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What is role of (dis)order for mechanical behavior? 
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Crystals are essence of order 
What is essence of disorder? 

Why ask that? 
 

Cannot perturb crystal (i.e., add defects) to get physics of glasses
  

Need other limit - complete disorder 

 

  Prototype of another way of making solids: 
 Crystallization: 1st-order nucleation 
 What (non-equilibrium) process creates complete disorder?  
   

  Do all ways of creating rigidity produce same  behavior? 



Example: phenomena created by disorder 
Qualitatively different from crystals 

 specific heat: excess low-T excitations          thermal conductivity 

Quantum-mechanical two-level (tunneling) 
systems have been postulated to explain 
low-temperature properties of glasses   

 

from: W.A. Phillips 

glass: vitreous silica 

crystal: α- quartz 
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De Yoreo et al. PRL (1983) 

x = 0    ➞ crystal 
x ≈ 0.5  ➞ orientational glass 
 
Crossover from ordered to 
disordered behavior occurs at 
very low disorder 

 xcrossover ≈ 0.01 
 

Orientational glass:  (KBr)1-x (KCN)x  Similar crossovers
(KBr)1�x

(KCN)
x

x = 0.0 ! crystal

x ⇡ 0.5 ! orientational glass

T 2

T 3

De Yoreo, J. J. et al. Phys. Rev. Lett. 51, 1050 (1983)
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Nature of rigidity and excitations 
Response to compression and to shear: 
 
             B                     G  
  (bulk modulus)                   (shear modulus) 

    
 

In crystals, G ≈ B 
 

Excitations:  Normal modes of vibration 
 density of states;   spatial properties;   heat transport;   anharmonicity 
 

Does disorder matter? 



Jamming:  
Compress random collection of spheres in a box 

 

Does this protocol produce different physics from crystals? 
 Simulate finite-range, repulsive potentials: 

              V(r)  =  V0 (1 – r/σ)α   r < σ     D = 2,  D = 3 
     =  0   r > σ	



φc -- onset of jamming at T = 0 

Quench to local 
energy minimum 



Durian, O’Hern, Liu  

Shear infinitely weaker than bulk modulus at transition 

Shear and compression 
become constrained at same φc 

Jammed solids different from crystals  

Jamming 
G/B →  0  at  φc (like liquid) 

 
Crystal 
G/B ~ 1 

-1 
α - 1	



α – 1.5	





 N frictionless spheres in D dimensions:  
 Match # equations  (# non-trivial degrees of freedom) = ND  
       to # unknowns (# interparticle normal forces) = NZ/2 

  ⇒  Zc = 2DWe find:   Zc = 3.99 ± 0.01   (2D);    Zc = 5.97 ± 0.03  (3D) 

Criterion for rigidity:   global condition - not local 

 

Physics governed by connectivity   (Thorpe, Phillips, Alexander) 

Maxwell criterion for rigidity 

Minimum number of overlaps needed for mechanical stability 

O’Hern, Liu  

0.5 



Normal modes in “normal” solid 
Low-frequency normal modes  

  ⇒  long-wavelength plane waves. 

Density of modes, D(ω), from counting waves: 
  

 D(ω) ∝ ωd-1 in d-dimensions. 
 
 

Long wavelengths “average” over disorder. 
    All solids should behave this way. 

D(ω) 

ω 

D(ω) ∝ ω2 

 in 3-D 



Density of states near jamming: 
no Debye behavior at φc  

 

Jamming is epitome of disorder 
(no length on which one can average to recover elasticity) 

New class of excitations 

Silbert, Liu 

ω* is characteristic  
onset-frequency of new 

excitations 

ω* → 0  as  Δφ  → 0  

ω*    Boson peak 



Concrete example of new class of excitations:  
emerge from critical point 

 What are they? 
Created from soft modes:  
 Cutting argument (Wyart) 

Structure (not plane waves): 
  “Quasi-localized” at low frequencies      

Heat transport at low T: 
 Poor conductors -- nearly-constant diffusivity 

Highly anharmonic: 
 Dynamic heterogeneities? 

Properties tuned by varying ∆φ﹦(φ - φc) 



3D  N=10,000 

For all Δφ, quasi-localized (resonant) modes near ω = 0  
(from band tail of anomalous modes) 

 

(Σα |εω (α)|2)2 	



 Ν Σα |εω (α)|4	


p(ω) = 

Participation ratio 
(measures localization): 

N. Xu, V. Vitelli, A. Liu    

Spatial properties of modes 



Basins and energy barriers 

N. Xu, V. Vitelli, A. Liu    

Vmax = energy barrier to new ground state. 

Lowest - ω modes  ⇒  smallest barriers 
Most anharmonic 
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Can modes explain low-T properties of glasses? 
 

 Must reproduce predictions of tunneling model: 
  Linear specific heat:  D(ω) ~ const. 
  T2 thermal conductivity 
  Saturation 
  Time dependent specific heat 

 

    ⇒  Phonon echoes (similar to spin echoes in NMR)  
 Need Quantum 2-level systems    Not thought possible from vibrations  
   

Two-level system                             Harmonic oscillator 
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frequency spacing between the modes decreases. This is
unavoidable. Second, the amount of coupling depends on
the spatial overlap between the modes. Plane waves are
extended modes that will inevitably share particle vibra-
tions. However, two localized or quasi-localized modes, if
su�ciently far away from each other, will have very little
coupling, regardless of the frequency.

Thus, given a fixed excitation frequency !, as N ! 1,
the mode coupling will eventually destroy the echo sig-
nal. This can only be remedied if most of the excited
modes are localized in some way so that they can still
behave as independent anharmonic oscillators. So far our
attempts to observe echoes in systems larger than 8000
particles have failed, although at the excitation frequen-
cies used in our simulations, the number of plane-wave
type modes is still significant. We suspect that echoes
could be observed in a single, very large system provided
that the density of plane waves is much smaller than the
quasi-localized modes. This is certainly true at the tem-
perature ranges and frequencies used in echo experiments
with molecular glasses (T ⌧ 1 K).

VII. CONCLUSIONS

These results illustrate how the anharmonic vibra-
tional modes in a jammed system of particles can give rise
to phonon echoes, similar to those measured in glasses at
low temperatures. The mechanism of echo generation is
similar to, yet distinctly di↵erent than echoes produced
by two-level systems [38]. In our simulations, echoes are
produced by the frequency shift of the anharmonic vibra-
tional modes. This shift acts as a slowly-varying phase
which evolves in the time between the pulses, resulting
in a non-zero average of the ensemble.

The anharmonicity of the vibrational modes can be un-
derstood from the T = 0 vibrational spectrum in di↵er-
ent model glasses, including jammed, frictionless spheres.
The amorphous nature of glassy materials leads to an ex-
cess in the density of states at low frequencies, an excess
which includes many quasi-localized, resonant modes.
These low-frequency modes represent regions of the ma-
terial that are nearly unstable, so that the local maximum
in potential energy near the local minimum. There are
two types of anharmonicity which have rather di↵erent
e↵ects. The anharmonicity that is important for echoes
is generated by the inter-particle potential, and is mea-
surable at small amplitudes. At higher amplitudes the
modes will couple to each other, which is a another form
of anharmonicity which acts to thermalize the system.

The echoes observed in our simulations have many
features which are consistent with parametric, spin-like
echoes, such as the three-pulse echo sequence (Fig. 8).
However, many features quite di↵erent. First, anhar-
monic echoes do not have a simple, intuitive condition for
maximizing the echo signal, such as a ⇡/2 pulse followed
by a ⇡ pulse. In fact, Fig. 4 shows that the maximum
echo amplitude is complicated function of pulse spacing

FIG. 11. (Color online) Quantum mechanical picture of en-
ergy levels corresponding to the low-frequency excitations in
glasses. The double-well is the traditional view of the ori-
gin of two-level systems, where the lowest energy level is split
in two by the presence of the barrier. Alternatively, a wide,
anharmonic potential can produce low-frequency modes, non-
uniform level spacing, and nonlinear acoustic phenomena such
as echoes.

and amplitude. However, here we note that for small
amplitudes, Eqn. 18 reduces to:
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which is in agreement with previous authors [41] and
identical to the small-amplitude result for spin echoes.
Graebner and Golding [30] verified this small-

amplitude dependence in silica glass, and also showed
that the maximum echo intensity does not precisely oc-
cur when A

1

= A

2

/2, among other discrepancies with
a simple model of spin echoes. In addition, at small
amplitudes, Graebner and Golding observe an increase
in echo amplitude with pulse spacing. This feature is
unique to anharmonic echoes and is seen in our simula-
tions (Fig. 5b). However, the experiments probe ⇡ 1000
times lower frequencies than we can access in the simu-
lations, and also involve additive reflections of pulses, so
a more quantitative comparison is complicated. Quali-
tatively, we note that the appearance of multiple echoes
after two excitation pulses in reference [30] is a natural
and unique feature in anharmonic echoes, and does not
depend on the details of the system.
At very low temperatures, a quantum mechanical pic-

ture of the dynamics is certainly necessary. The tradi-
tional explanation for the excess excitations in glasses at
very low temperatures relies on two-level tunneling sys-
tems created by the splitting of the ground state energy
in a double-well potential (Fig. 11). The distribution of
these systems are assumed to be broad, and the states are
spatially localized. We o↵er an alternative picture based
on localized, anharmonic vibrational modes that can be
understood both classically and quantum mechanically.
A wide and shallow anharmonic potential (Fig. 11), char-
acterized by low-frequency, nearly-unstable modes, will
have non-uniform energy levels. There is a frequency
shift in the fundamental oscillation between first and sec-
ond level due to the presence of a third. These modes



Acoustic echoes in anomalous modes? 

At low ω, modes highly anharmonic + localized 
 

CLASSICAL echoes in simulations  (w/o quantum 2-level systems). 



Time of echo = τ	



Cycles of driving frequency 

τ                            τ 
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Repulsive Hertzian potential  

Acoustic echoes in anomalous modes? 

At low ω, modes highly anharmonic + localized 
 

CLASSICAL echoes in simulations  (w/o quantum 2-level systems). 
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Acoustic echoes 
appears at time τ 

Justin Burton 

Repulsive Hertzian      
Average over 10,000 N = 103 
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12 systems, N = 106 

Repulsive Hertzian      
Average over 10,000 N = 103 

Acoustic echoes 
appears at time τ 



Acoustic echoes 
appears at time τ 

Justin Burton 

Echoes independent of inter-particle potential.  
Needs:  anharmonicity & weak coupling between modes (localization) 

Cycles of driving frequency 
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Tune from perfect order to complete disorder 

Relax 
positions, 
vary 
pressure 

Create m random vacancies 
(or vacancy/interstitial pairs) 

Start w/ perfect crystal 

Goodrich, Liu 



From order to disorder: 
When does (dis)order dominate response? 

3 example systems
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From order to disorder: 
When does (dis)order dominate response? 

3 example systems
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From order to disorder: 
When does (dis)order dominate response? 

3 example systems

10�8 10�6 10�4 10�2

p

10�3

10�2

10�1

100

101

Z
�

Z i
so

1/2

10�8 10�6 10�4 10�2

p
10�4

10�3

10�2

10�1

G
/B

1/2

10�8 10�6 10�4 10�2

p
10�4

10�3

10�2

10�1

G
/B

1/2

10�8 10�6 10�4 10�2

p

10�3

10�2

10�1

100

101

Z
�

Z i
so

1/2

intermediateordered disordered

jamming

Z � Z
iso

⇠ p1/2
jamming

G/B ⇠ p1/2

0.0 0.5 1.0 1.5 2.0 2.5�
0.0

0.2

0.4

0.6

0.8

1.0

D
(�

)

perfect fcc

0.0 0.5 1.0 1.5 2.0 2.5�

p⇥ 10�8

p⇥ 10�2

perfect fcc

0.0 0.5 1.0 1.5 2.0 2.5�

p⇥ 10�8

p⇥ 10�2 perfect fcc

intermediateordered disordered

density of states

3 example systems

Little disorder makes it behave like jammed solid  

F6=0.9 F6=1 
Color = local order 

F6=0.1 



From order to disorder: 
When does (dis)order dominate response? 

3 example systems
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Jamming – disordered limit for rigidity 

 Implication of jamming ⟺ Low-T glasses 
 Excess low-energy excitations ⇒  Boson peak 
 Small constant diffusivity ⇒  κ(T) ∝ T above plateau 

 Anharmonic & quasi-localized modes ⇒  phonon echoes 

 

 
Basic results hold for:  

 Long-range interactions with attractions (e.g., L-J potentials) 
  

  New class of excitations 

   ⇒  new way to think about glass properties 
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