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Firstly we will give a short introduction on

some aspects of the Legendre structure in

statistical mechanics.

We outline the analogy and the contrast be-

tween ordered and disordered systems.

In particular we will show the route to the es-

tablishment of the functional order parame-

ters for the physical description of disordered

systems. A complete scheme of dual Legen-

dre variational principles is involved.



These considerations apply, in particular, to
the Sherrington-Kirkpatrick model for spin
glasses and its p-spin generalizations, to the
Hopfield model for neural networks, to gen-
eralised multi-species models.

Our itinerary includes the following seven steps.

- The general Legendre structure for statis-
tical mechanics systems: states and energy
functionals, entropy and free energy

- Dual variational principles for ordered mean
field systems



- The entropy principle for disordered sys-
tems. The simple case of the Derrida Ran-
dom Energy Model (REM) and its general-
ization (GREM)

- two big surprises: in the ground-breaking
treatment, originally given by Giorgio Parisi
for the mean field spin glass model, a func-
tional order parameter is involved, moreover
the optimization reverses the sign (an inf is
involved instead of the expected sup)

- the reversed variational principle in the sim-
ple case of the REM (and the GREM)



- the reversed variational principle in the p-

spin models and their generalizations, the

functional order parameter, the route to the

general Legendre structure, dual functional

parameters, dual functionals

- outlook and perspectives



The general Legendre structure for sta-
tistical mechanics systems

This is at the basis of everything. It encodes
the essence of the second principle of ther-
modynamics.

Let us describe the thermodynamic system
in the frame of the ensemble theory.

In an appropriate coarse graining the micro-
scopic configurations of the systems are de-
scribed by a large number of cells
(1,2, . . . ,K) 3 i.



A thermodynamic state (not necessarily at

equilibrium) is described by a probability dis-

tribution on cells

V 3 p : (1,2, . . . ,K) 3 i→ pi,0 ≤ pi ≤ 1,
∑
i

pi = 1.

We call V the simplex of all states.

The entropy of the state p is defined as

p→ S(p) = −
∑
i

pi log pi,

and turns out to be concave on V.



In fact, let the state p be the mixture of two
states p(1) and p(2), in the sense that

pi = αp
(1)
i + (1− α)p(2)

i ,

for all i, with the mixing parameter 0 ≤ α ≤
1.

Then

S(p) ≥ αS(p(1)) + (1− α)S(p(2)).

Let us now attribute an energy to each cell

E : (1,2, . . . ,K) 3 i→ Ei,



and define the partition function

Z(E) =
∑
i

e−Ei,

where the temperature has been incorpo-
rated into E.

The free energy is F (E) = − logZ(E), while
the internal energy in a given state p is

U(E, p) =
∑
i

Eipi.

Obviously logZ(E) is convex in E, while U(E, p)
is linear in E and affine in p.



The basic Legendre structure (the second

principle of thermodymics) is based on the

recognition that the state p and the energy

E can be assumed as dual variables, while the

entropy S(p) and logZ(E) are dual function-

als, involved in the dual Legendre variational

principles

logZ(E) = sup
p

(S(p)−
∑
i

Eipi),

S(p) = inf
E

(logZ(E) +
∑
i

Eipi).



logZ is the Legendre transform of S, and
viceversa.

Notice that writing F (E) = − logZ(E) the
variational principle for the free energy in-
volves a min over all states, as it is well
known from elementary thermodynamics.

At equilibrium, where the optimal values are
enforced, the state has the Boltzmann-Gibbs
expression in terms of E

pi = −
∂

∂Ei
logZ(E) = e−Ei/Z,



while the Ei are determined up to a constant.

This is due to the constraint
∑
i pi = 1.

Notice that the term
∑
iEipi can be also in-

terpreted as a Lagrangian multiplier for the

entropy principle. As a matter of fact the

optimal state realizes the maximum for the

entropy under the constraint of fixed internal

energy, in a pure Boltzmann spirit.

This general Legendre structure assumes var-

ious shapes in different models in the infinite

volume limit.



The case of ordered mean field models, and

of REM and GREM, will be considered in the

following.

Ordered mean field models

Now we take Ising configurations on N sites

σ : (1,2, . . . , N) 3 i→ σi = ±1.

Each σ denotes a cell of the system.



The interaction is specified by a function u :

[−1,1] 3 M → u(M), where u is assumed

bounded and Lipshitz, i.e.

u(M) ≤ ū, |u(M)− u(M ′)| ≤ C|M −M ′|,

for given constants ū and C.

Now the partition function is

ZN(u) =
∑
σ
eNu(m),

where m =
∑
i σi/N .



Notice the high degeneracy of the energy

functional. Many cells σ have the same en-

ergy if they have the same value of the mag-

netization m.

The term N in the Boltzmannfaktor has been

introduced in order to have good thermody-

namic behavior in the infinite volume limit.

In fact, now logZN(u) behaves proportional

to N for large N , and we will be interested in

the normalized value N−1 logZN(u). Notice

that logZN(u) is convex in u.



For finite N the Legendre structure is a par-

ticular case of that introduced before. But

in the infinite volume limit there is a strong

degeneracy, due to the mean field character

of the interaction.

First of all let me introduce the entropy for a

single spin configuration with magnetization

M

s(M) = −
1 +M

2
log

1 +M

2
−

1−M
2

log
1−M

2
.

Notice that s is symmetric under M → −M ,

and concave in M .



We can easily establish the following. Let
u be bounded and Lipshitz, then the infinite
volume limit of N−1 logZN(u) does exist and
has the following value

A(u) = lim
N→∞

1

N
logZN(u) = sup

M

(
s(M)+u(M)

)
.

In general many different values for M realize
the sup. There are multiple phases. In each
phase the state is factorized as a product
state on the corresponding value of M .

Due to the high degeneracy in the infinite
volume limit, now we have that M must be



considered as the dual variable to the inter-
action u. Moreover the convex function A(u)
of u and the concave function s(M) of M

participate to the dual variational principles

A(u) = sup
M

(
s(M) + u(M)

)
,

s(M) = inf
u

(
A(u)− u(M)

)
.

We see that duality is fully preserved, while
the Legendre structure is defaced by degen-
eracy. In fact the Lagrange multiplier as-
sumes the form u(M) (the energy read at the



value M) which has the right linear structure

in u, but not in M .

Recall the in the finite volume case the La-

grange multiplier has the form
∑
iEipi, linear

in the energy, and affine over the states.

Here the states are product states, for which

affinity does not hold.

The entropic principle in the Random

Energy Model



As it is very well known, this is a disordered

model characterized by the random partition

function

ZN(β, J) =
∑
σ
e
β
√
N
2 Jσ,

where β is the inverse temperature, and the

J’s are a family of centered normalized in-

dependent Gaussian random variables, with

averages EJσ = 0, E(JσJσ′) = δσσ′.

Obviously, logZN(β, J) is convex in β for

each sample of the J’s.



The infinite volume limit can be controlled

by standard arguments. Therefore, we have

superadditivity for the quenched averages

(N = N1 +N2)

E logZN(β, J) ≥ E logZN1
(β, J)+E logZN2

(β, J),

which implies convergence for the quenched

densities

lim
N→∞

1

N
E logZN(β, J) = sup

N

1

N
E logZN(β, J) = A(β).

Moreover, by a concentration of measure ar-

gument and Borel-Cantelli lemma, we have



also the convergence of the densities

lim
N→∞

1

N
logZN(β, J) = A(β),

with probability one.

The entropy can be even explicitely calcu-
lated in the infinite volume limit, as Derrida
has shown in his original paper.

For a parameter ε (with the meaning of mi-
nus the internal energy density), let us define
the random microcanonical entropy density

1

N
log

∑
σ
χ(Jσ ≥ ε

√
2N),



where χ(A) is the truth function for the event

A appearing.

We must resist the temptation of taking the

quenched average, which is −∞ because the

χ’s turn out to be all zero on a set of finite

measure.

On the other hand, the annealed average is

well defined. An easy calculation shows

lim
N→∞

1

N
logE

∑
σ
χ(Jσ ≥ ε

√
2N) = log 2− ε2,



for any ε ≥ 0, while the limit equals log 2 for
negative values of ε.

With the help of the Borel-Cantelli lemma,
we can easily establish the convergence of
the random entropy density with probability
one in the form

lim
N→∞

1

N
logE

∑
σ
χ(Jσ ≥ ε

√
2N) = s(ε),

where: s(ε) = log 2 for ε ≤ 0,
s(ε) = log 2− ε2 for 0 ≤ ε ≤

√
log 2

(as in the annealed case),
s(ε) = −∞, for ε >

√
log 2.



Notice that s(ε) is decreasing and concave in

the parameter ε.

The usual chain of arguments connecting the

microcanonical ensemble with the canonical

one, leads us to the dual variational principles

A(β) = sup
ε

(
s(ε) + βε

)
,

where the sup is reached in the interval 0 ≤
ε ≤
√

log 2, and

s(ε) = inf
β

(
A(β)− βε

)
.



Since s(ε) is completely known, the first vari-
ational principle gives us the explicit form of
A(β) as

A(β) = log 2 +
β2

4
,

for 0 ≤ β ≤ βc = 2
√

log 2, and

A(β) = β
√

log 2,

for β ≥ βc.

In conclusion we see that there is a full Leg-
endre structure, where β and ε are conju-
gated parameters, while the convex A(β) and



the concave s(ε) are conjugated functions re-

lated by the dual variational principles.

By the way, the recognition of the Legendre

structure is useful, because we derive the free

energy from the known entropy.

These considerations can be easily extended

to the Generalized Random Energy Model.



Functional order parameter and the in-

verted variational principle

It is very well known that Giorgio Parisi in-

troduced a functional order parameter, con-

nected to the overlap distribution, for the

description of disordered mean field models,

as for example the Sherrington-Kirkpatrick

model for a spin glass.

Moreover, in this scheme, the free energy

is given by a sup on the functional order

parameter for an appropriately chosen trial



functional. The Parisi variational principle

for the free energy appears in a form inverted

with respect to the usual entropic principle.

It is our purpose to interpret these features

in the frame of a generalized Legendre struc-

ture.

First of all we give a simple explanation of

the inversion, by exploiting the simple case of

the REM, where everything can be explicitly

calculated.



It turns out that the inversion is due to the

fact that the free energy, with the usual mi-

nus sign, logZ, convex in the interaction, is

also concave in the covariance of the ran-

dom interaction.

The Parisi functional order parameter turns

out to be dual, in the Legendre sense, to the

covariance of the random interaction. The

two variational principles, for the dual func-

tionals, one convex in the functional order

parameter, the other concave in the covari-

ance, can be also established in general.



The inverted principle in the REM

First of all let us establish a general fact con-

cerning the (-)free energy density in the in-

finite volume limit

A(β) = lim
N→∞

1

N
log

∑
σ
e
β
√
N
2 Jσ.

The covariance of the interaction is β2N
2 δσσ′.

Therefore it is linear in β2. For our purpose,

it is convenient to make the change of vari-

ables β2 = t, β =
√
t, and interpret A(β) as

a function of t, by introducing Ã(t) = A(β).



Even without knowing the explicit form of

A(β), it is easy to establish that Ã(t) must be

concave in t, through a simple interpolation

argument.

Now we state the following a priori bound on

Ã(t):

Ã(t) ≤
log 2

m
+

1

4
tm,

holding for any 0 < m ≤ 1.

The proof is simple. For any 0 < m ≤ 1, we

have for the quenched free energy per site



the inequality

N−1E log
∑
σ

exp(
√
t

√
N

2
Jσ) ≤

m−1N−1E log
∑
σ

exp(m
√
t

√
N

2
Jσ),

which holds for any spin system for purely

thermodynamic reasons (positivity of the en-

tropy).

Now we apply the annealed inequality, com-

ing from convexity, E log .. ≤ logE... The E



of the Boltzmannfaktor is immediately cal-

culated.

E exp(
√
t

√
N

2
Jσ) = exp(

1

4
tN).

By taking into account that
∑
σ = 2N , we

end with the inequality, uniform in N ,

N−1E log
∑
σ

exp(
√
t

√
N

2
Jσ) ≤

log 2

m
+

1

4
tm.

By taking the limit N →∞ we find the stated

inequality for Ã(t).



Of course, the optimal value for m is found

if we take the inf (inverted principle). Now

inf
m

(
log 2

m
+

1

4
tm),

is precisely in the form of a good Lagrange

variational principle. In fact, log 2
m is convex

in m, and the second term is linear in both t

and m separately.

It is easy to find the optimal m. It turns

out that m = 1 for 0 ≤ t ≤ tc = 4 log 2,

while m =
√
tc/t for t ≥ tc. Moreover, by an



explicit calculation the optimal value of the

trial function turns out to be exactly Ã(t).

Therefore, we see that the concavity of Ã(t)

allows us to introduce the following clean

Legendre structure. t and m are conjugated

parameters, t ≥ 0, 0 < m ≤ 1. The con-

cave Ã(t) and the convex ψ(m) = log 2/m

are the conjugated functions involved in the

dual Legendre variational principles

Ã(t) = inf
m

(ψ(m) +
1

4
tm),



ψ(m) = sup
t

(Ã(t)−
1

4
tm).

At the optimal value for m(t) we have

Ã(t) = ψ(m(t)) +
1

4
tm(t).

If we take the t derivative, only the term
where t appears explicitly must be taken into
account

d

dt
Ã(t) =

1

4
m(t).

It is easy to give the physical interpretation
of the optimal m(t). In fact, by a well known



direct calculation we have
d

dt
Ã(t) =

1

4
(1− < δ

σ(1)σ(2) >t),

where < >t denotes the quenched average on
the replicated state with variables σ(1), σ(2).
By a comparison with the previous one we
get

m(t) = 1− < δ
σ(1)σ(2) >t .

Since the replica “overlap” δ can take only
the values 0,1, the meaning of the order pa-
rameter m(t) is obvious. It is the probability
that the two replicas are different, i.e. δ = 0.



Therefore, in this Legendre structure, with
the inverted variational principle, the dual
parameter m is connected with the overlap
distribution at the optimal value.

As a matter of fact, we can introduce the
Legendre structure according to the follow-
ing simple canonical procedure. Start from
Ã(t) and its derivative

d

dt
Ã(t) =

1

4
(1− < δ

σ(1)σ(2) >t) =
1

4
m(t),

where the last expression is only a definition
of m(t).



However, from the very expression of the

derivative it is immediately recognized that

we must introduce the parameter m dual to

t, and that the Lagrange term should be of

the form
1

4
tm.

The dual function ψ(m), convex in m, is ob-

tained through the variational principle

ψ(m) = sup
t

(Ã(t)−
1

4
tm).

The inverse Legendre transfom A(t), con-



cave in t, is defined as

A(t) = inf
m

(ψ(m) +
1

4
tm).

Since we know that Ã(t) is concave in t, we
conclude with the identification A(t) = Ã(t),
and the Legendre structure is fully estab-
lished. The bound

Ã(t) ≤
log 2

m
+

1

4
tm

allows immediately to recognize the explicit
expression of ψ(m) = log 2/m.

It is also possible to connect the entropy s



and the function ψ in the frame of a Legen-
dre scheme, by an appropriate change of the
conjugated variables.

We will see in the following how this gener-
alizes to more general models.

The Legendre structure in mean field
spin glass models

We consider models where the (-) free en-
ergy per site is defined as

AN(g) =
1

N
E log

∑
σ
e

√
N
2K(σ)

,



where σ → K(σ) is a family of centered Gaus-

sian random variables with variances given by

E
(
K(σ)K(σ′)

)
= g

(
q(σ, σ′)

)
.

Here q is the overlap between two configu-

rations

q(σ, σ′) =
1

N

∑
i

σiσ
′
i .

Of course g must be positive definite as a

function of the two configurations. This can

be easily obtained by taking K as a sum over

p-spin glass interactions (p ≥ 2). For the



sake of notational simplification we neglect

any external field.

There is no problem with the infinite vol-

ume limit of the (-) free energy per site

limN→∞AN(g) = A(g).

To proceed toward the Legendre structure

we must recognize the order parameter and

the associated Lagrange multiplier.

In order to evaluate how A(g) changes with

g, let us rescale K to the form
√
tK. Then a



standard calculation gives

d

dt
AN(g) =

1

4
<
(
g(1)− g(q(σ, σ′)

)
>,

where < > as usual is the quenched average

on the two replica Boltzmann-Gibbs state.

According to a very general principle (Tala-

grand positivity arising from the Ghirlanda-

Guerra identities), to the effect of the free

energy evaluation, only the region where the

overlaps are non-negative give a contribu-

tion. Therefore, by calling ρ(q) the positive



overlap distribution, we have

1

4
<
(
g(1)−g(q(σ, σ′))

)
>=

1

4

∫ 1

0

(
g(1)−g(q)

)
ρ(q) dq

=
1

4

∫ 1

0
g′(q)x(q) dq,

where we have written
(
g(1)−g(q)

)
=
∫ 1
q g
′(q′) dq′,

(g′ is the derivative of g(q)), have defined

x(q) =
∫ q
0 ρ(q′) dq′, and have exchanged the

integrations on q and q′.

From the obtained expression, we can im-

mediately recognize the two conjugated vari-



ables which will be involved in the dual vari-
ational principles. The first is g′ : q → g′(q),
connected with the interaction, the second
is a general x : q → x(q), which only at the
optimal value is connected with the overlap
distribution.

Of course g′ is sufficient to characterize the
interaction, because in any case we can take
g(0) = 0, without loss of generality. In con-
clusion, we see that the Lagrange multiplier
must have the form

1

4

∫ 1

0
g′(q)x(q) dq,



for a generic x.

The Legendre transform of A(g) is defined

as

ψ(x) = sup
g

(
A(g)−

1

4

∫ 1

0
g′(q)x(q) dq

)
,

and turns out to be automatically convex in

x.

The inverse Legendre transform is

A(g) = inf
x

(
ψ(x) +

1

4

∫ 1

0
g′(q)x(q) dq

)
.



Of course, A(g) turns out be be concave in g,

and the full Legendre structure is established

only if A(g) is also concave in g, in which case

A(g) = A(g), and effectively

A(g) = inf
x

(
ψ(x) +

1

4

∫ 1

0
g′(q)x(q) dq

)
.

Therefore, the concavity of A(g) in g plays

an important role here.

Up to this point we have seen that the whole

structure is a simple generalization of that

found for the Random Energy Model. In this



simple case however, it was possible to prove

directly the a priori concavity, and an upper

bound in the Legendre form was easily found.

The present scheme reproduces that found

in the REM, by taking g′(q) = δ(1− q).

Let us see what can be said about the upper

bound for the general model.

First of all let us recall that by using a simple

interpolation argument (Guerra CMP2003)



it was possible to obtain the following uni-
form upper bound

AN(g) ≤ φ(g, x),

where the trial functional has the form

φ(g, x) = log 2+f(0,0;x, g)−
1

4

∫ 1

0
qg′′(q)x(q) dq.

Here g′′ is the second derivative of the co-
variance g with respect to q, and f(0,0;x, g)
is the value at q = 0, y = 0 of the function
[0,1]×R 3 (q, y)→ f(q, y;x, g) defined as so-
lution of the differential equation

∂qf +
g′′

4

(
∂2
yy + x(q)(∂yf)2

)
= 0,



with final condition

f(1, y;x, g) = log cosh y.

The trial functional, which comes for free

from the interpolation method, is identical

to that found by Parisi in the frame of the

replica trick, and then subject to optimiza-

tion in the form of infx, perfectly consistent

with the nature of the upper bound. Of

course the bound holds also for the infinite

volume limit

A(g) ≤ φ(g, x).



We call

AP (g) = inf
x
φ(g, x).

Then Talagrand (Annals of Mathematics 2006)
was able to establish that A(g) = AP (g).

The latest result is due to Auffinger and
Chen who have established (arXiv 2014) that
f(0,0;x, g) as a functional of x is stricly con-
vex. Since the other term in φ(g, x) is affine
in x, we immediately have that the functional
order parameter x coming from Parisi opti-
mization is uniquely defined. A truly remark-
able result!



In particular we notice that a phase transi-

tion is NOT characterized by multiple values

of the order parameter, as in the ordered

models.

Of course, the form of the trial functional

φ(g, x) is not consistent with a Legendre form.

The term

−
1

4

∫ 1

0
qg′′(q)x(q) dq

has the right properties of being affine in x

and linear in g, but it is not in the expected



form

+
1

4

∫ 1

0
g′(q)x(q) dq

)
.

Moreover, f(0,0;x, g) depends heavily on both
x and g. Therefore the variational principle
does not give A(g) as the Legendre trans-
form of some ψ(x), in the expected form

A(g) = inf
x

(
ψ(x) +

1

4

∫ 1

0
g′(q)x(q) dq

)
.

However, there is a way out. Let us start
from the bound

A(g) ≤ φ(g, x),



written in the identical form

A(g) ≤ φ(g, x)−
1

4

∫ 1

0
g′(q)x(q) dq+

1

4

∫ 1

0
g′(q)x(q) dq,

where we have subtracted and added the ex-
pected Lagrange multiplier. Now let us de-
fine

ψ(x) = sup
g

(
φ(g, x)−

1

4

∫ 1

0
g′(q)x(q) dq

)
.

Then the bound becomes

A(g) ≤ ψ(x) +
1

4

∫ 1

0
g′(q)x(q) dq,

which is in the Legendre form. It can be
easily seen that the optimization gives the



same value as in the original bound. There-

fore, the Legendre structure can be enforced

also in the general case.

outlook and perspectives

Let us start from a simple observation.

If we consider the interpolating bound

AN(g) ≤ φ(g, x),

as explained before, and let apply it to a se-

quence of p-spin models with p → ∞. It is



very well known that the REM will be ob-

tained in the limit. Consider an order pa-

rameter of the constant shape x(q) = m.

Through a long cumbersome calculation it

can be proven that if we take g(q) = tqp and

a constant order parameterx(q) = m, then

we have

lim
p→∞φ(g, x) = log 2 +

1

4
mt,

which is the bound for the REM easily ob-

tained through simple thermodynamic argu-

ments, as shown before.



Therefore, the broken replica symmetry bounds
give also the simple Legendre bound in REM
through a cumbersome limiting procedure.

Research is under way on how to modify the
broken replica symmetry bound procedure in
order to get bounds directly in the Legendre
form.

Another perspective for future developments
is to establish the Legendre structure in the
case of multi-species spin glass models, as
the bipartite ones. This would have inter-
esting applications for neural networks.


