Relevance of jamming to the mechanical properties of solids

Sidney Nagel University of Chicago *Capri; September 12, 2014*

What is role of (dis)order for mechanical behavior?

Andrea J. Liu

Carl Goodrich

Justin **Burton**

Xu

Matthieu Wyart

Silbert

Vitelli

Corey O'Hern

Department of Energy, Office of Basic Energy Sciences, **Division of Materials Sciences and Engineering**

Crystals are essence of order What is essence of disorder?

Why ask that?

Cannot perturb crystal (*i.e.*, add defects) to get physics of glasses

Need other limit - complete disorder

Prototype of an*other* way of making solids:

Crystallization: 1st-order nucleation What (non-equilibrium) process creates complete disorder?

Do all ways of creating rigidity produce same behavior?

Example: phenomena created by disorder Qualitatively different from crystals

Quantum-mechanical two-level (tunneling) systems have been postulated to explain low-temperature properties of glasses

Orientational glass: (KBr)_{1-x} (KCN)_x

x = 0 \rightarrow crystal $x \approx 0.5$ \rightarrow orientational glass

Crossover from ordered to disordered behavior occurs at very low disorder $x_{crossover} \approx 0.01$

Nature of rigidity and excitations

Response to compression and to shear:

Excitations: Normal modes of vibration density of states; spatial properties; heat transport; anharmonicity

Does disorder matter?

Jamming:

Compress random collection of spheres in a box

Does this protocol produce different physics from crystals?

Simulate finite-range, repulsive potentials:

 $V(r) = V_0 (1 - r/\sigma)^{\alpha}$ $r < \sigma$ D = 2, D = 3= 0 $r > \sigma$

 ϕ_c -- onset of jamming at T = 0

Quench to local energy minimum

Jammed solids different from crystals

Shear infinitely weaker than bulk modulus at transition

Durian, O'Hern, Liu

Maxwell criterion for rigidity

Minimum number of overlaps needed for mechanical stability

N frictionless spheres in D dimensions:

Match **# equations** (# non-trivial degrees of freedom) = ND to **# unknowns** (# interparticle normal forces) = NZ/2

 \Rightarrow Z_c = 2D

Criterion for rigidity: global condition - not local

Physics governed by connectivity (Thorpe, Phillips, Alexander)

O'Hern, Liu

Normal modes in "normal" solid Low-frequency normal modes \Rightarrow long-wavelength plane waves. Density of modes, $D(\omega)$, from counting waves: $D(\omega) \propto \omega^2$ in 3-D $D(\omega) \propto \omega^{d-1}$ in d-dimensions. D(W) ω Long wavelengths "average" over disorder. All solids *should* behave this way.

Density of states near jamming: no Debye behavior at ϕ_c

(no length on which one can average to recover elasticity)

New class of excitations

Silbert, Liu

Concrete example of new class of excitations: emerge from critical point What are they?

Created from soft modes:

Cutting argument (Wyart)

Structure (not plane waves):

"Quasi-localized" at low frequencies

Heat transport at low T:

Poor conductors -- nearly-constant diffusivity

Highly anharmonic:

Dynamic heterogeneities?

Properties tuned by varying $\Delta \phi = (\phi - \phi_c)$

Spatial properties of modes

For all $\Delta \phi$, quasi-localized (resonant) modes near $\omega = 0$ (from band tail of anomalous modes)

N. Xu, V. Vitelli, A. Liu

Basins and energy barriers

 V_{max} = energy barrier to new ground state.

N. Xu, V. Vitelli, A. Liu

Can modes explain low-T properties of glasses?

Must reproduce predictions of tunneling model:

Linear specific heat: $\mathcal{D}(\omega) \sim \text{const.}$ T² thermal conductivity Saturation Time dependent specific heat

Phonon echoes (similar to spin echoes in NMR)
Need Quantum 2-level systems Not thought possible from vibrations

Acoustic echoes in anomalous modes?

At low ω, modes highly anharmonic + localized CLASSICAL echoes in simulations (w/o quantum 2-level systems).

Acoustic echoes in anomalous modes?

At low ω , modes highly anharmonic + localized

CLASSICAL echoes in simulations (w/o quantum 2-level systems).

Acoustic echoes appears at time τ

Repulsive Hertzian

Average over 10,000 N = 10^{3}

Justin Burton

Acoustic echoes appears at time τ

Repulsive Hertzian Average over 10,000 N = 10³

Justin Burton

Echoes independent of inter-particle potential. Needs: anharmonicity & weak coupling between modes (localization)

Justin Burton

Tune from perfect order to complete disorder

Start w/ perfect crystal

Create *m* random vacancies (or vacancy/interstitial pairs)

Relax positions, vary pressure

Goodrich, Liu

Little disorder makes it behave like jammed solid

Little disorder makes it behave like jammed solid

Jamming – disordered limit for rigidity

Implication of jamming \Leftrightarrow Low-T glasses Excess low-energy excitations \Rightarrow Boson peak Small constant diffusivity $\Rightarrow \kappa(T) \propto T$ above plateau Anharmonic & quasi-localized modes \Rightarrow phonon echoes

Basic results hold for:

Long-range interactions with attractions (e.g., L-J potentials)

New class of excitations

 \Rightarrow new way to think about glass properties

Andrea J. Liu

Carl Goodrich

Justin Burton

Xu

Matthieu Wyart

Silbert

Vitelli

Corey O'Hern

Department of Energy, Office of Basic Energy Sciences, **Division of Materials Sciences and Engineering**