
Exact theory of dense amorphous spheres in large

dimensions

Giorgio Parisi



In this talk I will shortly discuss:

• Mean field theory for glasses.

• A new crucial phenomenon: the Gardner-(Gross-Kanter-Sompolisky) transition.

• The fractal picture arises.

• Conclusions



Mean field theory should be exact in some limit (e.g. infinite dimensions, long

range....)

High temperature (or low density) the theory is trivial. The problems are at low

temperature or high density. A phase transition lurks somewhere.

Two approaches

• Solve the model analytically by brute force or by ingenuity.

• Identify the correct order parameter and to prove later that nothing relevant is

missing



Zeroth order approximation

neglect correlations in the liquid phase.

g(x) = exp(−βV (x))

We can construct models of hard spheres (MKx) with trivial correlations. (I skip the

details: see Patrick’s talk).



Frozen phase, where the particles are confined in a cage. The effects of the other

particles forbid a given particle to move too much.

The local order parameter is the form of the cage ψi(x− xi).

Free energy functional (Wolynes ’80’) we can write a free energy that depends on the

form and the positions of the cages (e.g. in 3 dimensions).

F [ψi(x− xi)]

The global order parameter is the probability distribution of the probability of the

cages:

P [ψ]

We can trivialise the model, neglecting correlations in the liquid. We have a

functional order parameter: a big mess for explicit exact computations (Mézard, GP,

Tarzia, Zamponi).



Too many forms of the cages. Some approximation is needed.

The simplest approximation (Mézard and GP 1999). All cages are equal and

Gaussian with radius A:

ψi(xi) ∝ exp
(
−(xi − xcage

i )2/(2A)
)

Systematic small A expansion. We can modify this add approximation correlations

in the fluid case.

Good results. Hard spheres (GP and Francesco Zamponi).



• φ < φd liquid

• φ > φd the liquid breaks into states (lumps). The number of states is

exp(NΣ(φ, f) for fmin < f < fmax f being the free energy in a state.

feq minimise the total free energy.

Φ = f − TΣ(φ, f) (F = E − TS)

Σ(φ, feq) is the equilibrium configurational entropy.

• At φK Σ(φ, Peq) = 0.

• At φ > φK the partition function is dominated by a not large number of states

Σ(φ, Peq) = 0



With replicas: one introduce m replicas.

Xi ≡ {x1
i · · ·xm

i } ρ(Xi) ∝
∫

dxcage
i exp

(
−
∑

a=1,m

(xa
i − xcage

i )2/(2A)

)

Why m replicas?

The free energy of the different cages has a probability distribution that depends on

m.
∂Σ(f)

∂f
= βm

The introduction of replicas allows us to do probabilistic computations in a very fast

and compact way!

We should be able to do all this without replicas (GP, Zamponi).



You can do the computation taking care of the correlations. You find reasonable

results at d = 3 for the position of the transitions.

Infinity pressure states exist for 0.64 < φ < .68 in d = 3.

• We have the RFOT scenario.

• We can compute the critical line with good results (Infinity pressure states exist

for 0.64 < φ < .68 in d = 3. )

• We predict generalised fluctuation dissipation relations.

• The pressure diverge as (φJ − φ)−1.

• Number of contacts at infinite pressure 6− 6.1. No isostaticity!!!

• The size of the cage is proportional to (φJ − φ)

• The correlation function g(r) is given by Zδ(r − 1) +smooth function



First reaction: happy. But critical exponents were missing.

No problem. We have mean field theory. Non-trivial critical exponents appear only

at below the upper critical dimensions.

However: critical exponents are nearly independent from the dimensions.

Violations of isostaticity is worrying.

The troubles do not disappear with the dimension (nice computation in the infinite

dimension limit φ̂ ≡ 2d/dφ)

No problem: the distribution of the cage is far from being Gaussian. It may contains

a power law tail.

However.....



Idea: Kurchan, GP, Zamponi

All cats are grey in the dark and all functions are Gaussian in infinite dimensions d.

δ(|x|− d) ≈ exp(−x2/2) ≈ exp(−d1/2|x|)

(microcanonical and canonical ensamble)

δ(H −NE) ≈ exp(−βH)

So we can dream to take Pi(xi) to be a Gaussian.

We have esplicitly check that Gaussian is OK when d → ∞

Final approximation

φi(xi) ∝ exp
(
−(xi − xcage

i )2/(2A)
)

The number of particle interacting at a given time with a given particle is of order d,

a Gaussian distribution is natural.

Conclusions: we should have the the results of GP and Zamponi are correct unless....



unless something new happens: an instability, i.e. divergence of a susceptibility.

Replica Symmetry Breaking (Kurchan, GP, Urbani, Zamponi) instability.

Check stability: for each particle we define the squared radius of cage (the mean

squared displacement).

∆TOT =
∑

i=1,N

∆i ⟨∆2
TOT ⟩ − ⟨∆TOT ⟩2 ≡ Nχ

The susceptibility χ can be computed and its given by

χ−1 ∝ φG − φ

Theory does not work for φ > φG.



Gi,k = ⟨∆i∆k⟩c G2(x) = G2
i,kδ(xi − xk − x)



What happens for φ > φG??

Biforcations: each solutions for the cage’s is surround by many solutions

ψα
i (x) = ψ∗

i (x) + (φ− φG)1/2ψα
i (x) α = 1.....

ψα
i (x) = ψstate(x− xα

i ) P (xα
i ) is Gaussian centered around xi.

Each state breaks into a family of states that are nearby one to the other.

We can define a complexity for the states and a complexity for families:

∂Σstates(f)

∂f
= βmstates

∂Σfamilies(f)

∂f
= βmfamilies

mstates = mfamilies +A(φ− φG)



ϕ < ϕg

ϕ > ϕg

High ϕ > ϕgLow ϕ > ϕg Low ϕ > ϕg High ϕ > ϕg

(a)

(b)

(c) (d)

α

Vibrations
(e)



equilibrium liquid

stable glass

marginal glass

J-line
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5
d/

p

4 5 6 7 8 9
2d /d

4 5 6 7 8 9





We have seen two levels RSB.

Three levels: states are grouped into families, that are grouped into orders....

Continuous Replica Symmetry Breaking

Many subcages distributed in a similar faction, organised in an hierarchical way:.

We consider K levels: The distribution of the center of masses of the (k + 1)th level

are at distance squared of order 1/K from the one of the (k)th level. We can write

explicit formulae for the various distributions.

At the end of the day we have to do the limit K → ∞. One finds states that are

organised in a hierarchical way.

The probability distribution is rather complex. It needs a certain amount of heavy

mathematics to prove that the construction has some sense and the the K → ∞ limit

has a probabilistic limit.



It took 30 years of works to prove (with many decisive contribution of Francesco

Guerra) that this structure of states is correct in the Sherrington Kirkpatrick model

of spin glasses. 20 years to prove that the computation of the free energy based on

these ideas was correct and 10 additional years to prove the structure of the states is

correct.



With replicas:

ρ(Xi) ∝ exp

⎛

⎝−
∑

a=1,m;b=1,m

(
xa
i − xb

i

)2
/(2Aa,b)

⎞

⎠

where A is a matrix that encodes the probability distribution of the states.

The model can be solved and we arrive to non linear differential equations very

similar to those of the Sherringon-Kirkpatrick model.

The low temperature behaviour of SK correspond to infinite pressure in hard spheres.

Highly non trivial scaling limit with non-rational exponents.



We can apply the same ideas to glasses (CKPUZ)

After long long algebraic manipulations we get the final expression of the non trivial

part of entropy in the full RSB case in the d → ∞

We introduce a function ∆(x) in the interval [m : 1]

S∞RSB = −m

∫ 1

m

δy

y2
log

[
y∆(y)

m
+

∫ 1

y
δz

∆(z)

m

]
−ϕ̂ e−∆(m)/2

∫ ∞

−∞
δh eh[1−emf(m,h)] ,

∂f(x, h)

∂x
=

1

2
∆̇(x)

[
∂2f(x, h)

∂h2
+ x

(
∂f(x, h)

∂h

)2
]

,

f(1, h) = logΘ

[
h√

2∆(1)

]
fSK(1, h) = log(tanh(βh))

Θ(x) is the error function. The function ∆(x) parametrise the distribution of the size

of the cages.



One step RSB formulae can be obtained as a limit of the full RSB formulae. Three

regimes

• Low pressure: Liquid phase

• Intermediate pressure: one step RSB phase: i.e. glassy systems with well

separated cages

• High pressure: full RSB phase with cages organised in an hierarchical way.

A Gardner type transition separates the one step RSB phase from the full RSB

phase.



A detailed analysis

y = 1/m

We introduce k(y) simply related to ∆(y)

1
γ(y) = yκ(y)−

∫ y
1 δzκ(z) γ(y) = y∆(y) +

∫ 1/m
y δz∆(z)

In the same way as in the SK model, the stationarity condition can be simplified. We

introduce a function P̂ (y, h) that satisfies a simple differential equation

∂P̂ (x, h)

∂x
=

1

2
∆̇(x)

[
∂2P̂ (x, h)

∂h2
+ 2x

∂f(x, h)

∂h

∂P̂ (x, h)

∂h

]
,

κ(y) = ϕ̂
2γ2(y)

∫∞
−∞ δh ehP̂ (y, h)f̃ ′(y, h)2 q(y) =

∫
dhP (y, h)m(y, h)2.

One can prove marginal stability χ = ∞ and

1 = ϕ̂
2

∫∞
−∞ δh ehP̂ (y, h)f̃ ′′(y, h)2 . 1 =

∫
dhP (y, h)

(
dm(y,h)

dh

)2

Cavity interpretation with Zamponi is in progress.



Interesting limit: pressure going to infinity, m → 0. This is the jamming limit!

The marginal stability condition

1 = ϕ̂
2

∫∞
−∞ δh ehP̂ (y, h)f̃ ′′(y, h)2

implies isostaticity.



Scaling limit when the pressure goes to infinity. The following scaling form

reproduces itself in the equations.

P̂ (y, h) ≈ yap(hyb)

How to determine the exponents a and b?

We can resort to the indignity of solving numerical the equations and to extract the

exponents by fitting the solution.



Non linear velocity selection An example

φ̇(x, t) = −∂2φ(x, t)

∂x2
+ φ(x, t)− φ2(x, t)

Propagating front: at large time

φ(x, t) ≈ f(x− vt) − vf(z) =
d2f(z)

dz2
+ f(z)− f2(z)

The equation for f has a solution for any v.

Theorem: if φ(x, 0) = 1 for x < 0 and φ(x, 0) goes fast to zero sufficiently fast.

φ(x, t) ≈ f(x− v∗t)

The velocity v∗ is fixed by a marginal stability condition.



The a and b can be computed analytically form the previous equations in the scaling

regime.

For example a can be computed as function of b by solving an eigenvalue equation.

We can find b by imposing the marginality condition.

1 = ϕ̂
2

∫∞
−∞ δh ehP̂ (y, h)f̃ ′′(y, h)2

At the end we find

a = 0.29213 b = 0.70787 a+ b = 1



Only if we use continuous replica symmetry breaking we find at infinite pressure:

Isostaticity: the number of contacts of spheres Z is equal o ND: each sphere has in

the average 2D contacts.

The correlation function g(r) has a singularity at r = 1:

g(r) = 2Dδ(r − 1) + C(D)(r − 1)−α α = 0.41269 ≡ a/b

The quasi-contact exponent α has been measured by several groups in dimension D

ranging from 2 to 13, all obtaining roughly α ≈ 0.4.

The most precise estimates being α = 0.41(3) for D = 3.

Without continuous replica symmetry we have

g(r) = Zδ(r − 1) +O(1) Z > 2D WRONG!!!



Why fractal?

If we sum over all the sub-cages we can define a function ρi(x).

We can define a correlation function

C(r) =

∫
dxdyρi(x)ρi(y)δ(|x− y|− r)

C(r) has a power like behaviour corresponding to a fractal dimension

D =
2

κ



Open problems.

• Can you explain all this in a simpler way, e.g. without replicas? Likely yes (GP

and Zamponi in preparation).

• Can you prove that gives the exact result in one of MKx models? I hope so, but

it is not clear when (2 years or 20 years?)

• What happens in finite dimensions at jamming? Everything seems ok, but why?

• What happens to the Gardner transition in finite transition? It is still there or

not?

• If yes, can we pinpoint the Gardner transition numerical simulations and in

experiments?



We must:

• Many other quantities have to be computed. In particular the spectrum of small

oscillations.

• We should be able to do precise computation in the dynamics. (MCT like

equations, but not MCT).

• We need to complete the extension of the results to finite dimensional models.

• Compare the prediction for the dynamical correlations with numerical

simulations and with experiments.

• Compute systematically 1/d corrections.

• Understand the renormalization group approach in finite dimensions.



The MKK model

We consider a random regular lattice of coordination number z. On each site i we

have a variable xi that is a d-dimensional vector in box of side L and volume Ld. For

each link we have a random shift sik.

We are interested the configurations such that for each link i, k

|xi − xk − si,k| > 1

In a first approximation forget the shifts s. In each box we have spheres of diameter

1.

Each sphere see the sphere on the nearby box. The density is

ρ = zL−d

The SK limit is obtained when z → ∞ at fixed ρ.

We are interested to compute the entropy as function of ρ. i.e. the volume in

configuration space where all the bounds are satisfied.

S(ρ) → ∞ when ρ → ρj . The pressure (−dS/dρ) goes to infinity at ρj .


