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Foreword

Monte Carlo is an extremely bad method; it should be used
only when all alternative methods are worse.
(Alan Sokal, 1989).

Such desperate problems are common in Theoretical Physics.

SG simulations are extremely computer intensive but simple: the
Janus collaboration has dared to produce dedicated hardware.

Janus is a great success, but classical Monte Carlo is hitting an
algorithmic wall (temperature chaos).

Is quantum computing our breakthrough?
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Plan of the presentation

1 Desperate problem, desperate solutions: the
Janus computer.

2 The temperature chaos algorithmic wall.
3 A more conventional approach to temperature

chaos.
4 D-wave, the chimera lattice and temperature

chaos.
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The Janus Collaboration

Team from 5 universities in Spain and Italy:

Universidad Complutense de Madrid:
M. Baity-Jesi, L.A. Fernandez, V.
Martin-Mayor, A. Muñoz Sudupe

Universidad de Extremadura:
A. Gordillo-Guerrero, J.J.
Ruiz-Lorenzo

Università di Ferrara:
M. Pivanti, S.F. Schifano, R.
Tripiccione

La Sapienza Università di Roma:
A. Maiorano, E. Marinari, G. Parisi, F.
Ricci-Tersenghi, D. Yllanes,
B. Seoane

Universidad de Zaragoza:
R.A. Baños, A. Cruz, J.M.
Gil-Narvión, M. Guidetti, D. Iñiguez,
J. Monforte-Garcia, D. Navarro, S.
Perez-Gaviro, A. Tarancon, P. Tellez.

Physicists and engineers dedicated to the
design and exploitation of special-purpose
computers, optimised for Monte Carlo
simulations in condensed matter physics.
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Desperate problems, desperate solutions: Janus (I)

Even with binary spins, simulation of spin-glasses is heavy in two
respects:

1 Many (∼ 103) problem instances→ embarrassingly parallel.

2 Single instance simulation very long.

For modest system sizes (i.e. N = 323 = 32768 spins):
Typical instance: 4.5 standard-CPU years (i.e. 1.4× 1017 updates).

Worst in 103 instances: 800 standard-CPU years (i.e. 2.7× 1019

updates).

Fortunately, the spin update (the core algorithm) is very simple and (in
principle) trivial to parallelize. But. . .

Modern architectures (GPU, Xeon, Xeon-φ) efficient only for larger N
−→ astronomical number of updates (∼ ecN , probably).
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Desperate problems, desperate solutions: Janus (II)

Parallelizable problem

Parallelise within each instance
We divide the lattice in a
checkerboard scheme,
all sites of the same colour can be
updated simultaneously
Memory bandwith: 13 bits to
update one bit! Only solution:
Memory “local to the processor”.

Janus 1 (2008): ×1000 boost in spin-glasses simulations.

Green computer: ×0.001 energy consumption per update.

Janus 2: Fall 2014
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Huge bandwidth on-chip
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(∼ 10000 bits in and out per clock
cycle).
Large amount of logic→ 1024
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Desperate problems, desperate solutions: Janus (III)

Main problems tackled with Janus (2008–2014)

Spin-glasses in a magnetic field (Juan’s talk, tomorrow).
Isothermal aging (from 1 picosecond to 0.1 seconds)
Clustering correlation functions in equilibrium.
Quantitative correspondence:
equilibrium, finite size↔ non-equilibrium, finite time.
Precision estimates of critical exponents.
Ultrametricity in the spin-glass phase.
. . .
Temperature chaos
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Temperature chaos: the showstopper (I)

Increasing computing speed x1000, not such a big deal
Pre-Janus era: up to N = 163 spins.
Janus era: up to N = 323 spins.

Why?

We need to talk a bit about algorithms:
Simulating at fixed temperature, simply not enough.

Temperature needs to become dynamic.
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Temperature chaos: the showstopper (II)

Simulated Annealing
Simplest protocol:

1 High T : easy exploration

2 T -lowering protocol:
Trapped at nearby local
minimum.

Outdated algorithm.

thermal energy
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Temperature chaos: the showstopper (III)

Parallel Tempering
T raised or lowered:

1 Low T : local exploration

2 High T : global exploration
3 No trapping→ better

solution.

thermal energy

NT temperatures: simultaneous simulation of NT clones (one at
each temperature).
Periodically, clones attempt to exchange their temperature.
The rule preserves detailed balance.
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Temperature chaos: the showstopper (IV)

It looks perfect! What can go wrong?

Each clone performs a temperature Random Walk.

The simulation is long enough if all the clones visited all the
temperatures several times. Mixing time: τ .

Random Walk in temperatures of a clone
A mixing Random Walk
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Temperature chaos: the showstopper (V)

Temperature chaos: Relevant minima, completely different at nearby
temperatures. T -random walk refuses to go across.

T

T - dT

V. Martin-Mayor (Física Teórica I, UCM) Quantum vs. Classical annealing Capri, September 2014 12 / 28



Temperature chaos: the showstopper (VI)

τ : Operational definition of Temperature chaos.

τ -pdf
L = 32,Tc ≈ 1.1

Extreme sample-to-sample
fluctuations.
L and T sensitivity.
At variance with standard
T -chaos studies, it is easy
to observe the effect.
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Contacting with conventional approach (I)

Defining T -chaos through a Markov MC dynamics is:
Mathematically clear.

Cumbersome (analytical computations??).
Unsatisfying: T -chaos is supposed to be a static effect!

However, it provides a useful definition. Instead, the static approach:

Hard for some analytically tractable models.
Sherrington-Kirkpatrick: Rizzo-Crisanti (2003)

Migdal-Kadanoff: McKay, Nihat-Berker, Kirkpatrick, (1982).

Numerically, very hard to identify. Scaling laws barely known
(Katzgraber& Krzakala, 2007).
We still lack predictions relevant for experiments.
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Contacting with conventional approach (II)

Our main ingredients (Fernandez, V.M.-M,Parisi,Seoane, 2013)

Janus data base (2010): O(103) samples, L ≤ 32, well
thermalized at low temperatures.
Wash-out thermal fluctuations (Ney-Nifle and Young, 1997)

Look at whole distribution (not only average!)

Large-deviation functional (the successful analytical approach for SK)

Consistency checks:
Must correlate with dynamic approach
Previously subtle effects should become visible.
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Contacting with conventional approach (III)

Washing-out thermal fluctuations
Useful technicality: the chaotic parameter

X J
T1,T2

=
〈q2

T1,T2
〉J√

〈q2
T1,T1
〉J〈q2

T2,T2
〉J

X J = 1 −→ no chaos; X J = 0 −→ strong chaos.

Mind that, for T1,T2 < Tc and large L, one expects

X J
T1,T2 ∼ 〈q

2
T1,T2〉J

〈q2
T1,T1〉J ∼ 〈q

2
T2,T2〉J ∼ 1 .

V. Martin-Mayor (Física Teórica I, UCM) Quantum vs. Classical annealing Capri, September 2014 16 / 28



Contacting with conventional approach (IV)

Average or full distribution?
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Contacting with conventional approach (IV)

Average or full distribution?
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Contacting with conventional approach (V)

IJ correlates with τ ! We are on the right track. . .
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Contacting with conventional approach (VI)

Large deviations functional
3D, T1 = 0.7, T2 = 0.84, (Tc = 1.1).
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Ω > 0→ chaos!

ΩL approaches convergence
within Janus’ L-range.

L = 8, 12
chaos is extremely rare.

Crude parameterization

ΩT1,T2(ε) ∝ |T1 − T2|bεβ

Weak-chaos scaling (Katzgraber& Krzakala,
2007) explained: ζ = D/b = 1.07(2)

Chaos length: ξC = La unless β = 1.
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Contacting with conventional approach (VII)

SK finally yields to numerics (Billoire 2014)

Rizzo-Crisanti and Rizzo-Parisi compute Ω̃(qT 1,T 2). . .
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Contacting with conventional approach (VII)

SK finally yields to numerics (Billoire 2014)

Rizzo-Crisanti and Rizzo-Parisi compute Ω̃(qT 1,T 2). . .
But Ω(X J

T1,T2
> ε)� Ω̃(qT1,T2) (see also Rizzo 2014)

V. Martin-Mayor (Física Teórica I, UCM) Quantum vs. Classical annealing Capri, September 2014 20 / 28



Contacting with conventional approach (VIII)

Take-home messages
Dynamic methods might be preferable in real calculations.

Three (rather than 2) scaling variables: N, ∆T and ε.

Temperature chaos is generic for large problem size N.

In practice, specially for small N:

1 The large majority of problem instances are easy (small τ ).
2 For some of them, though, τ inordinately large.
3 The larger is N, the more frequently missbehaving instances

appear −→ difficult to assess algorithmic scaling with N.
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Is quantum-computing our breakthrough? (I)

From an impressive insight (Richard P. Feynman, 1982)

NP-problems, specially simulation of quantum systems: best solved on
quantum computers. . .
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Is quantum-computing our breakthrough? (I)

. . . to (possibly) quantum-computing objects (2014).

A quantum annealer should:

1 Read accurately an instance.

2 Add a strong transverse
magnetic field.

3 At low enough T . . .

4 With low noise. . .

5 Slowly take field→ 0.

All requirements met? → global
minimum.

D-wave Two
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Is quantum-computing our breakthrough? (II)

D-wave solves a toy problem:
Small problems N = 512 (actually, N = 503 in USC).

Chimera graph: non-planar but 2D-like.

Two-dimensional penalties:

No SG phase for T > 0
Tc = 0 −→ easier problems.

Small decycling set

T = 0 heuristics better than
thermal methods (i.e. PT).

T > 0 2D-methods better
than Monte Carlo (Middleton 2011,

square lattice: N = 5122 ≈ 2.6 × 105).

Are we learning something?

Chimera
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Is quantum-computing our breakthrough? (III)

In three spatial dimensions only thermal annealing works.
Real question: Is there chaos in the chimera lattice?

Middleton et al.: chaos in square lattice, but N = 2.6× 105.
Chaos with only N = 503 q-bits?
Not at first sight. . .

But look at that fat tail!
2 in 104 instances: τ � 107.
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Is quantum-computing our breakthrough? (IV)

As usual, τ pinpoints peculiar samples. . .
Overlap betwen Ground-State and 1st Excited-State. . .
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Is quantum-computing our breakthrough? (IV)

As usual, τ pinpoints peculiar samples. . .
. . . or energy-dependence with T .
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Is quantum-computing our breakthrough? (V)

Meaningful algorithmic classification at fixed N: τ -scaling.

Parallel-Tempering: τ1, Selby heuristics (2D!): τb≈0.3, D-wave: τa≈1.75.
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Conclusions

The Janus computer: new window for spin-glasses.
A new generation will soon enter into operation.

Not everything in Spin-Glasses Physics is self-averaging.
Temperature chaos is a clear example.

Sometimes, studying dynamics (τ ) might be the easiest way to
learn about statics.

Temperature chaos is a major obstacle. Is quantum annealing an
alternative?

D-wave is a candidate quantum-annealer. Object to be
experimentally investigated, rather than a finished product.
Currently, performance not competitive with Parallel Tempering.
Reasons for failure intrinsic? Current investigation.
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experimentally investigated, rather than a finished product.
Currently, performance not competitive with Parallel Tempering.

Reasons for failure intrinsic? Current investigation.

V. Martin-Mayor (Física Teórica I, UCM) Quantum vs. Classical annealing Capri, September 2014 27 / 28



Conclusions

The Janus computer: new window for spin-glasses.
A new generation will soon enter into operation.

Not everything in Spin-Glasses Physics is self-averaging.
Temperature chaos is a clear example.

Sometimes, studying dynamics (τ ) might be the easiest way to
learn about statics.

Temperature chaos is a major obstacle. Is quantum annealing an
alternative?

D-wave is a candidate quantum-annealer. Object to be
experimentally investigated, rather than a finished product.
Currently, performance not competitive with Parallel Tempering.
Reasons for failure intrinsic? Current investigation.

V. Martin-Mayor (Física Teórica I, UCM) Quantum vs. Classical annealing Capri, September 2014 27 / 28



Many thanks to. . .

The Janus collaboration,

Alain Billoire,

Itay Hen,

The meeting organizers,

. . . and to you (the audience), for your attention!
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