum of the energy. Were this simple picture true, the
glass would be at a (broken-ergodicity) equilibrium within this minimum, as it happens to the crystal. However, a glass is
drastically out of equilibrium. Even though one-time quantities (as the volume or the energy) may look almost constant in
the long time limit, two-time quantities (as the dynamic correlation function) showa stark off-equilibriumbehaviour, in that
they depend explicitly on both times, rather than on their difference. In other words, the properties of the system depend on
the time elapsed from the instant the systemwas cooled below Tg . This is aging. The reasons for this behaviour are complex

{Angell 1995}
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Statics ⇒ Dynamics 

eg. RFOT  
{Parisi+Wolynes+many others} 

ideal models e.g. p-spin spin glass

Thermodynamic

Perspectives on glass transition

Statics does not ⇒ Dynamics 

metric → Dynamic facilitation 

ideal models KCMs  
{Anderson+Andersen+Jackle+many others}

Dynamic 



#2: Dynamical heterogeneity

Cold/dense Lennard-Jones mixture 
{L. Hedges}

NA = NB = 104 (1 : 1.4)
T = 1.1 < Tonset

Motion begets motion ➙ dynamical facilitation 

Effective excitations are localised 

Interesting structure in trajectories not in configurations/states

{Keys-et-al, PRX 2011}



Dynamic facilitation → kinetically constrained models
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East model
{Jackle 1991}

FA model
{Fredrickson-Andersen 1984}

constraint = operator valued rate

Trivial statics but heterogeneous & hierarchical dynamics 
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{Elmatad-Chandler-JPG, 

JPCB 2009/2010}

{cf. Bassler 1987, Rossler+ 

1998, Hecksher+ 2007, 

McKenna+ 2013}

��������⇥⇥⇥⇥⇥⇥⇥⇥exp
�

C

T � T0

⇥
NB: no VFT

{Angell 1995}
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Fig. 7. Specific heat vs. temperature at the dynamic glass transition — The specific heat drops at the dynamic glass transition to approximately the
same value it has in the crystal phase. This is because below Tg we are not giving the system enough time to be ergodic. Roughly speaking, a glass is stuck
in a single potential energy minimum for a long time, so that it looses all the configurational degrees of freedom.

we sharply cut the number of degrees of freedom accessible to the system. This causes a sharp drop (up to a factor 2) of
the constant pressure specific heat cp at Tg [1]. A schematic view of the typical behaviour of cp(T ) is reported in Fig. 7. The
experimental time is smaller than the ergodicity time, i.e. the time needed by the system to explore a representative fraction
of the phase space. In this dynamic sense, we can say that the system is no longer ergodic.

This phenomenon becomes all the more clear when we notice that the specific heat below Tg drops to a value very
close to that of the crystalline phase. In a crystal the motion of all particles consists of vibrations around their (ordered)
equilibrium positions, without any kind of rearrangement. Ergodicity is broken and the system is confined to one (absolute)
energy minimum in the phase space. The behaviour of the specific heat thus suggests that also in a glass at low temperature
particles vibrate around their (disordered) equilibrium positions, with almost no structural rearrangement. Ergodicity is
dynamically broken and the glass is confined to one (local) energy minimum in the phase space. For this reason, the specific
heat is approximately the same in the crystal as in the low temperature glass.

Even though the view of a glass stuck in a local minimum is good enough to understand the behaviour of static quantities
as the specific heat, it is unfortunately far too simplistic if we want to understand the dynamic properties of the off-
equilibrium phase. This is not our focus, but we nevertheless must be a bit more precise here. A glass is something more
complicated than a system vibrating around an amorphous minimum of the energy. Were this simple picture true, the
glass would be at a (broken-ergodicity) equilibrium within this minimum, as it happens to the crystal. However, a glass is
drastically out of equilibrium. Even though one-time quantities (as the volume or the energy) may look almost constant in
the long time limit, two-time quantities (as the dynamic correlation function) showa stark off-equilibriumbehaviour, in that
they depend explicitly on both times, rather than on their difference. In other words, the properties of the system depend on
the time elapsed from the instant the systemwas cooled below Tg . This is aging. The reasons for this behaviour are complex
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“Thermodynamics” of trajectories: s-ensemble
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“Thermodynamics” of trajectories: s-ensemble
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timeBMLJ East
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order parameter:  
K = activity

active K � 0

inactive K � 0

{e.g. Ruelle, Lebowitz-Spohn,  
Gartner-Ellis, Donsker-Varadhan,   

Lecomte+,  many others 
cf. Full Counting Statisitcs}

s ↔ K t = “volume”= “free-energy” �= “entropy” �

large deviations
Prob(K) ⇡ e�t �(K)

Zt(s) ⌘ he�sK i ⇡ et �(s)

“Thermodynamics” of trajectories: s-ensemble
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dynamical phase-diagram 
(tobs !�, N!�)

Active  
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Inactive 
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{Hedges-Jack-JPG-Chandler, Science 2009, 
Elmatad-Jack-Chandler-JPG, PNAS 2010, 

Elmatad-Jack 2013}

non-
equilibrium 

“glass”

equilibrium liquid

real dynamics        s = 0➙ can we access                ?sc ¶ 0
Accessible from normal dynamics via cumulants and Lee-Yang zeros 

{Flindt-JPG, PRL 2013; Hickey-Flindt-JPG 2014}

“Thermodynamics” of trajectories: s-ensemble



{Keys-JPG-Chandler, PNAS 2013 and arXiv:1401.7206}

Preparing glasses with s-ensemble
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Preparing glasses with s-ensemble



Statics ⇒ Dynamics 

eg. RFOT  
{Parisi+Wolynes+many others} 

ideal models e.g. p-spin spin glass

Thermodynamic

Statics does not ⇒ Dynamics 

metric → Dynamic facilitation 

ideal models KCMs  
{Anderson+Andersen+Jackle+many others}

Dynamic 

low overlap (liquid) ➞ high overlap (glass)
{Franz-Parisi}

numerical evidence {Berthier 2013, Parisi-Seoane 2013}

transition in space of trajectories

active (liquid) ➞ inactive (glass)

Perspectives on glass transition



Triangular plaquette model (TPM):
{Newman-Moore 1999, JPG-Newman 2000}
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Thermodynamics:  
!

1-1 mapping spins-plaquettes 
 

free plaquettes → free localised defects 
⇒ disordered ∀ T

Overlap transitions and facilitation  
{JPG, PRE 2014; Turner-Jack-JPG 2014}

Dynamics:  (effectively) kinetically constrained

Statics trivial, dynamics complex & glassy, but singular only at T=0  (cf. dynamic facilitation)

Relaxation is hierarchical �! � = e1/T
2

cf. East facilitated model {Sollich-Evans 1999}



Two coupled TPMs (annealed):  E = �
J
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Two coupled TPMs (annealed):  E = �
J
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{Turner-Jack-JPG 2014} 

 
transition vanishes at ε → 0

Overlap transitions and facilitation  
{JPG, PRE 2014; Turner-Jack-JPG 2014}
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Classify trajectories of TPM according to dynamical activity → s-ensemble 

Overlap transitions and facilitation  
{JPG, PRE 2014; Turner-Jack-JPG 2014}

1st order transition in activity & overlap
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A typical area of the TPTC network adsorbed
on the HOPG surface is shown in Fig. 2A. The
terphenyl backbones of the molecules appear as
bright rodlike features, and the molecular arrange-
ment is unusual because it exhibits hexagonal
orientational order but no translational symmetry.
The hexagonal order may be discerned from the
array of blue dots overlaid on dark contrast fea-
tures (corresponding to depressions or pores) in
Fig. 2A and, using calibration scans of the graph-
ite substrate, we found that the hexagonal array
has a period of 16.6 T 0.8 Å oriented at an angle
of T6° to the HOPG substrate (16). Although the
pores are regularly arranged, the molecular net-
work enclosing them is not translationally ordered.
Figure 2, B to F, shows that the molecular ar-
rangements enclosing different pores (highlighted
areas in Fig. 1A) are hexagons formed by a vary-
ing number of molecules.

For example, Fig. 2B shows a hexagon formed
by three molecules with edges that alternate be-
tween a terphenyl backbone and a carboxylic acid–
carboxylic acid junction. Figure 2, C and D, shows
two alternative hexagonal arrangements formed
by the junction of four molecules with two edges
formed by the terphenyl backbone. Similarly, the
junction in Fig. 2E is formed by five molecules
with one terphenyl edge, and the junction in Fig.
2F is formed by six molecules with no terphenyl
edges. The lengths of the hydrogen-bonded and
terphenyl edges (equivalent to d1 and d2 as de-
fined in Fig. 1B) are calculated to be 9.6 and 8.7 Å
[the intermolecular binding energyEHB = 0.80 eV
is calculated to be the same for the parallel and
arrowhead arrangements (16)], giving estimated
widths of the hexagons in Fig. 2 ranging from
15.8 Å (Fig. 2B) to 16.6 Å (Fig. 2F), which is in
good agreement with the measured periodicity.
The molecular array shown in Fig. 2A may be
built by combining these five structural units in
an arrangement that exhibits orientational sym-
metry but no translational order.

The network may be mapped onto a tiling by
replacing each molecule with a rhombus [see (25)

for another example linking molecular arrays to
tiling problems]. Each molecule in the network
points along one of three high-symmetry directions,
and we have chosen, for clarity, to represent these
three molecular orientations as rhombi with differ-
ent colors. To illustrate the tiling, we have converted
each of the hexagonal structural units discussed
above into rhombi (Fig. 2). The representations of
the junctions in Fig. 2, B to F, correspond to verti-
ces where three, four, five, or six rhombi meet.
These diagrams also show that, at a molecular
level, the mapping is possible because the inter-
molecular bonds between neighboring molecules
are located at the midpoint of the rhombus edges
(Fig. 2G). We suggest that this symmetry is key to
identifying other candidate molecules that might
form similar networks.

The molecular network displayed in Fig. 2A
can be mapped into rhombi, and the resultant
tiling is shown in Fig. 2H. The mapping directly
accounts for the presence of orientational sym-
metry combined with an absence of translational
order because the rhombus vertices (pores in the
STM images) fall on a hexagonal lattice, even
though the arrangement of rhombi is not ordered.
Thus, we demonstrate that the molecular array is
equivalent to a rhombus tiling.

We also observed tiling defects in the form of
triangular voids enclosed completely by rhombi
(Fig. 3). These voids are topological defects that
occur in two states of effective “charge” corre-
sponding to triangles pointing either “up” or
“down” and have been considered theoretically
but have not previously been observed (26–28).
We observed ~3 × 10−3 defects per adsorbed mol-
ecule and may unequivocally distinguish these
voids from other less intrinsically interesting de-
fects, such as vacancies. The triangular defects
have been observed to propagate through the net-
work, as shown in Fig. 3, C to H. This movement
results in a rearrangement of a single molecule
(or tile) within the network. Figure 3, C and F,
shows a comparison of images before and after
such a transition, in which, as expected, effective

charge is conserved. The triangular defect under-
goes a second movement between Fig. 3, E and
G. In our images, this transition appears to be
mediated by the temporary presence of an addi-
tional species at the defect site, as highlighted in
Fig. 3, C and E, possibly an additional TPTC
molecule temporarily bound by hydrogen bond-
ing. Although it is difficult to determine the exact
details of the atomistic mechanism for defect move-
ment, this sequence of images shows that defect
propagation through the network gives rise to a
reordering of molecular tiles and facilitates a tran-
sition between different local energy minima.

To determine whether the observed rhombus
tilings are ordered or random, we followed pre-
vious theoretical studies (10, 12) and introduced
an effective height h(x,y) at each vertex (x,y). The
height was calculated with the scheme shown in
Fig. 4A, in which a displacement along a rhombus
edge leads to a change in height of T1. By ar-
bitrarily choosing an origin with zero height, it is
possible to define h(x,y) for all vertices of a perfect
(defect-free) tiling. Within this scheme, a tiling may
be visually considered as a perspective of the sur-
face of a simple cubic lattice when viewed along a
(111) direction. More formally, the rhombus tiling
is equivalent to the projection of an irregular sur-
face of a three-dimensional simple cubic crystal
onto a (111) plane of the cubic lattice. A map of
effective height of the STM image (Fig. 2A) is
shown in Fig. 4C.

Within the random tiling hypothesis (11), the
tilings may be analyzed by introducing an effec-
tive free energyG, which, assuming that all vertex
types (shown in Fig. 2) are degenerate, is deter-
mined entirely by an entropic contribution and is
given by G ¼ ðKo=2Þ∫j∇hj2 dxdy. This contribu-
tion is equivalent to the energy of a deformed
surface with elastic constantKo. The gradient ∇h
corresponds to the projection in the (x,y) plane
of the normal to the representative surface. The
tilings that are generated by this free energy have
a height representation for which 〈∇h〉 ¼ 0, that
is, a surface which on average is flat and par-

Fig. 3. (A, C, E, and G) STM
images showing two separate
movements of a single defect
through the network structure.
(B, D, F, and H) Tiling repre-
sentation of the network struc-
ture during the defect motion.
The effective rearrangements of
rhombi in the tiling are marked
by the black arrows in (D) and
(F). Transient image artifacts ob-
served within the defect site
before defect motion are high-
lighted by blue dashed squares
[(C) and (E)]. Scanning condi-
tions for all images were It =
0.021 nA and Vt = 1200 mV.

A C E G
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dynamics facilitated by localised free defects

Similar features in tilings / dimer coverings / “spin-ice”-like systems 

appears in Ising models of magnetism and leads to ordered phases
with broken symmetry for |J|! kBT, where kB is the Boltzmann con-
stant and T the temperature; these phases may be either ferromagnetic
or antiferromagnetic depending on the sign of J, although entropic
terms in the free energy dominate for |J|≪ kBT, in which case a
paramagnetic phase occurs. Our experiments and simulations show
that this rich phase behaviour may be investigated by preparing mol-
ecular arrays with differing values of D.

Results and discussion
Figure 1c–h shows images of molecular networks prepared under
several different conditions (see Methods), referred to as Experiments
1–6, respectively, and the corresponding representations of rhombus
tiling, in which each molecule is represented by a rhombus coloured
according to its orientation. To characterize our experimental
tilings we defined an order parameter, C¼ (n0p – p0n)/(n0pþ p0n),
where n and p represent the fraction of rhombus tile junctions in

non-parallel and parallel orientations, respectively, and n0¼ 0.608
and p0¼ 0.392 are the equivalent values for a defect-free, ideal,
random tiling and were estimated numerically (see Methods). As
such, C equals 1 in a fully parallel phase, 21 in a fully non-parallel
phase and 0 for an ideal random tiling. C was calculated for each of
Experiments 1–6; the images in Fig. 1c–h are placed in order of
decreasing C, from C¼ 0.22 to C¼ –0.68.

Figure 1b is a schematic of the expected equilibrium phase
diagram13–16. The two relevant thermodynamic parameters are
temperature, T (in units of 1, the characteristic hydrogen bond
energy) and energetic bias, D. Ideal random tilings are observed
for D¼ 0. For D . 0, non-parallel bonding is favoured, which
results in increasingly negative values of C. For sufficiently large
D the system orders into a crystalline phase dominated by non-
parallel bonds. This transition occurs at D/kBT¼ 0.454(3), a value
calculated in the limit of zero temperature and the transition is of
the Kosterlitz–Thouless kind16. For non-zero temperatures of

d1

d2
Non-parallel

order
Parallel
order

Random
tiling

1 2 3 4 5 6

Exp. 1: ψ = 0.22
DPBDTC

Nonanoic acid

Exp. 2: ψ = –0.08
TPTC
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i j k l

a b

c d e f g h

TPTC
Coronene

Exp. 3: ψ = –0.25
TPTC

Octanoic acid

Exp. 4: ψ = –0.35
TPTC/60 °C

Nonanoic acid

Exp. 5: ψ = –0.43
TPTC

Nonanoic acid

Exp. 6: ψ = –0.68
TPTC and coronene

Nonanoic acid

kBT/ε

Δ/kBT

Figure 1 | Tetracarboxylic acid supramolecular assemblies and rhombus tilings. a, Parallel and non-parallel intermolecular bonding orientations, with
backbone (d1) and bond (d2) lengths indicated, overlaid onto the corresponding representations of the rhombus tiles. b, Schematic phase diagram of the
interacting rhombus tiling model. Three phases are expected depending on the interaction energy D: a random-tiling phase, an ordered phase dominated by
non-parallel bonding at large positive D and a second ordered phase dominated by parallel bonding at large negative D. c–h, STM images (sections of larger
area scans) of tetracarboxylic acid supramolecular networks at alkanoic acid–HOPG interfaces and the corresponding rhombus tilings, in a sequence of
decreasing C. Experiments are labelled 1–6 and were performed at room temperature (apart from Experiment 4, which was at 60 8C) using different
combinations of TPTC, DPBDTC, coronene and solvents, as specified in the text boxes. STM image contrast originates from molecular backbones and, in h,
coronene (see Methods for imaging parameters; all scale bars¼ 50 Å). i–k, Molecular ball-and-stick diagrams of DPBDTC (i), TPTC (j) and coronene (k).
l, Diagram of coronene adsorbed at the vertex of six TPTC molecules.
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“mosaics” for real



KCMs and many-body localisation in closed quantum systems
{Hickey-Genway-JPG, arXiv:1405.5780}  

Many-body localisation (MBL) transition:  
{Basko-Aleiner-Altshuler 2006, Huse+, many others}

‣ Cf. Anderson localisation but for interacting system 

‣ Singular change throughout spectrum 

‣ Eigenstates change from “thermal” (ETH {Deutsch, Sdrenicki}) to MBL  

‣ Observables do not relax in MBL phase 

‣ Often thought of as “glass transition” but modelled with disorder

Can KCMs (as models for classical glasses) say 
anything about quantum MBL?



KCMs and many-body localisation in closed quantum systems
{Hickey-Genway-JPG, arXiv:1405.5780}  

Recap: active-inactive “space-time” transitions in KCMs (eg. East/FA)
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KCMs and many-body localisation in closed quantum systems
{Hickey-Genway-JPG, arXiv:1405.5780}  

Signatures of MBL transition: (i) relaxation / non-relaxation of observables
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KCMs and many-body localisation in closed quantum systems
{Hickey-Genway-JPG, arXiv:1405.5780}  

Signatures of MBL transition: (ii) transitions throughout spectrum
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KCMs and many-body localisation in closed quantum systems
{Hickey-Genway-JPG, arXiv:1405.5780}  

Signatures of MBL transition: (iii) level spacing statistics
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KCMs and many-body localisation in closed quantum systems
{Hickey-Genway-JPG, arXiv:1405.5780}  

Signatures of MBL transition: (iv) localisation onto classical basis
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MBL transition without disorder
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SUMMARY

“Thermodynamics of trajectories” based on LD theory

Glass transition as a active/inactive transition in trajectory space

KCM glass models as models for MBL without disorder


