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Free Surfaces

!
• experiments see thin mobile 

layer of about 5-10 particle 
diameters	



• no structural quantity has 
been identified with 
gradients on this length scale

for film thicknesses between 35 nm and 71 nm shift to
higher values. The results for this film thickness range are
in excellent agreement with previous supported film mea-
surements and are consistent with the bulk Tg (see solid line
in Fig. 3 and [5–7]). The control measurement at h ¼
114 nm indicates that glass transition temperatures prior
to and after transfer are identical within experimental error
and are consistent with the bulk value of Tg.

There has been much discussion about nonequilibrium
metastable states in thin films and the possibility that these
might account for the reductions in the glass transition. For
example, it has been found that the sample preparation can
affect relaxation mechanisms and instabilities inducing
flow [22,23]. Clearly if the large length scale molecular
motion associated with flow is affected, then the glass
transition may also be. More directly related to the glass
transition studies presented here, it has been suggested that
the Tg reductions observed are simply a result of artifacts
induced by an inadequate duration of, or inappropriate
atmosphere during, annealing [14,15]. Unfortunately those
claims have not been substantiated with accompanying
measurements showing that it is possible to observe reduc-
tions in the glass transition with the sample treatments used
by others.

The claim that the sample preparation artifacts are the
cause of reductions in the glass transition for films of PS
has been disputed by researchers [12,17]. Much contro-
versy still remains as does the fundamental question ‘‘Are
the reductions in the glass transition dominated by an
intrinsic physical effect or an artifact of sample prepara-
tion?’’ Here we have provided a simple experiment to

probe whether or not we can manipulate the sample inde-
pendent of extra annealing and cause large changes in the
measured Tg. We find that the simple transfer of a free-

standing film to a substrate, thereby reducing the free
surface-to-volume ratio by a factor of two, can cause a
50 "C shift in Tg. Since this change in Tg is the same as the

reduction in thin supported films (i.e., transferring to a
solid surface restored bulk Tg for these film thicknesses

rather than giving rise to a sample that still had a reduced
Tg value), these experiments unambiguously show that free

interfaces are the dominant cause of the Tg reductions

observed here. The experiments presented in this Letter,
combined with the previous results of Ref. [10] represent a
complete quantification of the effect of zero, one, or two
free surfaces on measured Tg values and rule out a domi-

nant contribution due to sample preparation.
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FIG. 3 (color online). Glass transition temperature Tg as a
function of the film thickness h. Dashed lines represent the
molecular weight dependence of Tg for the high-Mw regime as

reported in [6] [see Eqs. (3) and (4) and associated parameters
given in [6]]. The solid horizontal line corresponds to the bulk
value of the glass transition as measured previously (for ex-
ample, see [5–7]).
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sampling radius, which we choose to be the interaction range
2.5aSL . The local strain is then determined by minimizing
the mean-square difference between the actual displacements
of the neighboring molecules relative to the central one and
the relative displacements that they would have if they were
in a region of uniform strain ´ i j . That is, we define
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where the indices i and j denote spatial coordinates and the
index n runs over the molecules within the interaction range
of the reference molecule, n50 being the reference mol-
ecule. rn

i (t) is the ith component of the position of the nth
molecule at time t . We then find the ´ i j that minimizes D2

by calculating
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The minimum value of D2(t ,Dt) is then the local deviation
from affine deformation during the time interval

@

t2Dt , t
#

.
We shall refer to this quantity as Dmin

2 .
We have found that Dmin

2 is an excellent diagnostic for
identifying local irreversible shear transformations. Figure 7
contains four different intensity plots of Dmin

2 for a particular
system as it is undergoing plastic deformation. The stress has
been ramped up to ussu50.12 in the time interval @0,12# and
then held constant in an experiment analogous to that shown
in Fig. 2. Figure 7~a! shows Dmin

2 for t510, Dt510. It dem-
onstrates that the nonaffine deformations occur as isolated
small events. In Fig. 7~b! we observe the same simulation,
but for t530, Dt530; that is, we are looking at a later time,
but again we consider rearrangements relative to the inital
configuration. Now it appears that the regions of rearrange-
ment have a larger scale structure. The pattern seen here
looks like an incipient shear band. However, in Fig. 7~c!,
where t530, Dt51, we again consider this later time but
look only at rearrangements that have occurred in the pre-
ceding short time interval. The events shown in this figure
are small, demonstrating that the pattern shown in Fig. 7~b!
is, in fact, an aggregation of many local events. Finally, in
Fig. 7~d!, we show an experiment similar in all respects to
Fig. 7~a! except that the sign of the stress has been reversed.
As in Fig. 7~a!, t510, Dt510, and again we observe small

isolated events. However, these events occur in different lo-
cations, implying a direction dependence of the local trans-
formation mechanism.
Next we look at these processes in yet more detail. Figure

8 is a closeup of the molecular configurations in the lower
left-hand part of the largest dark cluster seen in Fig. 7~c!,
shown just before and just after a shear transformation. Dur-
ing this event, the cluster of one large and three small mol-
ecules has compressed along the top-left to bottom-right axis
and extended along the bottom-left to top-right axis. This
deformation is consistent with the orientation of the applied
shear, which is in the direction shown by the arrows on the

FIG. 7. Intensity plots of Dmin
2 , the deviation from affine defor-

mation, for various intervals during two simulations. ~a!–~c! show
deformation during one simulation in which the stress has been
ramped up quickly to a value less than the yield stress and then held
constant. ~a! shows deformations over the first 10 time units and ~b!
over the first 30 time units. ~c! shows the same state as in ~b!, but
with Dmin

2 computed only for deformations that took place during
the preceding 1 time unit. In ~d!, the initial system and the time
interval ~10 units! are the same as in ~a!, but the stress has been
applied in the opposite direction. The gray scale in these figures has
been selected so that the darkest spots identify molecules for which
uDminu'0.5aSL .

FIG. 8. Closeup picture of a shear transformation zone before
and after undergoing transformation. Molecules after transforma-
tion are shaded according to their values of Dmin

2 using the same
gray scale as in Fig. 7. The direction of the externally applied shear
stress is shown by the arrows. The ovals are included solely as
guides for the eye.
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2D binary 
Lennard-Jones

• Aim: identify population of “flow 
defects,” analogous to dislocations 
in crystals, where rearrangements 
are likely to occur	


!

• Standard structural quantities fail 
to predict these

sheared glass

supercooled 
liquid

Keys, et al 
PRX (2011)



Starting Point: Vibrations in Sphere Packings
!
!
!
!
!
!
!
!
!
!
!
!

• New class of excitations originates from soft modes at Point J   	


	

 	

 M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)	



• Related to diverging length scales  ℓL≃cL/ω*

 ω * /ω0 ∼ Δφ
1/2

� 
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L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (‘05)	
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Size of smallest macroscopic rigid cluster for system with a free 
boundary of any shape or size	


!
!
!
!
!
!
!
!
!
!
!

• ℓL diverges at Point J as expected from scaling argument

Stability to Boundary Cutting: ℓL 

Goodrich, Ellenbroek, Liu Soft Matter (2013)
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!
!
!
!
!
!
!
!
!
!
!

• There are zero frequency modes localized to the surface to within 
particle diameter	



• There are also extra low frequency modes in excess of surface plane 
wave modes (Rayleigh waves, etc)

Free Surfaces

Goodrich, Liu, Nagel, Soft Matter (2013)
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Low-Frequency Surface Modes are Localized to Surface

!
!
!
!
!
!
!
!
!

• Measure polarization vector magnitude vs distance from surface



Penetration Depth of Surface Localized Modes

• Three regimes for decay of 
polarization vector 
magnitude	



• Regime I consistent with 
exponential decay	



• Regime III independent of 
pressure	



• Extract crossover lengths 
separating Regimes I & II and 
II&III
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Penetration Depth of Surface Localized Modes

• Regime I/II crossover scales as 
ℓT which diverges at jamming 
transition as p-1/4	



• Regime II/III crossover scales as 
ℓL which diverges at jamming 
transition as p-1/2	



• Consistent with response to 
local bond perturbations (Lerner, 
During, Wyart, Soft Matter (2014))
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Lp

ℓT

ℓL

Low frequency surface modes penetrate into system much further than 
particle diameter. Can this explain glassy thin films?



Problem:

!
!
!
!
!
!
!
!
!

• In polymer thin films (or Lennard-Jones glasses), the surface 
localized modes lie in the same frequency range as the bulk 
modes so no clean separation of surface from bulk modes	



• But low frequency modes still show high polarization near surface

thin film

bulk

bulk system
cut system

L> ℓ*
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• In polymer thin films (or Lennard-Jones glasses), the surface 
localized modes lie in the same frequency range as the bulk 
modes so no clean separation of surface from bulk modes	



• But low frequency modes still show high polarization near surface

Jain and de Pablo, J Chem Phys (2004)

thin film

bulk



Focus on low-participation-ratio modes near ω* 

• Cut system has more low participation-ratio modes than uncut 
system	



• Low participation ratio modes most prevalent near ω*	


• So look at these modes
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Polarization Profile in Lennard-Jones Glass

• Regime III has same form as for 
harmonically-repulsive spheres	



• Regime I/II crossover consistent 
with ℓT≃cT/ω*	



• Regime II/III crossover 
consistent with ℓL≃cL/ω*0.5 1 10

0.15

0.25

x/�

��ei�2�

• Polarization vector magnitude decays on scale of 5-10 
particle diameters	



• Consistent with observed thickness of mobile layer in 
thin glassy films	



• High amplitude regions of low-frequency quasi localized 
modes are structural signature of mobile surface layer

D. Sussman, C. P. Goodrich, A. J. Liu, S. R. Nagel



Localized Rearrangements in Glasses and Supercooled Liquids
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sampling radius, which we choose to be the interaction range
2.5aSL . The local strain is then determined by minimizing
the mean-square difference between the actual displacements
of the neighboring molecules relative to the central one and
the relative displacements that they would have if they were
in a region of uniform strain ´ i j . That is, we define
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where the indices i and j denote spatial coordinates and the
index n runs over the molecules within the interaction range
of the reference molecule, n50 being the reference mol-
ecule. rn

i (t) is the ith component of the position of the nth
molecule at time t . We then find the ´ i j that minimizes D2

by calculating
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The minimum value of D2(t ,Dt) is then the local deviation
from affine deformation during the time interval

@

t2Dt , t
#

.
We shall refer to this quantity as Dmin

2 .
We have found that Dmin

2 is an excellent diagnostic for
identifying local irreversible shear transformations. Figure 7
contains four different intensity plots of Dmin

2 for a particular
system as it is undergoing plastic deformation. The stress has
been ramped up to ussu50.12 in the time interval @0,12# and
then held constant in an experiment analogous to that shown
in Fig. 2. Figure 7~a! shows Dmin

2 for t510, Dt510. It dem-
onstrates that the nonaffine deformations occur as isolated
small events. In Fig. 7~b! we observe the same simulation,
but for t530, Dt530; that is, we are looking at a later time,
but again we consider rearrangements relative to the inital
configuration. Now it appears that the regions of rearrange-
ment have a larger scale structure. The pattern seen here
looks like an incipient shear band. However, in Fig. 7~c!,
where t530, Dt51, we again consider this later time but
look only at rearrangements that have occurred in the pre-
ceding short time interval. The events shown in this figure
are small, demonstrating that the pattern shown in Fig. 7~b!
is, in fact, an aggregation of many local events. Finally, in
Fig. 7~d!, we show an experiment similar in all respects to
Fig. 7~a! except that the sign of the stress has been reversed.
As in Fig. 7~a!, t510, Dt510, and again we observe small

isolated events. However, these events occur in different lo-
cations, implying a direction dependence of the local trans-
formation mechanism.
Next we look at these processes in yet more detail. Figure

8 is a closeup of the molecular configurations in the lower
left-hand part of the largest dark cluster seen in Fig. 7~c!,
shown just before and just after a shear transformation. Dur-
ing this event, the cluster of one large and three small mol-
ecules has compressed along the top-left to bottom-right axis
and extended along the bottom-left to top-right axis. This
deformation is consistent with the orientation of the applied
shear, which is in the direction shown by the arrows on the

FIG. 7. Intensity plots of Dmin
2 , the deviation from affine defor-

mation, for various intervals during two simulations. ~a!–~c! show
deformation during one simulation in which the stress has been
ramped up quickly to a value less than the yield stress and then held
constant. ~a! shows deformations over the first 10 time units and ~b!
over the first 30 time units. ~c! shows the same state as in ~b!, but
with Dmin

2 computed only for deformations that took place during
the preceding 1 time unit. In ~d!, the initial system and the time
interval ~10 units! are the same as in ~a!, but the stress has been
applied in the opposite direction. The gray scale in these figures has
been selected so that the darkest spots identify molecules for which
uDminu'0.5aSL .

FIG. 8. Closeup picture of a shear transformation zone before
and after undergoing transformation. Molecules after transforma-
tion are shaded according to their values of Dmin

2 using the same
gray scale as in Fig. 7. The direction of the externally applied shear
stress is shown by the arrows. The ovals are included solely as
guides for the eye.
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2D binary 
Lennard-Jones

• Aim: identify population of “flow 
defects,” analogous to dislocations 
in crystals, where rearrangements 
are likely to occur	


!

• Standard structural quantities fail 
to predict these

sheared glass

supercooled 
liquid

Keys, et al 
PRX (2011)



In crystalline packings, localized rearrangements occur at dislocations	



How Crystals Flow
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How Crystals Pre-Melt

!
!
!
!
!
!
!
!

• Premelting also occurs at dislocations and grain boundaries	


• Dislocations vulnerable to rearrangement under mechanical load 

or temperature

Alsayed et al. Science (2005).



Look at Quasilocalized Modes in Crystals

• Quasilocalized modes 
localize to flow defects 
(dislocations and grain 
boundaries but not 
vacancies) because these 
scatter sound most 
effectively	


!

• look at quasi localized 
modes in disordered 
systems

[110] Rottler, Schoenholz, Liu PRE (2014)

Chen, Still, Schoenholz, 
Aptowicz, Schindler, Maggs, 
Liu, Yodh, PRE 88, 022315 

(2013)
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Anharmonicity

!
• Low-frequency quasi-localized 

modes have the lowest energy 
barriers to rearrangement	


– Barriers are likely to be 

lower if rearrangements are 
localized	



– These are the modes most 
likely to go unstable due to 
thermal fluctuations or 
mechanical load	



!
• So QLM likely to contain 

information about flow defects

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, EPL 90, 56001 (2010).

p(ω)

Vmax(ω)

ω
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QLM Method of Identifying Flow Defects
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QLM Soft Spots Are Promising, But…

• To identify soft spots, need to	


– know interactions between particles precisely	


– quench system to obtain inherent structures	


– diagonalize dynamical matrix (O(N3))	



• So this method cannot be applied to experimental data and is 
very slow even for simulation data	


!

• We want a method for identifying regions vulnerable to 
rearrangement that relies on local structure alone	


!

• Problem:  all previous attempts have failed



Standard Structural Quantities Don’t Tell Us Where Soft Spots Are
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Solution

• Don’t just use one quantity to characterize structure	


• Use MANY	


• Introduce two families of functions

Particle i: 
0.2

Sam Schoenholz and Dogus Cubuk
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Physical Meaning of Structure Functions

• First family measures density at radius r	


!
!
!
!
!
!

• Second family measures bond anticorrelation at radius r

Radius to probe Width of windowParticle separation

Radius

Alignment/antialignment
Angular Resolution



Classify “softness”

Have a set of structural variables for each particle i (values of S 
and Q at different values of μ, ξ, λ, ζ	



!

!

Want to categorize each particle as soft (susceptible to 
rearrangement) or hard	



Use Support Vector Machines (SVM)	



Requires a “training set” with known classification



Classifying “softness”
!
!
!
!

• Particle is “soft” if 	


• Embed in space where each 

dimension is a structural 
variable	



• Find dividing plane with 
maximum margin h	



• Classify new data with dividing 
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SVM Method

• Works better than QLM method	


• Don’t need to	



– quench system to obtain inherent structures	


– in fact, method works better because it can be applied to 

instantaneous snapshots	


– diagonalize dynamical matrix (O(N3))	



– method is O(N)	


– know interactions between particles precisely	


!

• Apply to experimental system



Compressed Granular Pillars
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Compressed Granular Pillars
!

• 21% of system captures 80% of 
rearranging particles
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Pillar Has Free Surfaces—Are There More Soft Particles There?

!
!
!
!
!
!
!
!
!
!

• Yes, number of soft particles is higher at surface	


• Soft particles enhanced over range of ~ 5 particle diameters	


• Granular pillars have “mobile layer” similar to that of glassy films



Tests of SVM method
(1) Sheared, thermal 2D Lennard-Jones glass	



65:35 Kob-Andersen Lennard-Jones mixture	



!

!

Characterized by Brüning et al. with Tg=0.33	
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Solids flow under shear via localized rearrangements.
In crystals it is known that this flow is achieved via the
propagation of topological defects. Historically, no such
mechanism has been identified for amorphous systems
since the disorder inherent to these systems has precluded
the identification of geometrically or topologically mean-
ingful regions[]. Progress has been made in recent work
by Manning and Liu [] which showed that “soft spots” -
analogous to defects in crystalline solids - exist in ather-
mal suspensions of soft finite repulsive disks under quasi-
static shear. These soft spots were shown to predict
where rearrangements would occur, to be long lived with
respect to the time between individual rearrangements,
and to be structurally distinct from the rest of the sample
(although structure alone could not a priori identify the
soft spot population.) Subsequent experimental studies
of colloidal systems by Chen et al. have shown that soft
spots predict rearranging regions in amorphous colloidal
suspensions [] and further identify grain boundaries in
colloidal polycrystals [].

To motivate the soft spot description of plastic flow,
Manning and Liu drew from a growing body of work
that has shown that a harmonic description of the inher-
ent structure of an amorphous solid describes properties
of the material well outside of linear response. In par-
ticular they used the facts that disordered solids have an
excess of quasi-localized low-frequency vibrational modes
[], that these modes feature particularly low energy barri-
ers to rearrangement [], and that polarization vectors as-
sociated with the modes correlate with rearrangements [].
Taken together these results allowed for the construction
of soft spots as the localized regions of high displacement
among these quasi-localized vibrational modes. While
the soft spot picture has been shown to successfully de-
scribe the response of finite repulsive particles to qua-
sistatic perturbation, no study has yet made the connec-
tion to a broader class of thermal systems.

In this Letter we show that soft spots continue to de-
scribe plasticity for glasses under shear. To this end we
pursue the following program: we first demonstrate that
soft spots indeed correlate with rearrangements, we then
characterize this correlation by considering . We will fur-
ther show that soft spots are long lived, with correlations
lasting as long as the ↵-relaxation time for the system.
By considering temperatures exceeding the glass transi-
tion temperature for these systems, we show as a corol-
lary that soft spots remain a valid description of fast-
moving regions in the supercooled regime. These results
demonstrate that soft spots provide an appealing mecha-

nism for plasticity in realistic glass formers and hint that
soft spots might provide an understanding of dynamic
heterogeneities in super cooled liquids.

To study the e↵ects of temperature and strain rate
on the validity of the soft spot picture, we consider a
10,000 particle two dimensional 65:35 binary Lennard-
Jones mixture. We use a model with the parameters
�AA = 1.0, �AB = 0.88, �BB = 0.8, ✏AA = 1.0,
✏AB = 1.5, and ✏BB = 0.5. The Lennard-Jones po-
tential is cuto↵ at 2.5�AA and smoothed. The natural
units for the simulation are �AA for distances, ✏AA for
energies, and ⌧ =

p
m�2

AA/48✏AA for times. We per-
form molecular dynamics simulations of this system us-
ing LAMMPS with a timestep of 5 ⇥ 10�3⌧ . A Nosé-
Hoover thermostat with mass MASS is used to keep the
system at a fixed temperature. We consider tempera-
tures T = 0.1, 0.2, 0.3, and 0.4 as well as strain rates
�̇ = 10�5, 10�4, and 10�3. This system has been charac-
terized and shown to be a good glass former by Brüning
et al.[]. Notably, it was shown that the glass transition
temperature for this model is TG = 0.33. Therefore, at
the highest temperature we are studying a system well
into the supercooled regime. An example of the system
is shown in fig. 1.

To construct the soft spots we begin with a harmonic
description of the inherent structure of the glass and fol-
low the procedure of Liu and Manning []. Therefore,
every 2⌧ we quench the system to its inherent configura-
tion using a combination of the conjugate gradient and
FIRE algorithms []. We then compute the 500 modes
with the lowest frequency by diagonalizing the dynami-
cal matrix using UMFPACK []. The boson peak for this
system occurs, on average, at 270 modes; therefore, this
set of modes captures the low-frequency harmonic be-
havior of the system. From this collection we select the
Nm most localized modes ranked by their participation
ratios[]. From these Nm modes we further select the Np

particles with the largest polarization vectors. Finally,
we remove clusters of fewer than four particles since fluc-
tuations appear to result in an excess of uncorrelated
small soft spot clusters. This set of particles comprises
our soft spot population and we can thus construct, at
each time t, an N dimensional projection operator S(t)
so that Si(t) = 1 if particle i is in a soft spot and Si(t) = 0
otherwise. Additionally, we define the overall fraction of
space covered by a soft spot to be ⇢SS = hSi(t)i where
the average is taken over particles and times. An exam-
ple of the soft spot population is additionally shown in
fig. 1. The parameters Nm and Np are not free, but are
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the average is taken over particles and times. An exam-
ple of the soft spot population is additionally shown in
fig. 1. The parameters Nm and Np are not free, but are
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static shear. These soft spots were shown to predict
where rearrangements would occur, to be long lived with
respect to the time between individual rearrangements,
and to be structurally distinct from the rest of the sample
(although structure alone could not a priori identify the
soft spot population.) Subsequent experimental studies
of colloidal systems by Chen et al. have shown that soft
spots predict rearranging regions in amorphous colloidal
suspensions [] and further identify grain boundaries in
colloidal polycrystals [].

To motivate the soft spot description of plastic flow,
Manning and Liu drew from a growing body of work
that has shown that a harmonic description of the inher-
ent structure of an amorphous solid describes properties
of the material well outside of linear response. In par-
ticular they used the facts that disordered solids have an
excess of quasi-localized low-frequency vibrational modes
[], that these modes feature particularly low energy barri-
ers to rearrangement [], and that polarization vectors as-
sociated with the modes correlate with rearrangements [].
Taken together these results allowed for the construction
of soft spots as the localized regions of high displacement
among these quasi-localized vibrational modes. While
the soft spot picture has been shown to successfully de-
scribe the response of finite repulsive particles to qua-
sistatic perturbation, no study has yet made the connec-
tion to a broader class of thermal systems.

In this Letter we show that soft spots continue to de-
scribe plasticity for glasses under shear. To this end we
pursue the following program: we first demonstrate that
soft spots indeed correlate with rearrangements, we then
characterize this correlation by considering . We will fur-
ther show that soft spots are long lived, with correlations
lasting as long as the ↵-relaxation time for the system.
By considering temperatures exceeding the glass transi-
tion temperature for these systems, we show as a corol-
lary that soft spots remain a valid description of fast-
moving regions in the supercooled regime. These results
demonstrate that soft spots provide an appealing mecha-

nism for plasticity in realistic glass formers and hint that
soft spots might provide an understanding of dynamic
heterogeneities in super cooled liquids.

To study the e↵ects of temperature and strain rate
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AA/48✏AA for times. We per-
form molecular dynamics simulations of this system us-
ing LAMMPS with a timestep of 5 ⇥ 10�3⌧ . A Nosé-
Hoover thermostat with mass MASS is used to keep the
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�̇ = 10�5, 10�4, and 10�3. This system has been charac-
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• 26% of system captures 73% of rearranging particles	


• Works equally well at all temperatures, even above glass transition	


• Accuracy insensitive to threshold
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T

min⇤{
P

j(Rij(t+�t)�⇤Rij(t))2/zave} [5], which is a standard metric for local plastic activity in amorphous
solids. Here the sum runs over neighbors j within a distance of 2.5�AA of particle i, Rij is the center-center
distance between particles i and j, zave is the average number of neighbors within 2.5�AA, and the quantity
is minimized over choices of the local strain tensor ⇤. A particle is said to have undergone a rearrangement
if D2

min � D2
min,0 ⌘ 0.7T�2

AA [15] (see Supplementary Information) For each T , we use D2
min,0 to construct a

classification hyperplane and then validate our classification on the remaining 2⇥107 particle environments.
An example configuration of the system is shown in Fig. 1 (a) with soft particles highlighted in black and
particles’ D2

min value shown in color from grey (low) to red (high).
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Figure 2: Probability that a particle of a given D2
min value is soft. The vertical dashed lines are corresponding

D2
min,0 values. (a) The result of using an SVM trained at a temperature T (T = 0.1�0.4. shown in di↵erent

colors ) to classify data at the same temperature. (b) Same as (a), but with D2
min scaled by T�AA2. (c)

The result for the pillar system, where dAA refers to the large grain diameter (since this is a granular system
with macroscopic grains, thermal fluctuations are negligible).

Fig. 2(a) shows the probability, P (D2
min), that a particle with an observed value of D2

min has been
identified as soft by our classification. We first notice that at each temperature studied, P is an increasing
function of D2

min. The dashed line indicates D2
min,0, the threshold chosen for classification Fig. 2(b) shows

that P (D2
min) collapses for di↵erent T when D2

min is scaled by T�2
AA; this scaling is expected since for

particles not undergoing rearrangement, D2
min ⇠ hv2i ⇠ T by the equipartition theorem. This result justifies

the choice of D2
min,0 = D0T�2

AA where D0 is a constant (see Supplemental Information for a discussion of
the value chosen for D0). Overall, 26% of the particles in the system are classified as soft. These particles
constitute 73% of the rearranging particles. The ratio of these two percentages implies that rearrangements
are 2.8 times more likely to occur at soft particles than if the soft particles were chosen randomly.

Remarkably, our identification of soft particles degrades little with temperature over the range T = 0.1
to T = 0.4. (The glass transition for this system lies at T ⇡ 0.33 [26].) In contrast, the ability to identify
soft particles using vibrational modes decreased by over 50% over the same temperature range [15]. The key
di↵erence between the two methods is that for Fig. 2(a,b) we construct local environments from the actual
particle positions in snapshots of the thermal system, while soft particles from vibrational modes are extracted
from particle positions in the inherent structures obtained by quenching to T = 0 (see Supplementary
Information).

As a second test, we apply our approach to experimental data on two-dimensional “pillars” of particles
steadily compressed with velocity v0. These particles have elastic and frictional interactions with each other,
as well as frictional interactions with the substrate making the identification of flow defects using scatter-
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Solids flow under shear via localized rearrangements.
In crystals it is known that this flow is achieved via the
propagation of topological defects. Historically, no such
mechanism has been identified for amorphous systems
since the disorder inherent to these systems has precluded
the identification of geometrically or topologically mean-
ingful regions[]. Progress has been made in recent work
by Manning and Liu [] which showed that “soft spots” -
analogous to defects in crystalline solids - exist in ather-
mal suspensions of soft finite repulsive disks under quasi-
static shear. These soft spots were shown to predict
where rearrangements would occur, to be long lived with
respect to the time between individual rearrangements,
and to be structurally distinct from the rest of the sample
(although structure alone could not a priori identify the
soft spot population.) Subsequent experimental studies
of colloidal systems by Chen et al. have shown that soft
spots predict rearranging regions in amorphous colloidal
suspensions [] and further identify grain boundaries in
colloidal polycrystals [].

To motivate the soft spot description of plastic flow,
Manning and Liu drew from a growing body of work
that has shown that a harmonic description of the inher-
ent structure of an amorphous solid describes properties
of the material well outside of linear response. In par-
ticular they used the facts that disordered solids have an
excess of quasi-localized low-frequency vibrational modes
[], that these modes feature particularly low energy barri-
ers to rearrangement [], and that polarization vectors as-
sociated with the modes correlate with rearrangements [].
Taken together these results allowed for the construction
of soft spots as the localized regions of high displacement
among these quasi-localized vibrational modes. While
the soft spot picture has been shown to successfully de-
scribe the response of finite repulsive particles to qua-
sistatic perturbation, no study has yet made the connec-
tion to a broader class of thermal systems.

In this Letter we show that soft spots continue to de-
scribe plasticity for glasses under shear. To this end we
pursue the following program: we first demonstrate that
soft spots indeed correlate with rearrangements, we then
characterize this correlation by considering . We will fur-
ther show that soft spots are long lived, with correlations
lasting as long as the ↵-relaxation time for the system.
By considering temperatures exceeding the glass transi-
tion temperature for these systems, we show as a corol-
lary that soft spots remain a valid description of fast-
moving regions in the supercooled regime. These results
demonstrate that soft spots provide an appealing mecha-

nism for plasticity in realistic glass formers and hint that
soft spots might provide an understanding of dynamic
heterogeneities in super cooled liquids.

To study the e↵ects of temperature and strain rate
on the validity of the soft spot picture, we consider a
10,000 particle two dimensional 65:35 binary Lennard-
Jones mixture. We use a model with the parameters
�AA = 1.0, �AB = 0.88, �BB = 0.8, ✏AA = 1.0,
✏AB = 1.5, and ✏BB = 0.5. The Lennard-Jones po-
tential is cuto↵ at 2.5�AA and smoothed. The natural
units for the simulation are �AA for distances, ✏AA for
energies, and ⌧ =

p
m�2

AA/48✏AA for times. We per-
form molecular dynamics simulations of this system us-
ing LAMMPS with a timestep of 5 ⇥ 10�3⌧ . A Nosé-
Hoover thermostat with mass MASS is used to keep the
system at a fixed temperature. We consider tempera-
tures T = 0.1, 0.2, 0.3, and 0.4 as well as strain rates
�̇ = 10�5, 10�4, and 10�3. This system has been charac-
terized and shown to be a good glass former by Brüning
et al.[]. Notably, it was shown that the glass transition
temperature for this model is TG = 0.33. Therefore, at
the highest temperature we are studying a system well
into the supercooled regime. An example of the system
is shown in fig. 1.

To construct the soft spots we begin with a harmonic
description of the inherent structure of the glass and fol-
low the procedure of Liu and Manning []. Therefore,
every 2⌧ we quench the system to its inherent configura-
tion using a combination of the conjugate gradient and
FIRE algorithms []. We then compute the 500 modes
with the lowest frequency by diagonalizing the dynami-
cal matrix using UMFPACK []. The boson peak for this
system occurs, on average, at 270 modes; therefore, this
set of modes captures the low-frequency harmonic be-
havior of the system. From this collection we select the
Nm most localized modes ranked by their participation
ratios[]. From these Nm modes we further select the Np

particles with the largest polarization vectors. Finally,
we remove clusters of fewer than four particles since fluc-
tuations appear to result in an excess of uncorrelated
small soft spot clusters. This set of particles comprises
our soft spot population and we can thus construct, at
each time t, an N dimensional projection operator S(t)
so that Si(t) = 1 if particle i is in a soft spot and Si(t) = 0
otherwise. Additionally, we define the overall fraction of
space covered by a soft spot to be ⇢SS = hSi(t)i where
the average is taken over particles and times. An exam-
ple of the soft spot population is additionally shown in
fig. 1. The parameters Nm and Np are not free, but are
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To motivate the soft spot description of plastic flow,
Manning and Liu drew from a growing body of work
that has shown that a harmonic description of the inher-
ent structure of an amorphous solid describes properties
of the material well outside of linear response. In par-
ticular they used the facts that disordered solids have an
excess of quasi-localized low-frequency vibrational modes
[], that these modes feature particularly low energy barri-
ers to rearrangement [], and that polarization vectors as-
sociated with the modes correlate with rearrangements [].
Taken together these results allowed for the construction
of soft spots as the localized regions of high displacement
among these quasi-localized vibrational modes. While
the soft spot picture has been shown to successfully de-
scribe the response of finite repulsive particles to qua-
sistatic perturbation, no study has yet made the connec-
tion to a broader class of thermal systems.

In this Letter we show that soft spots continue to de-
scribe plasticity for glasses under shear. To this end we
pursue the following program: we first demonstrate that
soft spots indeed correlate with rearrangements, we then
characterize this correlation by considering . We will fur-
ther show that soft spots are long lived, with correlations
lasting as long as the ↵-relaxation time for the system.
By considering temperatures exceeding the glass transi-
tion temperature for these systems, we show as a corol-
lary that soft spots remain a valid description of fast-
moving regions in the supercooled regime. These results
demonstrate that soft spots provide an appealing mecha-

nism for plasticity in realistic glass formers and hint that
soft spots might provide an understanding of dynamic
heterogeneities in super cooled liquids.

To study the e↵ects of temperature and strain rate
on the validity of the soft spot picture, we consider a
10,000 particle two dimensional 65:35 binary Lennard-
Jones mixture. We use a model with the parameters
�AA = 1.0, �AB = 0.88, �BB = 0.8, ✏AA = 1.0,
✏AB = 1.5, and ✏BB = 0.5. The Lennard-Jones po-
tential is cuto↵ at 2.5�AA and smoothed. The natural
units for the simulation are �AA for distances, ✏AA for
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AA/48✏AA for times. We per-
form molecular dynamics simulations of this system us-
ing LAMMPS with a timestep of 5 ⇥ 10�3⌧ . A Nosé-
Hoover thermostat with mass MASS is used to keep the
system at a fixed temperature. We consider tempera-
tures T = 0.1, 0.2, 0.3, and 0.4 as well as strain rates
�̇ = 10�5, 10�4, and 10�3. This system has been charac-
terized and shown to be a good glass former by Brüning
et al.[]. Notably, it was shown that the glass transition
temperature for this model is TG = 0.33. Therefore, at
the highest temperature we are studying a system well
into the supercooled regime. An example of the system
is shown in fig. 1.

To construct the soft spots we begin with a harmonic
description of the inherent structure of the glass and fol-
low the procedure of Liu and Manning []. Therefore,
every 2⌧ we quench the system to its inherent configura-
tion using a combination of the conjugate gradient and
FIRE algorithms []. We then compute the 500 modes
with the lowest frequency by diagonalizing the dynami-
cal matrix using UMFPACK []. The boson peak for this
system occurs, on average, at 270 modes; therefore, this
set of modes captures the low-frequency harmonic be-
havior of the system. From this collection we select the
Nm most localized modes ranked by their participation
ratios[]. From these Nm modes we further select the Np

particles with the largest polarization vectors. Finally,
we remove clusters of fewer than four particles since fluc-
tuations appear to result in an excess of uncorrelated
small soft spot clusters. This set of particles comprises
our soft spot population and we can thus construct, at
each time t, an N dimensional projection operator S(t)
so that Si(t) = 1 if particle i is in a soft spot and Si(t) = 0
otherwise. Additionally, we define the overall fraction of
space covered by a soft spot to be ⇢SS = hSi(t)i where
the average is taken over particles and times. An exam-
ple of the soft spot population is additionally shown in
fig. 1. The parameters Nm and Np are not free, but are
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Rearrangements are localized



Softness Field



Rearranging Particles are Soft

• Works well even at high 
temperatures (Tg=0.58)	


– At T=0.6, 24% of particles 

capture 72% of 
rearrangements (kinetic 
heterogeneities)	



• average softness is high for 
rearranging particles	



• Accuracy comparable in 2D 
and 3D

T=0.6
T=0.4

T=0.6

T=0.4



Softness Lifetime I

• Softness lifetime is comparable to relaxation time

intermediate scattering function Softness autocorrelation function

T=0.4

T=0.6



T=0.6

Softness Lifetime II

!
• Softness equilibrates over time to approach equilibrium softness 

distribution



T=0.6

Softness Lifetime III

• Soft particles equilibrate faster 
than hard particles	



• Softness is promising as 
structural signature of kinetic 
heterogeneities

Softness autocorrelation function

soft particles

hard particles



Dividing Surface Contains Physics

• Recall structural variables	



!

!

• S measures radial density	



• Q measures relative bond orientation	



• Note                                            so S corresponds to local g(r)gXY (r) = lim
L!0

1

N

NX

i=1

SX
Y (i; r)/2⇡r



How are Soft Particles Different?

• Soft particles (red) are 
more “liquidlike” than 
system as whole	



• S distinguishes between 
soft particles and H1 
particles but not soft and 
H0	



• Q distinguishes between 
soft and H0 but not soft 
and H1	



!
• Need both S and Q (at 

least)

H0
H1

H1

H0



Conclusions	



• Quasilocalized modes yields structural signatures of mobility near 
free surfaces and at flow defects	


!

• Soft particles are structurally distinct, but in subtle ways that we 
can pick out using machine learning methods 	


!

• SVM method	


– Promising for identifying particles likely to rearrange under 

temperature or stress	


– Fast, and only requires positions of particles, not interactions	


– Works on experimental as well as simulation data!
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