Dynamical large deviations and glass transitions

Juan P. Garrahan

(University of Nottingham)

D. Chandler, A. Keys (Berkeley) R. Jack (Bath) S. Genway, J. Hickey, R. Turner (Nottingham)

Dynamics is more than statics

Canonical example → **glass transition problem**

Statistical mechanics of **trajectories** rather than states/configurations

Dynamical **large-deviations**→ s-ensemble method → **glasses**

{Ruelle, Derrida, Lebowitz-Spohn, Gartner-Ellis, Donsker-Varadhan, ...}

Applications in quantum many-body systems?

Stylised facts about the glass transition

{Biroli-JPG, JCP Pespective: The Glass Transition 2013}

#3: Anomalous response if driven out-of-equilibrium

{Swallen+ 2007}

Perspectives on glass transition

Statics \Rightarrow Dynamics

eg. RFOT {Parisi+Wolynes+many others}

ideal models e.g. **p-spin spin glass**

Statics **does not** ⇒ Dynamics **metric** → **Dynamic facilitation**

ideal models KCMs {Anderson+Andersen+Jackle+many others}

#2: Dynamical heterogeneity

Cold/dense Lennard-Jones mixture {L. Hedges}

$$N_A = N_B = 10^4$$
 (1:1.4)
 $T = 1.1 < T_{onset}$

Motion begets motion -> dynamical facilitation

Effective excitations are localised {Keys-et-al, PRX 2011}

Interesting structure in trajectories not in configurations/states

Dynamic facilitation → kinetically constrained models

constraint = operator valued rate

Trivial statics but heterogeneous & hierarchical dynamics

East model
$$\tau_{\text{relax}} \approx \tau_0 \exp\left(\frac{A}{T^2} + \frac{B}{T}\right)$$
 {Sollich-Evans 1999}

Dynamic facilitation \rightarrow kinetically constrained models

free gas

East

East

{e.g. Ruelle, Lebowitz-Spohn, Gartner-Ellis, Donsker-Varadhan, Lecomte+, many others cf. **Full Counting Statisitcs**}

 $s \leftrightarrow K$ φ = "entropy" θ = "free-energy" t = "volume"

 $\mathbb{W} \rightarrow \mathbb{W}_{S} = \sum_{i} n_{i-1} \left[e^{-s} \left(\epsilon \sigma_{i}^{+} + \sigma_{i}^{-} \right) - \epsilon (1 - n_{i}) - n_{i} \right] \quad \theta(s) \text{ largest eigenvalue}$

 \mathbb{W}_S is "transfer matrix" of "partition sum" $Z_t(S)$

 $(t_{obs} \rightarrow \infty, N \rightarrow \infty)$

real dynamics $s = 0 \rightarrow \text{can we access } s_c \gtrsim 0$?

Accessible from normal dynamics via cumulants and Lee-Yang zeros

{Flindt-JPG, PRL 2013; Hickey-Flindt-JPG 2014}

Preparing glasses with s-ensemble

{Keys-JPG-Chandler, PNAS 2013 and arXiv:1401.7206}

non-equilibrium characteristic length in glassy state

Preparing glasses with s-ensemble

{Keys-JPG-Chandler, PNAS 2013 and arXiv:1401.7206}

non-equilibrium characteristic length in glassy state

Perspectives on glass transition

Statics \Rightarrow Dynamics

eg. RFOT {Parisi+Wolynes+many others}

ideal models e.g. **p-spin spin glass**

low overlap (liquid) → high overlap (glass) {Franz-Parisi}

numerical evidence {Berthier 2013, Parisi-Seoane 2013}

Statics **does not** ⇒ Dynamics

metric \rightarrow Dynamic facilitation

ideal models KCMs {Anderson+Andersen+Jackle+many others}

transition in space of **trajectories** active (liquid) → inactive (glass)

Overlap transitions and facilitation

{JPG, PRE 2014; Turner-Jack-JPG 2014}

Triangular plaquette model (TPM):

{Newman-Moore 1999, JPG-Newman 2000}

Thermodynamics:

1-1 mapping **spins-plaquettes**

free plaquettes \rightarrow **free localised** defects \Rightarrow disordered \forall T

Dynamics: (effectively) kinetically constrained

Relaxation is hierarchical $\rightarrow \tau = e^{1/T^2}$ cf. East facilitated model {Sollich-Evans 1999}

Statics trivial, dynamics complex & glassy, but singular only at T=0 (cf. dynamic facilitation)

Overlap transitions and facilitation

{JPG, PRE 2014; Turner-Jack-JPG 2014}

Two coupled TPMs (annealed):
$$E = -\frac{J}{2} \sum_{\Delta} \left(s_i^a s_j^a s_k^a + s_i^b s_j^b s_k^b \right) - \varepsilon \sum_i s_i^a s_i^b$$

Exact duality:

 $Z(K_J, K_{\varepsilon}) = (\sinh 2K_J \sinh K_{\varepsilon})^N Z(K_J^*, K_{\varepsilon}^*) \qquad (2K_J = \beta J, K_{\varepsilon} = \beta \varepsilon)$

$$e^{-K_{\varepsilon}^{*}} = \tanh K_{J}, \quad \tanh K_{J}^{*} = e^{-K_{\varepsilon}}$$

Overlap transitions and facilitation

{JPG, PRE 2014; Turner-Jack-JPG 2014}

Two coupled TPMs (annealed):
$$E = -\frac{J}{2} \sum_{\Delta} \left(s_i^a s_j^a s_k^a + s_i^b s_j^b s_k^b \right) - \varepsilon \sum_i s_i^a s_i^b$$

Self-dual:
$$\left(\sinh\frac{J}{T}\right)\left(\sinh\frac{\varepsilon}{T}\right) = 1$$

Cf. TMP in field {Sasa 2010} & generalised Baxter-Wu {Nienhuis 2010}

1st order static transition at finite coupling ending at CP (*Ising*) {Turner-Jack-JPG 2014}

transition vanishes at $\epsilon \rightarrow 0$

Overlap transitions and facilitation {JPG, PRE 2014; Turner-Jack-JPG 2014}

Classify trajectories of TPM according to **dynamical activity** → **s-ensemble**

Similar features in tilings / dimer coverings / "spin-ice"-like systems

Eg. molecular random tilings

{Beton+Champness+Blunt+Whitelam+Stannard+...+JPG}

"mosaics" for real

dynamics **facilitated** by localised free **defects**

KCMs and many-body localisation in closed quantum systems {Hickey-Genway-JPG, arXiv:1405.5780}

Many-body localisation (MBL) transition:

{Basko-Aleiner-Altshuler 2006, Huse+, many others}

- Cf. Anderson localisation but for interacting system
- Singular change throughout spectrum
- Eigenstates change from "thermal" (ETH {Deutsch, Sdrenicki}) to MBL
- Observables do not relax in MBL phase
- Often thought of as "glass transition" but modelled with disorder

Can KCMs (as models for classical glasses) say anything about quantum MBL?

{Hickey-Genway-JPG, arXiv:1405.5780}

<u>Recap: active-inactive "space-time" transitions in KCMs (eg. East/FA)</u></u>

$$\mathbb{W} \rightarrow \mathbb{W}_{s} = \sum_{i} n_{i-1} \left[e^{-s} \left(\epsilon \sigma_{i}^{+} + \sigma_{i}^{-} \right) - \epsilon (1 - n_{i}) - n_{i} \right] + (i \leftrightarrow i - 1)$$

Largest e/value = cumulant G.F. for activity → 1st order phase transition

Can transform into Hermitian operator through equilibrium distribution

$$\mathbb{H}_{s} \equiv -\mathbb{P}^{-1}\mathbb{W}_{s}\mathbb{P} = -\sum_{i} n_{i-1} \left[e^{-s}\sqrt{\epsilon}\sigma_{i}^{x} - \epsilon(1-n_{i}) - n_{i} \right] + (i \leftrightarrow i-1)$$

Consider as Hamiltonian and corresponding quantum unitary dynamics $|\psi_t\rangle = e^{-\iota \tau H_s} |\psi_0\rangle$

{Hickey-Genway-JPG, arXiv:1405.5780}

$$\mathbb{H}_{s} = -\sum_{i} n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_{i}^{x} - \epsilon (1 - n_{i}) - n_{i} \right] + (i \leftrightarrow i - 1) \quad |\psi_{t}\rangle = e^{-it\mathbb{H}_{s}} |\psi_{0}\rangle$$

Signatures of MBL transition: (i) relaxation / non-relaxation of observables

{Hickey-Genway-JPG, arXiv:1405.5780}

$$\mathbb{H}_{s} = -\sum_{i} n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_{i}^{x} - \epsilon (1 - n_{i}) - n_{i} \right] + (i \leftrightarrow i - 1) \quad |\psi_{t}\rangle = e^{-it\mathbb{H}_{s}} |\psi_{0}\rangle$$

Signatures of MBL transition: (ii) transitions throughout spectrum

{Hickey-Genway-JPG, arXiv:1405.5780}

$$\mathbb{H}_{s} = -\sum_{i} n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_{i}^{x} - \epsilon (1 - n_{i}) - n_{i} \right] + (i \leftrightarrow i - 1) \quad |\psi_{t}\rangle = e^{-it\mathbb{H}_{s}} |\psi_{0}\rangle$$

Signatures of MBL transition: (iii) level spacing statistics

{Hickey-Genway-JPG, arXiv:1405.5780}

$$\mathbb{H}_{s} = -\sum_{i} n_{i-1} \left[e^{-s} \sqrt{\epsilon} \sigma_{i}^{x} - \epsilon (1 - n_{i}) - n_{i} \right] + (i \leftrightarrow i - 1) \quad |\psi_{t}\rangle = e^{-it\mathbb{H}_{s}} |\psi_{0}\rangle$$

Signatures of MBL transition: (iv) localisation onto classical basis

 \Rightarrow active-inactive transition \rightarrow 1st order MBL transition in whole spectrum

MBL transition without disorder

SUMMARY

"Thermodynamics of trajectories" based on LD theory

Glass transition as a active/inactive transition in trajectory space

KCM glass models as models for MBL without disorder